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Abstract: In the context of the Energy Internet, customers are supplied by energy hubs (EH), while the
EHs are interconnected through an upper-level transmission system. In this paper, a stochastic
scheduling model is proposed for the interconnected EHs considering integrated demand response
(DR) and wind variation. The whole integrated energy system (IES) is linearly modeled for the
first time. The output-input relationship within the energy hub is denoted as a linearized matrix,
while the upper-level power and natural gas transmission systems are analyzed through piecewise
linearization method. A novel sequential linearization method is further proposed to balance
computational efficiency and approximation accuracy. Integrated demand response is introduced to
smooth out demand curve, considering both internal DR achieved by the optimal energy conversion
strategy within energy hubs, and external DR achieved by demand adjustment on the customer’s
side. Distributed energy storage like natural gas and heat storage are considered to provide buffer
for system operation. The proposed stochastic model is solved by scenario-based optimization
with a backward scenario reduction strategy. Numerical tests on a three-hub and seventeen-hub
interconnected system that validates the effectiveness of the proposed scheduling model and
solution methodology.

Keywords: energy hub; integrated demand response; integrated energy system; sequential
linearization; wind uncertainty

1. Introduction

Energy is the lifeblood of society development. Driven by lower gas price and environmental
policy, natural gas consumption of the world’s total energy resource is predicted to be 28% by 2030,
while the installed capacity of wind power is also rapidly growing [1]. With the progress of “The Third
Industrial Revolution”, traditional power system has involved the Energy Internet with the integration
of electricity, natural gas, heat, wind, and other forms of energy [2]. Energy Internet plays an important
role in improving energy conversion efficiency, enhancing social infrastructure utilization, promoting
renewable energy penetration, and guaranteeing energy supply security. The short-term operation
of this newborn integrated energy system (IES) becomes a severe challenge. A novel comprehensive
model and analysis method are critical to provide the more flexible and sustainable energy supply.

Based on the transmission and distribution level, the structure of the IES can be classified as
transportation infrastructure across long distances called energy interconnectors and energy conversion
facilities in terminal district called energy hubs (EH) [3]. In terms of multi-energy transmission
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networks, various studies have been carried out. A detailed and uniform model for integrated
electricity-natural gas system (IEGS) was proposed in Reference [4], and the interaction mechanism
between both systems was further analyzed in Reference [5]. To achieve better system operation
reliability, the resilient IEGS planning strategies against malicious attacks and extreme disasters were
proposed in References [6,7], and the secure IEGS operation strategies against wind uncertainty and N-1
criterion were analyzed in References [8,9]. Synergetic operation between these two energy systems
was achieved in Reference [10], while the fully decentralized decision among each regional system
was achieved in Reference [11] through the alternating direction method of multipliers (ADMM).
Second-order cone relaxation was applied in the natural gas system for convexification in Reference [12],
but the tightness of relaxation could not be guaranteed. Note that the nonlinear terms in natural gas
flow leads to computational complexity, a linearized model based on incremental formulation was
proposed in References [13,14]. However, the main drawback of the current linearization method is the
model accuracy that highly relies on the number of piecewise segments, so approximation accuracy,
and solution efficiency cannot be achieved simultaneously.

Energy hub like large campus or industrial zone can be considered as an interface between
multiple energy inputs and outputs. They obtain energy source from upper-level network and
distribute energy to end-users. Variable kinds of energy conversion equipment like solar power
plants and electric vehicles (EV) were introduced into an energy hub for energy cascade utilization [15],
and the multi-period framework for electric vehicle dispatch was proposed in Reference [16]
considering that a driver is satisfactory. The benefits of electricity storage in a distribution
network was discussed in Reference [17]. These conversion components expand the content of EH.
These input/output ports are related through a coupling matrix, which is usually nonlinear [3].
Based on it, the optimal energy flow of single EH was proposed in Reference [18]. The design strategy
of EH was discussed in Reference [19] and the effectiveness of EH in promoting wind penetration was
validated. The nonlinearity of EH modeling led to solution inefficiency. While fixed dispatch factor
was applied for EH to eliminate nonlinear terms in References [20,21], global optimality was sacrificed.
An up-to-date efficient linear model for EH was first proposed in References [22,23], which described
the input/output relationship through augmented linearized coupling matrix. The corresponding
linearized EH model could be easily solved by LP solvers. In terms of interconnected EHs, its optimal
energy flow model was first proposed in Reference [24] by considering transmission network and
terminal EH as a comprehensive infrastructure. The decomposed operation model for interconnected
EHs was discussed in References [25,26], which decomposed the multi-carrier optimal power flow
problem into a traditional separate one. It should be mentioned that due to the inherent nonlinearity
of transmission network and EH, the current model of the whole interconnected EHs is still nonlinear
and complex, a nonlinear solver like Interior Point OPTimizer (IPOPT) and the Genetic Algorithm
were applied with a low solution speed [24–26].

