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Abstract: In a single-phase grid-tied inverter, the direct current (DC) offset error included in the
measured grid side phase current has various causes, such as a non-ideal current sensor, unbalanced
power supply of an operational amplifier, and nonlinear features of analog components in interface
circuits, etc. If the DC offset error is included in the measured current, it causes the secondary
harmonic of fundamental frequency and the DC component in grid phase current which result
in degradation of inverter performance. In this paper, a theoretical detection method of the
secondary harmonic of the fundamental frequency and a DC component in grid phase current
for a proportional-resonant (PR) current control system is introduced. Based on the detection method,
an algorithm for compensating DC offset error is also presented for single-phase grid-tied inverters.
Simulation results and experimental verification of the DC offset error compensation algorithm are
shown in this paper.

Keywords: single-phase grid-tied inverter; direct current (DC) offset error; proportional-resonant
(PR) current control; DC component; secondary harmonic component

1. Introduction

Recently, grid-tied inverters have received attention due to the high demands of distributed
energy systems [1,2]. Among the grid-tied inverters, the single-phase grid-tied inverter has advantages
over three-phase grid-tied inverter for low power applications because a transformer is not necessarily
required. Reliable phase current control on the grid side is necessary for efficient operation of
a single-phase grid-tied inverter. The phase current of the grid side is measured through the
following process: (1) a current sensor; (2) analog signal processing circuits, and (3) analog-digital
converter (ADC). During the measurement process of phase current, nonlinear characteristics result
in a direct current (DC) offset error [3]. To prevent the DC current component, a line frequency
isolation transformer was used in References [4,5], but it is applicable, typically, for three-phase
inverters. As another approach, an offset error was detected using a reactor [6]. However, the use
of a reactor requires additional hardware systems and size and weight of the overall hardware
system is increased due to the reactors. Other DC offset compensation methods are presented in
References [7–10]. However, the DC offset compensation methods result in additional cost and power
losses. An algorithm-based DC offset compensation is proposed in Reference [11] where scaling
error and DC offset in measured phase current are integrated over one cycle of a grid frequency,
and information about the error is analyzed from the integrated signal. For the implementation of the
method in Reference [11], integration of one cycle of phase current is required for error compensation.
As a result, transient dynamic performance is reduced because of the one cycle delay.
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There are many current control algorithms for a single-phase grid-tied inverter, for example,
proportional-integral (PI) control at stationary and synchronous reference frames, resonant control,
predictive control, repetitive control, etc. [12]. While PI control is simple to implement, PI control
at a stationary reference frame yields phase delay which needs to be compensated. PI control at a
synchronous reference frame shows a zero steady state error, but it has limited control performance for
high harmonic order signals. Performance of current control can be improved via predictive control
and repetitive control [13,14]. However, predictive control is sensitive to variations of parameters
used to develop the control algorithm, and repetitive control shows slow dynamic performance.
Along with PI control, a proportional-resonant (PR) control is one of the widely used control algorithms
for a grid-tied inverter [15–19]. Linear quadratic tracking (LQT) is applied for resonant controller
design [15,16]. A design guideline of a PR controller for a single-phase grid-tied inverter is presented
in References [17,18]. In Reference [19], the reference frame of the current is transformed from phase
A to a synchronous reference frame. Then, current ripple is caused by the DC offset error. A PR
controller is used to obtain DC offset error information from the ripple component on a d-axis current.
As introduced in Reference [19], gain tuning of a PR controller is challenging because PR control is
sensitive to variation of the DC offset error magnitude. While presented methods proposed algorithms
for removing DC offset error, causes of DC offset in a digital signal process have not been analyzed in
detail yet.

