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Abstract: A speed controller for permanent magnet synchronous motors (PMSMs) under the field
oriented control (FOC) method is discussed in this paper. First, a novel adaptive neuro-control
approach, single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP)
for speed regulation of PMSMs, is presented. For both current loops, PI controllers are adopted,
respectively. Compared with the conventional single artificial neuron (SAN) control strategy,
the proposed approach assumes an unknown mathematic model of the PMSM and guides the
selection value of parameter K online. Besides, the proposed design can develop an internal
reinforcement learning signal to guide the dynamic optimal control of the PMSM in the process.
Finally, nonlinear optimal control simulations and experiments on the speed regulation of a PMSM are
implemented in Matlab2016a and TMS320F28335, a 32-bit floating-point digital signal processor (DSP),
respectively. To achieve a comparative study, the conventional SAN and SAN-GrHDP approaches
are set up under identical conditions and parameters. Simulation and experiment results verify that
the proposed controller can improve the speed control performance of PMSMs.

Keywords: permanent magnet synchronous motor (PMSM); single artificial neuron goal
representation heuristic dynamic programming (SAN-GrHDP); single artificial neuron (SAN);
reinforcement learning (RL); goal representation heuristic dynamic programming (GrHDP); adaptive
dynamic programming (ADP)

1. Introduction

Permanent magnet synchronous motors (PMSMs) have many advantages, such as high power
density, simple structure, small volume, high efficiency and reliability. PMSMs are widely used in
numerical control machine tools, aerospace and industrial robotic manipulators [1]. A PMSM is
a typical nonlinear and strongly coupled system, with unpredictable external disturbances, as well as
internal parameter variations [2]. In recent years, various nonlinear control methods [3–11], such as
fuzzy logic control, sliding mode control, neural network control, nonlinear optimal control, internal
model control, adaptive control, have been used to meet the requirements of high reliability and
performance in PMSM control [7–10]. The fuzzy logic control is successfully applied in the speed
control of PMSMs [12,13]. However, the fuzzy control membership function is mainly based on expert
experience, which is difficult to obtain. Sliding mode control is a preferred research topic, due to its
insensitivity to variation of control object parameters and load disturbances [14,15]. Nevertheless,
chattering phenomena exist in this control method. Meanwhile, nonlinear optimal control has been
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put forward as a new PMSM control method [16]. However, the parameters of the PMSM must be
sufficiently accurate, and control results cannot adapt in time when the mechanical parameters of
PMSM change. In [17], a novel control scheme combining the inverse system method and the internal
model control for a bearingless permanent magnet synchronous motor (BPMSM) was proposed by
Sun et al., although in order to regulate the tracking and disturbance rejection properties, the values of
control parameter sets need to be adjusted separately [18].

Recently, adaptive dynamic programming (ADP) has attracted significantly increasing attention
as a novel level reinforcement learning approach. It can solve the “curse of dimensionality” of
conventional dynamic programming by approximately computing cost function [19]. ADP can be
categorized into three classical structures [20]: the first is heuristic dynamic programming (HDP),
the second is dual heuristic dynamic programming (DHP), and the last is globalized dual heuristic
dynamic programming (GDHP). The main difference is that the critic network is used to approximate
the value function J in HDP, while it is used to approximate the derivatives of value function J in DHP.
GDHP incorporates the benefits of HDP and DHP, by approximating both value function J and its
derivatives, respectively.

In paper [21], a novel hierarchical structure of ADP approach named goal representation heuristic
dynamic programming (GrHDP) is proposed. Compared with the conventional ADP approach,
the proposed approach has an additional reference network which can automatically build an internal
reinforcement signal to facilitate the optimal learning, control effectively and efficiency [22]. This novel
hierarchical ADP approach is of a superior learning performance over the traditional ones. The GrHDP
approach is used in various fields of electrical engineering, such as power system stability control for
a wind farm [23], power oscillation damping control for superconducting magnetic energy storage [24],
and load frequency control for an islanded smart grid [25].

Meanwhile, the single artificial neuron (SAN) control approach has been used in many
applications for its robust control in the presence of noise and uncertainties [26]. Generally speaking,
traditional SAN control has been applied to engineering practices for a long time due to its good
performance and easy implementation [27–29].