Demand response (DR) has attracted attention due to its great potential and benefit system
operation efficiency, flexibility, and reliability. Energy demand can also be adjusted by end-users
according to price signal, and price-elastic electricity demand was discussed in Reference [27].
Time-shifting demand response was incorporated in day-ahead scheduling of power systems in
Reference [28], with which, users could shift electricity demand between peak and off-peak period
as per the operator command. This kind of demand response was further discussed in IEGS for
managing the variability of renewable energy in Reference [29]. The external power and heat demand
response was discussed in Reference [30], and DR between power and natural gas based on energy
conversion was discussed in Reference [31]. Interruptible load (IL) is another kind of demand response
program that is incentive-based, so customers can reduce their load when needed [32]. The above
demand response programs can be regarded as external DR since they are implemented by end-users.
However, in an Energy Internet environment, energy demands become more flexible since EH makes it
possible for energy users to switch the source of consumed energy. It was pointed out in Reference [33]
that the efficiency of IES is affected by two factors, one is the energy conversion strategy within
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each EH, as internal factor, and the other is the traditional demand-side response of end-users as
an external factor. Therefore, a traditional DR program gradually develops to integrated DR (IDR).
The basic concept of which was first systematically given in this Reference, but the detail interaction
and mechanism between internal and external DR needs to be further investigated.

The operation of IES is confronted with various uncertain factors, e.g., wind power fluctuation
and equipment random failure. How to achieve higher system reliability against these uncertainties
requires an accurate description of stochastic procedure. Various stochastic models have been discussed
separately on a transmission network or terminal EH. In terms of a transmission network, stochastic
scheduling based on scenario-based, chance-constrained, interval, and robust optimization has been
discussed in References [28,29] and References [34,35]. Compared to other methods, scenario-based
approach provides more stable and accurate results, which is also easily implemented and has been
widely applied [36]. In terms of terminal EH, researches need to handle the uncertainties in energy
demand and renewable generation have been done in Reference [19] and References [37,38]. However,
the stochastic model of interconnected EHs considering the interaction between the two networks is
still a new topic.

While these previous references have greatly promoted Energy Internet, they still have the
following limitations. Firstly, current works mainly focus on the scheduling of a transmission system
or terminal EH separately. While some works have studied the operation of interconnected EHs,
the coordinated model is still nonlinear and complex. Secondly, the computational performance of
current one-time linearization method can be improved. Too many or too few piecewise segments
can lead to either solution inefficiency or approximation inaccuracy. Thirdly, the mechanism of
integrated demand response under Energy Internet environments needs to be further investigation.
Besides external DR, internal DR should be included to consider the freedom of EH operation. Finally,
stochastic analysis for the whole interconnected EHs is still in progress and the benefits of integrated
DR and distributed storage in promoting wind penetration are not discussed yet.

In contrast to these studies, this paper aims at presenting a linearized stochastic model for
interconnected EH operation considering integrated demand response and wind uncertainty. A new
solution methodology is also proposed for better computational performance. The main contributions
of this paper are fourfold:

(1) A linearized model for the whole interconnected EHs considering both transmission network
and terminal EHs is proposed. In this model, operation constraints of multi-energy
transmission system are piecewise linearized, while terminal EH is modelled through a linearized
coupling matrix.

(2) A novel sequential linearization method is further proposed to solve the primal mixed integer
linear programming (MILP) problem. Compared to the traditional one-time linearization method,
the proposed sequential method can achieve a win-win performance in both solution time and
approximation accuracy.

(3) Integrated demand response is detailly modeled, which includes internal and external DR.
Internal DR is achieved by the optimal energy conversion strategy within the energy hub,
while the external DR is achieved by time-shifting and interruptible DR programs on an
end-user’s side.

(4) Stochastic scheduling model for interconnected energy hubs considering wind uncertainty,
integrated DR and distributed storage utility is systematically proposed. The benefits of integrated
demand response in enhancing the system economy and operation security are tested.