In this paper, causes of DC offset error in a phase current measuring process and effects of DC
offset error in measured phase current on a grid side are theoretically analyzed. Since the operating and
signal processing conditions are different for each application, this paper is attempting to compensate
the variable and unpredictable DC offset signal. As well as the analysis of DC offset error effect,
a DC offset error rejection method is presented utilizing second order generalized integrator (SOGI),
and different types of filters, such as low pass filter (LPF) and all pass filter (APF). The proposed method
rejects the second harmonic and DC component caused by the DC offset error. Finally, the proposed
method enables efficient and stable operation of a single-phase grid-tied inverter. Simulation and
experimental results of the proposed algorithm are shown in this paper.

2. Analyzing Effect of DC Offset Error in PR Current Control

A system flow of a single-phase grid-tied inverter system is shown in Figure 1. The system shown
includes a PR current controller, a DC-link voltage controller and a phase locked loop (PLL).
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grid-tied inverter.

Figure 2 shows the measurement process of a phase current in a single-phase grid-tied system,
where a DC offset error has occurred.
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Figure 2. Current measurement process in a single-phase grid-tied system and direct current (DC)
offset error occurrence in a current measuring process.

As seen in Figure 2, phase current of a grid-tied inverter is measured using a matching circuit,
a current sensor, and analog components, for example, a low pass filter and analog to digital converter.
A measured current signal contains both scaling and DC offset error when compared with an ideal
current signal because of nonlinear features of the current measuring process as seen in Figure 2.
Specifically, DC offset error occurs from a transducing process of current into voltage by a current sensor
and transformation of the analog signal to digital values by Analog to Digital (A/D) converters [3].
Although scaling error occurs at multiple stages in a current measurement process as shown in Figure 2,
scaling error is disregarded in this paper because a single-phase system is not affected by scaling error.
Since this paper proposes a solution to the problem in a phase current control loop, it is assumed that
DC-link voltage and phase information PLL as shown in Figure 1 are ideal.

Electrical circuit equations for measured phase voltage (vs), measured phase current (is) in a
grid including DC current offset errors (∆ioffset) which occurred during current measurement process
are shown as Equations (1) and (2). The output power (Ps) equation can be derived by multiplying
Equations (1) and (2) and is summarized as Equation (3). In addition, power on DC-link (Pdc) is written
as Equation (4).

vs = Vm cos ωt (1)

is = Im cos ωt + ∆io f f set (2)

Ps = Vm Im cos2 ωt + Vm∆io f f set cos ωt =
Vm Im

2
(1 + cos 2ωt) + Vm∆io f f set cos ωt (3)

Pdc = Vdc Idc (4)

From Equation (1) to Equation (3), Vm and Im represent the magnitude of voltage and current,
respectively. In Equation (4), Vdc and Idc represent voltage and current on DC-link, respectively.
Assuming power on DC-link (Pdc) is equal to output power, the DC-link current can be derived as a
form of DC-component (IDC) and ripple component (Iripple) as Equation (5).

Idc = IDC + Iripple (5)

where, IDC = Vm Im
2Vdc

and Iripple =
Vm Im
2Vdc

cos 2ωt +
Vm∆io f f set

2Vdc
cos ωt.

As seen in Equation (5), ripple current consists of a fundamental frequency component and the

second harmonic component. The additional fundamental frequency component,
Vm∆io f f set

2Vdc
cos ωt, is

generated due to the current offset (∆ioffset). Using the ripple component in a DC-link current, DC-link
voltage ripple (Vdc_ripple) due to the offset error can be derived as Equation (6).

Vdc_ripple = 1
Cdc

∫
(Iripple)dt = Vm

ωVdcCdc
∆io f f set sin ωt + Vm Im

2ω2VdcCdc
sin 2ωt = β0∆io f f set sin ωt + β1 sin 2ωt (6)
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As shown in Figure 1, current command (i∗s ) is calculated from a DC-link voltage controller,
and the ripple also appears as an identical form in a DC-link voltage. Therefore, an output of a
DC-voltage controller and a current command can be written as Equation (7).

i∗s = I∗ sin ωt = Im sin ωt + β1 sin 2ωt sin ωt + β0∆io f f set sin ωt sin ωt (7)