It has been pointed out that although the conventional SAN control approach can provide
an online learning ability for the PMSM parameter variation, it may not provide a satisfactory property
of load disturbance rejection. The reason is that the control effect of SAN mainly depends on the
parameter K (neuron scale-up factor). The parameter K is very important to the control response
performance. The selection of K is very difficult in traditional SAN control approaches. The control
system will respond faster if the K value increases. However, the K value will lead to the instability
of the system, if it is out of a certain range. Moreover, there is no profound theoretical background,
which can be used to tune the parameter K for complicated systems with uncertainties and disturbance.
It is a new idea to use machine learning to adjust the K value of SAN and make it applicable to
PMSM control. At the same time, for the ultimate convergence, the action network weights of GrHDP
approach usually need repeating online learning to achieve optimization solutions to the Bellman
equation. So far, articles about ADP approaches mostly focus on the simulation stage [23,24,30–36].

To solve the above problems, in this paper, a novel neuro-control framework using GrHDP and
SAN is proposed. Moreover, an application study on PMSM vector control system is also presented in
this research. The main contributions of this paper are summarized as follows:

(1) A novel adaptive neuro-control controller, called single artificial neuron goal representation
heuristic dynamic programming (SAN-GrHDP), based on SAN and GrHDP has been proposed in
this paper. This framework, under which the parameter K in the SAN has been updated through
a reference learning mechanism, can provide a sequential online control policy.

(2) The formula of SAN-GrHDP approach is derived, and the reinforcement signal and learning
process are designed for the vector control of PMSM. Simulation studies have been carried out for
the proposed approach. Simulation results demonstrate that the proposed controller has a higher
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potential of disturbance rejection, with much less speed fluctuation and shorter recovering time
towards load disturbance.

(3) Moreover, comparative experiments of original SAN and SAN-GrHDP approaches are performed
on the speed control of PMSM under the same conditions and parameters. The results of
the experiments verify that SAN-GrHDP can better improve the control effect by interacting
with the control object, and has much better robustness than SAN with load mutation and
load disturbance.

The remainder of the paper is organized as follows. Section 2 describes the servo control system
of a PMSM as well as the certain modeling of the speed controller used in this paper. Section 3
illustrates the details of the SAN-GrHDP controller, and the learning algorithm associated. In Section 4,
the simulation of the speed control of the PMSM and the experimental setup based on SAN-GrHDP
are presented. The results prove the effectiveness of the proposed SAN-GrHDP by comparing with
the conventional SAN control approach. Finally, Section 5 presents our conclusions and a few future
study directions.

2. Model of Permanent Magnet Synchronous Motor Control System

Assuming that magnetic circuit saturation, hysteresis eddy current losses are disregarded and
the sinusoidal magnetic field is distributed in space, a surface-mounted PMSM is considered as the
controlled object. In d-q coordinates, the model of a surface mounted PMSM can be expressed as
follows [37,38]:

 id ′

iq
′
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where ud and uq are the stator d- and q-axes voltages, id and iq are the stator d- and q-axes currents,
Ld and Lq are the stator d- and q-axes inductances, np is the number of pole pairs, Rs is the stator
resistance, ω is the rotor angular velocity, ψ f is the flux linkage, TL is the load torque, and B is the
viscous friction coefficient.

The strategies of the vector control of PMSM have id = 0 control, power factor cos φ = 1 control,
the maximum torque control, maximum output power control, flux weakening control and so on.
The approach of id = 0 control which has many advantages such as small torque ripple and wide speed
range, is the most simple strategy of vector control and used in this article. The field oriented control
(FOC) diagram of PMSM system by id = 0 control approach is shown in Figure 1. There are three
controllers in the diagram: one speed tracking loop controller and two current tracking loop controllers.
The d- and q-axes currents id, iq can be calculated from the two-phase static coordinate currents iα, iβ

of PMSM by the PARK transform. Similarly, the iα, iβ currents can be obtained from the actual phase
currents of PMSM through the CLARK transform. The rotor angular velocity ω and rotor position
θ can be calculated from encoder. Usually, the reference current value i∗q is determined by the speed
loop controller output, and i∗d is set to zero. Due to saturation phenomena of PMSMs, some values
can depend on the operating point of the machine, such as rotor inductance and rotor resistance.
This can affect the performance and the accuracy of the conventional controller. The SAN-GrHDP
approach is a kind of machine learning algorithm (ADP approach). When motor parameters change,
the controller can learn from a complex, uncertain environment (controlled plant) according to the
optimal cost function, which is also the essence of ADP method [19]. Compared with the traditional
control approach, the SAN-GrHDP can realize self-regulation by critic network and provide an online
sequential control policy, not subject to the external load disturbances and parameter variations.
This article mainly discusses the external load disturbances rejection capacity of proposed control
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strategy. The current-loop sampling period is 200 µs, and the speed-loop sampling time is ten times
that of the current-loop. The current-loop controllers require faster response. Therefore, the inner
current-loop controllers adopt the traditional PI controllers. Here, the task is to design a speed
controller based on SAN-GrHDP approach.