The rest of this paper is organized as follows: The proposed stochastic scheduling model for
interconnected EHs with transmission system constraints is formulated in Section 2. The mechanism
of integrated demand response is detailly presented in Section 3. Section 4 illustrates the solution
methodology. In Section 5, numerical results tested on three-hub and seventeen-hub interconnected
system are demonstrated. Section 6 concludes the paper.
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2. Formulation of Interconnected Energy Hubs

2.1. Introduction of Interconnected EHs

With the development of Energy Internet strategy, multiple energy carriers, including electricity,
natural gas, heat, and other forms of energy, are strongly integrated. This revolution of traditional
social pattern helps in promoting the incorporation of renewable energy and the reliability of energy
supply. This newborn social pattern can be regarded as a system with interconnected energy hubs.

Figure 1 shows the typical topology of interconnected energy hubs. Four EHs are connected
through upper-layer transmission system including electricity and natural gas networks [24–26].
In the electricity system, generators including thermal units and wind farms can provide electricity to
terminal EH as energy inputs. As for the natural gas system, gas wells, and large gas storage facilities
can provide natural gas to terminal EHs. Within each EH, energy inputs are converted into multiple
outputs through different conversion equipment like combined heat power plant (CHP), electric boiler
(EB), and heat storage (HS). Thanks to the freedom of EH operation, energy hub can choose different
energy conversion strategy and realize fully utilization of resource. These types of energy are then
distributed to end-users to satisfy their daily requirement.
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Figure 1. Typical topology of the interconnected Energy hubs. 
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Figure 1. Typical topology of the interconnected Energy hubs.

2.2. Objective Function

Our model aims at satisfying end-users’ energy demand while considering the operation of
a transmission system, terminal EH and integrated demand response strategy. Standing on a
system operators’ perspective, the objective of this paper is to minimize the expected operation
cost of interconnected EHs across all wind power scenarios, including the costs of DR program, unit
commitments, hourly generation of coal-fired units, hourly production of natural gas wells, and the
punishment of wind curtailment and load shedding. Since all these terms can be linearly represented,
the objective function is linear and convex.
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[ ∑
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w
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The energy system with interconnected EHs consists of an upper-level system as the transmission
component and a lower-level EH as the energy conversion. The objective is subject to the following
constraints for each scenario.

2.3. Transmission System Constraints of Interconnected EHs

These transmission constraints aim at guaranteeing the security and feasibility of multi-energy
system operation, so electricity and natural gas can be transmitted to terminal EHs as inputs.
The constraints of interconnected EHs in the upper-layer transmission system includes those of
unit commitments, electricity network, natural gas network, and distributed natural gas storage.

(1) Unit commitment constraints

For thermal generators, their unit commitments are restrained by (2)–(9). Constraint (2) limits
the generation capability of thermal units, while constraint (3) and (4) limit the upward/downward
ramping capability. The linear cost curve of coal-fired unit is given as constraint (5), while constraint
(6) enforces the generation limit on each segment. The economic cost and gas consumption of thermal
units through startup/shutdown are calculated by constraint (7) and constraint (8). Constraint (9)
represents the minimum ON/OFF time limits for thermal units. It should be noted that the bilinear
terms in constraints (3)–(9) can be easily eliminated through auxiliary variables, so unit commitment
constraints are totally linear.

Pmin
i us

i,t ≤ Ps
i,t ≤ Pmax

i us
i,t ∀i, ∀t, ∀s (2)

Ps
i,t − Ps

i,t−1 ≤ RUi[1− us
i,t(1− us

i,t−1)] + Pmin
i us

i,t(1− us
i,t−1) ∀i, ∀t, ∀s (3)

Ps
i,t−1 − Ps

i,t ≤ RDi[1− us
i,t−1(1− us

i,t)] + Pmin
i us

i,t−1(1− us
i,t) ∀i, ∀t, ∀s (4)

Fc
i,t(Ps

i,t) = ∑
NP

cgi,t,p·Ps
i,t,p ∀i, ∀t, ∀s (5)

Ps
i,t = ∑

NP
Ps

i,t,p and 0 ≤ Ps
i,t,p ≤ Pmax

i,p ∀i, ∀t, ∀p, ∀s (6)