As seen in Equation (7), a current command developed from a DC-link voltage controller contains
three components, which are ideally the fundamental current command, a component due to double
line frequency ripple generated from a grid side, and a current component generated by the DC
offset error, ∆ioffset. Among components in the current command Equation (7), the current component
(io f f set) generated by the DC offset error (∆ioffset) is written as Equation (8) disregarding the effect of
scaling error.

io f f set = β0∆Io f f set sin ωt sin ωt =
β0∆io f f set

2
−

β0∆io f f set

2
cos 2ωt (8)

From Equation (8), it is known that DC component,
β0∆io f f set

2 and second order harmonic signals,
β0∆io f f set

2 cos 2ωt are generated in the current reference signal due to the offset error, ∆ioffset, in phase
current. By removing the ripple component due to the DC offset error in a measured phase current,
power quality of a single-phase grid-tied inverter can be improved. Using the DC offset error
analysis result, a DC offset error compensation algorithm is developed to improve power quality of a
grid system.

3. Proposed Offset Error Compensation Algorithm

The proposed DC offset error compensation algorithm is integrated into a current control system
and graphically represented in Figure 3.
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Figure 3. A block diagram of a single-phase grid-tied control system containing the proposed DC offset
error compensation algorithm.

Figure 3 shows that measured phase current (is + ∆io f f set) is applied as an input signal of the
proposed DC offset error compensation algorithm of a single-phase grid-tied inverter system. As shown
in Equation (8), phase current (io f f set) is affected by the DC offset error and contains the second
harmonic component of a fundamental frequency. As the first step of the proposed DC offset error
compensation algorithm, the second harmonic of the fundamental frequency occurring from a DC
offset error in phase current is pulled out by using a SOGI. The transfer function of the SOGI is derived
as Equation (9).

GSOGI(s) =
kpkωrs

s2 + kωrs + (ωr)2 (9)
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In Equation (9), s is a Laplace operator and kp is a proportional gain and k is a bandwidth gain,
and ωr is a resonance frequency. By using the SOGI, a designated frequency signal can be selectively
extracted from an input signal. The signal processing in Figure 3 is shown more in detail in Figure 4
and unity magnitude is applied to each signal. In Figure 4a, the fundamental frequency is assumed to
be 60 Hz, and the fundamental frequency signal is plotted with a black line. The second harmonic
signal extracted by the SOGI is plotted in blue in Figure 4a.
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signals of second harmonic signal and its 90 degree shifted signal. Eighth order signal generated by
adding second harmonic signal and its 90 degree shifted signal.

The second step is divided into two stages. The first stage is generating a virtual phase current
with 90-degree phase lagging utilizing a feature of an APF. A transfer function of an APF is shown in
Equation (10). Same as in Equation (9), s is a Laplace operator in Equation (10).

GAPF(s) =
s − ω

s + ω
(10)

The 90-degree phase lagged signal generated by the APF is plotted in red dashed line in Figure 4a.
The second stage of the second step is taking absolute values of second harmonic signal extracted
from the SOGI and 90-degree phase lagged second harmonic signal generated from the APF. By taking
absolute values of second harmonic signal, the frequency of the signal is double, which is a fourth order
harmonic of the fundamental frequency signal as shown in plots in blue and red lines in Figure 4b.
By adding a fourth order harmonic signal (blue line in Figure 4a) and 90-degree phase lagged fourth
order signal (red dashed line in Figure 4a), an eighth harmonic signal is generated as shown in magenta
Figure 4b. Therefore, a DC signal including a ripple with eighth order harmonics frequency occurs as
an output signal of Step 2. The fundamental frequency signal (black line) is overlaid for frequency
verification. Then, an estimated DC offset component (icom) can be obtained by eliminating the eighth
harmonic signal from the DC signal. In Step 3, an LPF is used to remove the eighth harmonic signal,
and DC signal can be obtained. Since the obtained DC signal cannot be directly used as DC offset
compensation, the obtained DC signal is used as a comparison signal of zero command PI controller as
shown in Step 3 in Figure 3. Finally, the DC offset compensation component (icom) is developed from
the PI controller. The output signal of the PI controller compensates DC offset error of a grid phase
current. By applying the proposed algorithm, the DC offset error (∆ioffset) is estimated and directly
eliminated from the measured phase current. As a result, the DC component and the second harmonic
signal in Equation (8) can be removed by eliminating the DC offset error (∆ioffset) from the measured
phase current. Therefore, accurate DC offset error compensation in a single-phase grid-tied system is
enabled using the proposed algorithm.
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4. Simulation Results