1 
 

 
 

 
 
 
1 
 

 
 

Figure 1. The field oriented control (FOC) diagram of permanent magnet synchronous motor (PMSM)
system by id = 0 control approach.

3. Single Artificial Neuron Goal Representation Heuristic Dynamic Programming Controller

Like the conventional GrHDP approach [21,39,40], the proposed SAN-GrHDP controller also
includes three approximate networks: an action network, a critic network, and a reference network.
The critic network is set to approximate the cost-to-go function in Bellman equation by online learning.
The reference network provides an adaptive internal reinforcement signal to facilitate the critic network
to better approximate the value function. Compared with the classic ADP structure, GrHDP approach
has an additional reference network to generate an internal goal-representation signal to facilitate
learning and optimization. It provides an effective method for the intelligent system to achieve the
goals by adaptive and automatic construction of internal goal representations [21]. This structure,
due to the addition of reference network, also has some disadvantages, such as complex structure and
high computation burden.

However, the action network of conventional GrHDP approach must be trained many times to
ensure the convergence of weights. Because the action network is BP network, and it is difficult to use
the conventional GrHDP approach for real-time control, especially in the field of PMSM speed control.
In this article, the traditional GrHDP approach is improved and the action network is replaced by SAN
control approach. Different from that of the conventional SAN control approach, the parameter K of
the action network (SAN) is not fixed, and can be updated through interaction with controlled object
in real time.

The schematic diagram of FOC by proposed SAN-GrHDP is shown in Figure 2. The ultimate
objective for the SAN-GrHDP controller is still to solve the Bellman’s optimal equation [20,22] as:

J∗(x, u) = min
u

(
r(x, u) + αJ∗

(
x′, u′

))
(2)

so that the optimal control strategy can be achieved. Here the J∗(x, u) is the immediate cost incurred by
u at current time, the J∗(x′, u′) is refer to the one-step future cost, the α is a discounted factor (0 < α < 1),
and the r(x, u) is the external reinforcement signal.

Compared with conventional SAN control approach, the SAN-GrHDP approach has two
additional networks (i.e., the reference network and the critic network). The reference network
is related to the primary reinforcement signal r(t), and generates the internal reinforcement signal S(t)
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to facilitate the critic network to better approximate the value function. The critic network generates
the cost function J(t), according to S(t).

1 
 

 
 

 
 
 
1 
 

 
 

Figure 2. Schematic diagram of FOC by proposed single artificial neuron goal representation heuristic
dynamic programming (SAN-GrHDP).

3.1. Learning and Adaptation of Reference Network

The structure of the reference network is shown in Figure 3. It can be seen that the reference
network is designed with three-layer nonlinear architecture (including one hidden layer).
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Figure 3. Schematic diagram of the reference network.

The feed-forward propagation formulas of the reference network are as follows:

S(t) =
N f

∑
i=1

w(2)
fi
(t)pi(t) i = 1, . . . , N f (3)

pi(t) =
1− exp−qi(t)

1 + exp−qi(t)
i = 1, . . . , N f (4)

qi(t) =
4

∑
j=1

w(1)
fi,j
(t)aj(t) i = 1, . . . , N f (5)
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a(t) = [e(t), e(t− 1), u(t), u(t− 1)] (6)

where a(t) is the input vector of the reference network whose number is 4, including error value e(t)
at time t, error value e(t− 1) at time t − 1, action value u(t) at time t, and action value u(t− 1) at
time t − 1. qi(t) is the ith hidden node input of the reference network. pi(t) is the corresponding
output of the hidden node. Nf is the total number of the hidden nodes. S(t) is the output of the
reference network.

We define the error function of the reference network as [25]:

e f (t) = αS(t)− [S(t− 1)− r(t)] (7)

and the objective function to be minimized as:

E f (t) =
1
2

e2
f (t) (8)

To calculate the back propagation through the chain rule, the weights updating rules can be
presented as follows [25]:

∆w(2)
f (t) (the weights adjustments of reference network for the hidden to the output layer):

∆w(2)
fi
(t) = l f (t)

− ∂E f (t)

∂w(2)
fi
(t)

 (9)

∂E f (t)

∂w(2)
fi
(t)

=
∂E f (t)
∂e f (t)

∂e f (t)
∂S(t)

∂S(t)

∂w(2)
fi
(t)

= αe f (t)pi(t) (10)

∆w(1)
f (t) (the weights adjustments of reference network for the input to the hidden layer):

∆w(1)
fi,j
(t) = l f (t)

− ∂E f (t)

∂w(1)
fi,j
(t)

 (11)

∂E f (t)

∂w(1)
fi,j
(t)

=
∂E f (t)
∂e f (t)

∂e f (t)
∂S(t)

∂S(t)
∂pi(t)

∂pi(t)
∂qi(t)
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fi,j
(t)

= αe f (t)w
(2)
fi

[
1
2

(
1− p2

i (t)
)]

aj(t) (12)

3.2. Learning and Adaptation of Critic Network

The structure of the critic network is shown in Figure 4. It is designed with a three-layer nonlinear
architecture (with one hidden layer).
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The feed-forward propagation formulas of the critic network are as follows:

J(t) =
Nc

∑
l=1

w(2)
cl (t)yl(t) l = 1, . . . , Nc (13)

yl(t) =
1− exp−zl(t)

1 + exp−zl(t)
l = 1, . . . , Nc (14)

zl(t) =
5

∑
k=1

w(1)
cl,k (t)ck(t) l = 1, . . . , Nc (15)

c(t) = [S(t), e(t), e(t− 1), u(t), u(t− 1)] (16)

where c(t) is the input vector of the critic network which number is 5, including the internal
reinforcement signal S(t) (produced by reference network), error value e(t) at time t, error value
e(t− 1) at time t − 1, action value u(t) at time t and action value u(t− 1) at time t − 1. zl(t) is the lth
hidden node input of the critic network. yl(t) is the corresponding output of the hidden node. Nc is
the total number of hidden nodes. J(t) is the output of the critic network.

Define the error function of the critic network as [19,21]:

ec(t) = γJ(t)− [J(t− 1)− S(t)] (17)

and the objective function to be minimized as:

Ec(t) =
1
2

e2
c (t) (18)

To calculate the backpropagation through the chain rule, the weights updating rules can be
presented as follows [21]:

∆w(2)
c (t) (the weights adjustments of critic network for the hidden to the output layer):

∆w(2)
cl (t) = lc(t)

[
− ∂Ec(t)

∂w(2)
cl (t)

]
(19)

∂Ec(t)

∂w(2)
cl (t)

=
∂Ec(t)
∂ec(t)

∂ec(t)
∂J(t)

∂J(t)

∂w(2)
cl (t)

= γec(t)yl(t) (20)

∆w(1)
c (t) (the weights adjustments of critic network for the input to the hidden layer):

∆w(1)
cl,k (t) = lc(t)

− ∂Ec(t)

∂w(1)
cl,k (t)

 (21)

∂Ec(t)

∂w(1)
cl,k (t)

=
∂Ec(t)
∂ec(t)

∂ec(t)
∂J(t)

∂J(t)
∂yl(t)

∂yl(t)
∂zl(t)

∂zl(t)

∂w(t)
cl,k (t)

= γec(t)w
(2)
cl

[
1
2

(
1− y2

l (t)
)]

ck(t) (22)

3.3. Learning and Adaptation of Action Network

The structure of the action network (SAN) is shown in Figure 5. The SAN is employed
as the controller, which is different from the traditional GrHDP (action network is BP network).
The feed-forward propagation formulas of the SAN are introduced as follows [27]:

u(t) = u(t− 1) + K(t)∆u(t) (23)
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∆u(t) =
2

∑
i=1

wi(t)xi(t) (24)

{
w1(t) = w1(t− 1) + ηPe(t)u(t)(e(t) + ∆e(t))
w2(t) = w2(t− 1) + ηIe(t)u(t)(e(t) + ∆e(t))

(25)

{
x1(t) = e(t)− e(t− 1)
x2(t) = e(t)

(26)

where u(t) is the output of the action network (SAN), which is applied to the controlled object directly.
ηP, ηI are proportion, integral study rate respectively.
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Figure 5. Schematic diagram of the action network (SAN).

The parameter K named neuron scale-up factor (where K > 0) is very important to the control
response performance. The selection of K is very difficult of traditional SAN control approach.
The control system will respond faster, if the K value is greater. However, the K value will lead to the
instability of the system, if it is out of a certain range.

The key point of the SAN-GrHDP approach is to use the approximate function J from critic
network to achieve the K value of optimization adjustment. Define “0” as the reinforcement signal for
“success”, and “−1” for “failure”, so Uc(t) is set to “0” for our following studies.