A simulation model of the proposed DC offset error compensation algorithm was developed
and implemented in MATLAB/Simulink (Mathworks, Natick, MA, USA). The developed simulation
model is shown in Figure 5.
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For performance verification of the proposed DC offset error compensation algorithm, 0.2 A of
DC offset was injected intentionally. The simulation results with and without applying the proposed
algorithm for DC offset error compensation are seen in Figure 6. Figure 6a,b show the DC-link voltage
and phase current when the proposed DC offset compensation algorithm is not applied and Figure 6c,d
show the DC-link voltage and phase current when the proposed DC offset compensation algorithm is
applied, respectively.
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As seen in Figure 6a,c, the DC offset error on measured phase current is compensated by
applying the proposed algorithm. In Addition, the ripple on DC-link voltage due to the DC offset
error is significantly reduced by applying the proposed algorithm as seen in Figure 6b,d. However,
the harmonic components in DC-link voltage and phase current are not clearly shown in the simulation
results at a time domain.

Therefore, in addition to analysis in a time domain, frequency spectrum of phase current was
investigated, and simulation results with and without applying the proposed algorithm are shown
in Figure 7, respectively. As shown in Figure 7a, the DC component and the second harmonic are
observed in phase current as theoretically analyzed in Equation (8). As shown in Figure 7b, the DC
offset component and the second harmonic component are almost completely removed by using the
proposed the DC offset error compensation algorithm.
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As well as DC offset error compensation, we investigated total harmonic distortion (THD) of
the phase current and it improves from 2.79% to 0.41% when the proposed DC offset compensation
algorithm is applied as shown in Figure 7.

5. Experimental Results

Following the simulation, the proposed algorithm was verified by experimental implementation.
This section presents an experimental set-up and experimental results of the proposed DC offset
error compensation algorithm. A block diagram of the experimental set-up and the picture of the
experimental set-up are shown in Figures 8 and 9.
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In the experimental set-up, TMS320VC33 (TMS 320 series, Texas Instruments, Dallas, TX, USA)
was used as a digital signal processor to design the control algorithms. More details about the
experimental set-up are summarized in Table 1.

Table 1. Single-Phase Grid-tied Inverter Specifications.

Parameters Value

Rated power 3 (kW)
Grid voltage 220 (V), 60 (Hz)

DC link capacitance 5240 (µF)
Filter inductance 5 (mH)
Filter capacitance 10 (µF)
Sampling period 100 (µs)

Switching frequency 10 (kHz)

Current sensor
(LA55-P)

Offset current @ IP = 0, TA = 25 ◦C ±0.1 (mA max)
Temperature variation @ TA = −25 ◦C ~ +85 ◦C ±0.3 (mA max)

Accuracy @ IPN, TA = 25 ◦C ±0.65 (%)

Op-amp(TL084C) Input offset voltage 20 (mV max)
Temperature coefficient of input offset voltage 18 (µV/◦C)

ADC(AD7864-1)
Resolution 12-bit

Bipolar zero error(=offset error) ±3 (LSB max)

The proposed DC offset error compensation algorithm was implemented in the experiment.
Figure 10 shows experimental results at steady state.
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The experimental results in Figure 10 show DC-link voltage, phase current and the output signal
from SOGI and the eighth order harmonic signal. The output signal from SOGI and the eighth order
harmonic signal correspond to the signals at Step 1 and Step 2 as introduced in Figure 3.