To calculate the backpropagation, the error function ea(t) is defined as follows [19]:

ea(t) = J(t)−Uc(t) (27)

and the objective function to be minimized as:

Ea(t) =
1
2

e2
a(t) (28)

For backward propagation, the error function of the reference network is not only related to the
primary reinforcement signal r(t), but also the internal reinforcement signal S(t).

To calculate the backpropagation through the chain rule, the error function of the critic network
involves the internal reinforcement signal S(t). The signal S(t) from reference network is related to
the primary reinforcement signal r(t). So the parameter K updating rules are composed of two parts:
one is from the critic network path and the other is from the reference network path.

The detailed learning and adaptation formulas can be presented as follows:

∆K(t) = la(t)
[
−∂Ea(t)

∂K(t)

]
(29)

∂Ea(t)
∂K(t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂K(t)

+
∂Ea(t)
∂J(t)

∂J(t)
∂S(t)

∂S(t)
∂K(t)

(30)
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∂J(t)
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∂Ea(t)
∂J(t)

∂J(t)
∂yl(t)

∂yl(t)
∂zl(t)

∂zl(t)
∂u(t)

∂u(t)
∂K(t)

= ea(t) ·
Nc
∑

l=1
w(2)

cl (t)
[

1
2
(
1− y2

l (t)
)]

w(1)
cl,4(t)∆u(t)

(31)
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Pa2 =
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(32)

where la(t) is the learning rate of the parameter K. In the end, the gradient descent rule is selected as
the tuning method of the parameter K, the formula is presented as follows:

K(t + 1) = K(t) + ∆K(t) (33)

4. Simulation and Experiment Results

4.1. Reinforcement Signal Design of Speed Controller

The SAN-GrHDP controller is a real-time controller with immediate online learning from the
surroundings, and its overall performance depends upon the design of the input, output and
reinforcement signal.

The input signal of the controller is designed as follows:
e(t) = ω∗(t)−ω(t)
e(t− 1) = ω∗(t− 1)−ω(t− 1)
e(t− 2) = ω∗(t− 2)−ω(t− 2)

(34)

where ω(t) is actual angular velocity of PMSM (obtained by the encoder) in time t, ω∗(t) is the
reference angular velocity.

The output signal of the controller is i∗q . The cost-to-go function (reinforcement signal) is designed
as follows:

r(t) = 0.98 ∗ e(t) + 0.02 ∗ e(t− 1) (35)

Conventional controller designs are primarily based on on-linear analysis gear such as eigenvalue
analysis, Bode diagrams, Nyquist diagrams and so on. In contrast, the SAN-GrHDP is based
totally on online learning to regulate its parameters to reduce the reinforcement signal. Due to
the similar approximation functionality of the neural network, it’s far more liable to find the proper
mapping among the input and output signals to withstand the disturbance of PMSM parameters.
The critic network is used to approximate the cost-to-go function (reinforcement signal) r(t) in the
Bellman’s optimal equation of dynamic programming [20]. The Bellman’s optimal equation is shown
in Equation (2). The reference network is integrated in the typical ADP structure to approximate
an internal reinforcement signal S(t). The internal reinforcement signal is used to interact with the
operation of the critic network [21]. It can better facilitate the optimal learning and control over time to
accomplish goals [30].

It is known that the initial parameters are significant for the performance of the SAN-GrHDP
controller. Table 1 shows the parameters setting of the proposed SAN-GrHDP approach. Where, la(t)
is the learning rate of the action network, l f (t) is the learning rate of the reference network, and lc(t) is
the learning rate of the critic network. The learning rate of the reference network is usually set same
as the critic network. When these two learning rates are set too big, it will lead to instability of the
controller. When these two learning rates are set too small, the convergence rate of controller is slow.
When training offline, these two learning rates can be set bigger, and weights of these two networks
can be obtained rapidly. After offline training, these two learning rates can be set a little bit lower,
which can enhance the stability of the controller. The selection of K is very difficult in the traditional
SAN control approach. The control system will respond faster, if the K value is greater. However,
the K value will lead to the instability of the system, if it is out of a certain range. The rate of value K
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variation is decided by the learning rate of the action network, which is usually set according to the
experimental process. The α is the discount factor of the reference network, γ is the discount factor of
the critic network. The discount factor determine how much the t moment affects the previous t − 1
moment. If the discount factor is set too small, the effect of reinforcement learning signal at the current
moment is small; otherwise, the effect is large. They are usually set between 0.95 and 0.99. The N f is
the hidden node number of the reference network. The Nc is the hidden node number of the critic
network. Both the hidden node number of the critic network and the reference network are set to 8.
The more layers, the better performance of controller. However, the more layers need a more powerful
processor. According to experimental research, the quantity of layers is 8, so that computing speed
of DSP28335 processor is acceptable. For a more detailed description of the process for setting the
parameters of the ADP method readers may refer to relevant works [22].

Table 1. Parameters setting of the SAN-GrHDP approach.

Quantity Symbol Value

Learning rate of the action network la(t) 0.5
Learning rate of the reference network l f (t) 0.03

Learning rate of the critic network lc(t) 0.03
Discount factor of the reference network α 0.98

Discount factor of the critic network γ 0.95
Hidden node number of the critic network Nc 8

Hidden node number of the reference network N f 8

Using the ADP approaches with the characteristics of the interaction of the control object (vector
control system of PMSM). Through the evaluation value J of critic network, the state variable feedback
control object is calculated with the gradient descent rule, to guide the selection of SAN controller’s K
value, expressed as follows:

K(t + 1) = K(t) + ∆K(t) = K(t) + la(t)
[
−∂Ea(t)

∂K(t)

]
= K(t) + la(t)

[
−1

2
∂
(

J2(t)
)

∂K(t)

]
(36)

The detailed learning and adaptation are shown in Equations (27)–(33).The selection of K value
is used to promote the rapid convergence of the J value. The appropriate K value is selected and
applied to the SAN (action network), and the optimal control value is output to vector control system
of PMSM directly. The detailed calculating process is shown in Equations (23)–(26). The SAN-GrHDP
optimal control output signal is q-axis current reference value i∗q of vector control system of PMSM.
The weights of the reference network and critic network in SAN-GrHDP approach are initialized
randomly. For comparative studies, the parameters of SAN approach are set the same as the
SAN-GrHDP approach.

4.2. Learning Process of Single Artificial Neuron Goal Representation Heuristic Dynamic Programming Speed
Controller for Permanent Magnet Synchronous Motor

In the field of oriented control system of PMSM, speed difference is usually chosen as the input
signal for the speed controller. In this SAN-GrHDP controller, previous control output is usually used
as a supplementary signal input of the controller, so the controller input is of error value e(t) at time
t, error value e(t− 1) at time t − 1, error value e(t− 2) at time t − 2, previous control output value
u(t− 1), and the controller output is u(t). The optimization parameters of controller will be updated
accordingly by online learning. The data flowchart is shown in Figure 6 and the algorithm training
process is described as follows:

(1) Initialize the various parameters of the SAN-GrHDP, such as neural network learning rate,
the initial weights values of neural network, discount factor and so on.
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(2) Observe the differences of speed and obtain the control signal u(t) that is q-axis current reference
value for the control system of PMSM.

(3) Calculate the internal reinforcement learning signal S(t), and the value function signal J(t).
(4) Retrieve the previous time data S(t− 1) and J(t− 1), calculate the temporal difference errors

and obtain the objective functions in reference network and critic network.
(5) Update the weights values of reference network, critic network and the K value of action

network (SAN).
(6) Repeat from the second step when entering the t + 1 step.

 

2 

2 
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9 

Figure 6. Flowchart of the SAN-GrHDP procedure.

4.3. Simulation and Experimental Results

The weights of the reference network and critic network in SAN-GrHDP approach are initialized
randomly. For comparative studies, the parameters of SAN control approach are set the same as
the SAN-GrHDP approach. To check the overall performance of the SAN-GrHDP control approach,
simulation, and experiment on the speed control system of PMSM are carried out.

4.3.1. Simulation Results

To compare the disturbance rejection performance of both approaches, the comparative simulation
of the proposed SAN-GrHDP control approach and the traditional SAN control approach are
implemented on Simulink Matlab2016a (MathWorks, Natick, MA, USA). The parameters of the
PMSM used in the simulation are listed in Table 2. The parameters of both current PI are the same:
the proportional coefficient is 9, the integral coefficient is 3375. The saturation limit of the q-axis
reference current i∗q is ±10 A. The initial load of PMSM is 0.2 N·m.

Table 2. Parameters setting of the PMSM.