In Figure 11, experimental results of phase current and DC-link voltage with and without applying
the DC offset error compensation algorithm are shown. Experimental results of a frequency spectrum
and experimental data at a time domain are overlaid in Figure 11. During the experiment, 0.3 A of DC
offset current was injected when the DC-link voltage was 330 V. Figure 11a shows the experimental
results when the proposed method is not applied. As seen in the results, harmonic components are
easily detected in DC-link voltage and phase current is non-sinusoidal due to harmonics in a time
domain. From frequency spectrum analysis results of the uncompensated signal, harmonics in DC-link
voltage and phase current are clearly represented in Figure 11. Especially for phase current, the DC
component and second harmonic component are detected as theoretically analyzed in Equation (8).
In a vertical axis of Figure 11, DC link voltage is 2.5 V per division and current is 1.5 A per division.
Figure 11b shows the experimental results when the proposed method is applied. As shown in the
time domain experimental results, a significant reduction of harmonic components in DC-link voltage
and phase current are observed. From frequency spectrum analysis results of the compensated signal,
it is shown that harmonics in DC-link voltage and phase current are eliminated. In addition, THD of
the current was calculated from the experimental results. The calculated THD of phase current was
reduced from 15.8% to 5.8% when the proposed algorithm was applied. The effect of dead time,
undesired noise from sensor, and an interface circuit seem to be reasons for the THD difference
between simulation and experimental results. From the experimental results, it is verified that specific
harmonic signals generated by the DC offset error are eliminated by applying the proposed DC offset
error compensation method and quality of phase current is improved.
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applying the proposed DC offset error compensation algorithm.

In Figure 12, the experimental results of robustness evaluation of the proposed algorithm are
shown. While 0.3 A of DC offset error was applied on purpose, the proposed DC offset compensation
algorithm was applied at 1.8 s. Then, it took approximately 2 s until the applied DC offset was
compensated and we investigated whether the ripple on the DC-link voltage was reduced. At 7.3 s,
the proposed DC offset compensation algorithm was ended. As soon as the compensation algorithm
was disabled, ripple on the DC-link voltage and offset on the phase current were observed. When the
DC offset error compensation algorithm was enabled and disabled, the effect on the phase current
such as fluctuation was barely seen as shown in Figure 12.
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In addition to the robustness evaluation, dynamic performance of the proposed algorithm was
evaluated experimentally. The experimental results are shown in Figure 13.
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In Figure 13, 0.3 A of DC offset current was applied initially and the proposed DC offset
compensation algorithm was applied. From the experimental results, it can be observed that harmonics
signals on DC-link voltage are significantly reduced and offset in phase current is adjusted. In addition,
the settling time of extracted DC offset component and the compensation signal can be investigated.
The extracted DC offset component and the compensation signals correspond to the output signals of
Step 3 and Step 4 in Figure 3. As shown in Figure 13, the settling time of the compensation signal is
approximately 4 s. Transient dynamic performance can be adjusted if it is needed by tuning controller
gain. During the controller gain design process, the tradeoff between dynamic performance and
filtering performance of a controller should be considered.

6. Conclusions

In this paper, causes of DC offset error in the phase current measuring process and effects of
DC offset error in phase current on a grid side are theoretically analyzed. From the analysis, we
investigated whether current DC offset error generates an additional DC component and second
harmonic component. Using the analysis result, the DC offset error compensation algorithm for
variable and unpredictable DC offset signal is proposed for a single-phase grid-tied inverter system and
the DC offset error is estimated and directly eliminated. The proposed DC offset error compensation
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algorithm is verified in simulation and experiment in this paper. Applying the proposed DC offset
error compensation algorithm, it is verified that quality of phase current and DC-link voltage is
significantly improved.
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