Parameter Symbol Value

Rated Voltage V 36 V
Rated Current I 4.6 A

Maximum Current Imax 13.8 A
Rated Power P 100 W
Rated Torque T 0.318 N·m

Stator Phase Resistance R 0.375 Ohm
Motor Inertia SI 0.0588 kg·m2·10−4

Pole Pairs Pn 4 Pair
Q-axis Inductance Lq 0.001 H
D-axis Inductance Ld 0.001 H

Incremental Encoder Lines N 2500PPR
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Figure 7 shows that simulation responses under SAN and SAN-GrHDP approaches in the presence
of load torque disturbance at 1300 rpm. Figure 8 shows that simulation responses under SAN and
SAN-GrHDP approaches in the presence of load torque disturbance at 800 rpm. Figure 7a shows
that the SAN-GrHDP-based controller gives the same settling time with a same overshoot compared
with the SAN-based controller, in the case of 1300 rpm reference speed. Figure 8a shows that the
SAN-GrHDP-based controller gives the same settling time with a same overshoot compared with the
SAN-based controller, in the case of 800 rpm reference speed. It can also be seen that, when a load
torque 0.5 N·m is applied at 0.1 s, the SAN-GrHDP approach has less speed fluctuation than the
traditional SAN approach.

Figure 7b shows that the q-axis current response under SAN and SAN-GrHDP approaches in the
presence of load torque disturbance at 1300 rpm. It shows that the q-axis current iq is quite large at
the moment of the start of PMSM. The i∗q is much less than 10 A, which is the saturation limit of the
output. As the speed is steady, the actual q-axis current iq decreases down to reference q-axis current i∗q .
It can also be seen that, when a load torque 0.5 N·m is applied at 0.1 s, the actual q-axis current iq of
both approaches rise quickly under the sudden load disturbance impact. However, the SAN-GrHDP
approach has less current fluctuation than the traditional SAN control approach. Figure 8b shows that
the q-axis current response under SAN and SAN-GrHDP approaches in the presence of load torque
disturbance at 800 rpm. It can be seen from the Figures 7b and 8b, when the same load torque 0.5 N·m
is added suddenly at different speed, the q-axis current response at 1300 rpm is same as 800 rpm.

The evolution of the neural network parameters is presented in the SAN-GrHDP controller at
1300 rpm in Figure 7c–e. Figure 7c shows that the trajectory of the parameter K. At the load disturbance
time (0.1 s), the neural network weights are adapting dramatically, which is constant with the full-size
adjustments in the reinforcement signals, as shown in Figure 7d,e. The reason is that in spite of the load
mutation, the system is converting according to the controller learning surroundings, so that it adapt
its parameters to provide the most suitable control signal for the system again to achieve its normal
working point. The evolution of the neural network parameters is presented in the SAN-GrHDP
controller at 800 rpm in Figure 8c–e.
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4.3.2. Experimental Results

An experimental platform for a PMSM device is built to evaluate the overall performance of the
proposed SAN-GrHDP control approach. The configuration and the experimental test setup are shown
in Figures 9 and 10, respectively.
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10 Figure 10. Experimental test setup.

All the control algorithms, which include the SVPWM technique, are implemented by using this
system of the floating DSP TMS320F28335 with a clock frequency of one hundred and fifty MHz,
the usage of a C-language. The current-loop sampling period is 200 µs, the speed loop sampling time
is ten times that of the current loop. The saturation restriction of the q-axis reference current is ±10 A.
The PMSM is driven by using an intelligent power module (IPM) PS21965, which is designed by the
Mitsubishi Company (Tokyo, Japan). The phase currents are measured by Hall sensors, converted to
voltages by sampling resistances and AD7606 converter. The rotor speed and absolute rotor position
can be measured by the incremental position encoder of 2500 lines. The speed and q-axis current
signals are displayed on the oscilloscope, through a DAC converter (AD5344) output.

The parameters of both current PI units are the same: the proportional coefficient is 0.2, the integral
coefficient is 0.006. The parameters of SAN are as follow: ηp = 0.05, ηI = 0.05. The initial value of
scale-up factor K = 0.01. The parameters of SAN-GrHDP are shown in Table 1, the parameters of action
network are same as SAN control approach.

Figure 11 shows the experimental response curves of speed and iq with sudden load disturbance
by SAN control approach at 1300 rpm. Figure 12 shows the experimental response curves of speed
and iq with the same sudden load disturbance by SAN-GrHDP approach at 1300 rpm. From Figure 11,
it can be seen that the speed of SAN approach fluctuates greatly when load is added. It can be inferred
from Figure 11 that the control effect of SAN can be improved with application of the machine learning
(GrHDP) to tuning the K value. The proposed control strategy can quickly stabilize the speed when
load is added. Figures 13 and 14 show the comparative experimental response curves with the SAN
and proposed SAN-GrHDP approach at 800 rpm, respectively. The experimental results in Figures 13
and 14 are similar in Figures 11 and 12. From the experimental results, it can be seen that there are some
differences from the results of simulation. The reason is that the PMSM model in simulation is ideal,
and it has some disparities in practical application. In the process of experiment, the fluctuation error
of speed is greater than the simulation result in steady state. The proposed SAN-GrHDP approach is
a kind of machine learning algorithm (ADP). It can learned by itself according to the environmental
characteristics. Therefore, the weights of neural networks in experiment are different from that of
simulation. This is also the reason for disparities between simulation and experimental results. It is
found that compared with the SAN control approach, the proposed SAN-GrHDP approach indicates
a higher disturbance rejection potential, with much less speed fluctuation and shorter recovering time
towards load disturbance.
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5. Conclusions

In order to improve the disturbance rejection capacity of PMSM closed-loop systems, the design
and implementation of a novel adaptive speed controller for a PMSM was investigated in this paper.
This controller was a composite reinforcement learning control approach which combines SAN and
GrHDP collectively, namely SAN-GrHDP. The proposed control approach could develop an internal
reinforcement learning signal to adjust the K value of the traditional SAN control approach, whenever
external parameters varies.

From our simulation and experimental results, it could be concluded that the dual closed-loop
structures of PMSM under the proposed SAN-GrHDP approach had a satisfying dynamic overall
performance. The composite SAN-GrHDP approach was able to achieve a fulfilling performance with
speedy temporary reaction, precise disturbance rejection capacity.

Because of the uncertainty of the network weights, most articles about the ADP approach put
all the emphasis on the simulation part, instead of actual applications. In this article, the traditional
GrHDP approach was improved and the action network was replaced by SAN. The stability of this
proposed algorithm could be improved in practical applications by using SAN. The core idea of the
proposed algorithm is machine learning. At this stage, there are still some unstable situations in
practical applications, such as longer training time, complex structure, and so on. However, it is
promising to apply it in actual control system to solve electric engineering problems.

Finally, perspectives on future research may be listed as follows. (1) The learning rate of the neural
network can be chosen in an optimal way; (2) The success rate of the algorithm should be improved;
(3) A rigorous stability analysis is required to show the convergence of SAN-GrHDP approach;
(4) The critic and reference neural networks should be replaced by other mathematical models; (5) Some
experimental designs of internal disturbance rejection capacity (PMSM parameter variations) of
proposed SAN-GrHDP approach should be discussed in detail; (6) Only one input variable (PMSM
speed) is taken into consideration in the proposed scheme. Therefore, further investigation can expand
it to a more generalized case of multi-variables.
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Acronyms

PMSM Permanent magnet synchronous motor
FOC Field oriented control
SAN-GrHDP Single artificial neuron goal representation heuristic dynamic programming
SAN Single artificial neuron
DSP Digital signal processor
RL Reinforcement learning
ADP Adaptive dynamic programming
GrHDP Goal representation heuristic dynamic programming
HDP Heuristic dynamic programming
DHP Dual heuristic dynamic programming
GDHP Globalized dual heuristic dynamic programming
BP Back propagation
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Constants

Ld Stator d-axes inductance
Lq Stator q-axes inductance
Rs Stator resistance
ψ f Flux linkage
B Viscous friction coefficient
np Number of pole pairs
N f The hidden node number of the reference network
Nc The hidden node number of the critic network

Variables

K Neuron scale-up factor
ud Stator d-axes voltage
uq Stator q-axes voltage
id Stator d-axes current
iq Stator q-axes current
TL Load torque
iα d-axes static coordinate current
iβ q-axes static coordinate current
θ Rotor position
i∗q q-axes reference current
α Discounted factor of reference network (0 < α < 1)
γ Discounted factor of critic network (0 < γ < 1)
r External reinforcement signal
S Internal reinforcement signal
J Cost function
a Input vector of the reference network
u Control signal
qi ith hidden node input of the reference network
pi ith hidden node output of the reference network

∆w(2)
f The weights adjustments of reference network for the hidden to the output layer

∆w(1)
f The weights adjustments of reference network for the input to the hidden layer

c Input vector of the critic network
zl lth hidden node input of the critic network
yl lth hidden node output of the critic network

∆w(2)
c The weights adjustments of critic network for the hidden to the output layer

∆w(1)
c The weights adjustments of critic network for the input to the hidden layer

ηP Proportion study rate of SAN
ηI Integral study rate of SAN
la Learning rate of the parameter K
ω Actual angular velocity of PMSM
ω∗ Reference angular velocity of PMSM
l f Learning rate of the reference network
lc Learning rate of the critic network
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