SUCs
i,t = suci[us

i,t(1− us
i,t−1)] and SDCs

i,t = sdci[us
i,t−1(1− us

i,t)] ∀i /∈ GU, ∀t, ∀s (7)

SUGs
i,t = sugi[us

i,t(1− us
i,t−1)] and SDGs

i,t = sdgi[us
i,t−1(1− us

i,t)] ∀i ∈ GU, ∀t, ∀s (8)

(Xon
i,t−1 − Ton

i )·(us
i,t−1 − us

i,t) ≥ 0 and (Xoff
i,t−1 − Toff

i )·(us
i,t − us

i,t−1) ≥ 0 ∀i, ∀t, ∀s (9)

(2) Electricity network constraints

Electricity network are restrained by constraints (10)–(13). Constraint (10) states that electricity
at each bus should be balanced. Constraint (11) calculates the power flow on the transmission line
by the DC-method, and the limited transmission capacity should be lower than its maximum bound.
Nodal phase angle is restricted within its feasible region by constraint (12). Constraint (13) represents
that redundant wind power can be curtailed when necessary. Electricity demands in transmission
system serve as electricity inputs in terminal EHs.

∑
i∈CGj

Ps
i,t − ∑

hj∈PLFj

p f s
hj,t + ∑

hj∈PLEj

p f s
hj,t − ∑
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w∈CGj
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w,t) = 0 ∀j, ∀t, ∀s (10)

p f s
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j,t)/xhj and − p f max

hj ≤ p f s
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hj ∀hj, ∀t, ∀s (11)

θ j ≤ θs
j,t ≤ θ j ∀j, ∀t, ∀s (12)

0 ≤ LWs
w,t ≤ PWs

w,t ∀w, ∀t, ∀s (13)
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(3) Natural gas network constraints

Natural gas network is restrained by constraints (14)–(20). Constraints (14) and (15) represent
the limits on gas well production and nodal pressure. Natural gas flow is modeled by the nonlinear
Weymouth function as constraint (16), which is determined by the incremental pressure between
two end nodes of pipeline, and Qs

mn,t = (Qout,s
mn,t + Qin,s

mn,t)/2 is the average gas flow of pipeline mn.
Constraint (17) represents the limit on nodal gas balance. Nodal natural gas demand is calculated by
constraint (18), including that of the natural gas-fired units (NGUs) and energy hubs. Note that natural
gas is measured in volume unit in transmission network and energy unit in terminal EH, the conversion
is denoted by γ. This paper only discusses passive pipelines, so compressors are not considered in the
model. Compared to the steady-state model, dynamic characteristic of natural gas flow is described
by linepack, which allows the diverse inflow/outflow rate of the same pipeline [13]. Linepack can
be considered as proportional to the pipeline average pressure as constraint (19), where the pipeline
average pressure is calculated by πs

mn,t = (πs
m,t + πs

n,t)/2. Intertemporal constraint of linepack is given
in constraint (20).

gwmin
sp ≤ gws

sp,t ≤ gwmax
sp ∀sp, ∀t, ∀s (14)

πmin
m ≤ πs

m,t ≤ πmax
m ∀m, ∀t, ∀s (15)

Qs
mn,t

∣∣∣Qs
mn,t

∣∣∣= (
Kg f

mn)
2·[(πs

m,t)
2 − (πs

n,t)
2] ∀mn, ∀t, ∀s (16)

∑
sp∈GWm

gws
sp,t − LGs

m,t + ∑
n∈GNm

(Qout,s
mn,t −Qin,s

mn,t) + ∑
q∈GSm

(GDs
q,t − GCs

q,t) = 0 ∀m, ∀t, ∀s (17)

LGs
m,t = ∑

i∈CUm

(Fg,s
i,t + SUGs

i,t + SDGs
i,t) + ∑

r∈CEHm

γEg,s
in,r,t ∀m, ∀t, ∀s (18)

LPs
mn,t = Klp

mn·πs
mn,t ∀mn, ∀t, ∀s (19)

LPs
mn,t = LPs

mn,t−1 −Qout,s
mn,t + Qin,s

mn,t ∀mn, ∀t, ∀s (20)

(4) Distributed storage constraints

Compared to battery storage, natural gas storage with a large capacity like a gas tank is more
efficient in IES. Distributed storage utility can serve as alterable energy production or demand when
the security of natural gas network is challenged. Constraints (21)–(23) are the operation constraints
of natural gas storage, including those of storing/releasing capability and the state of the gas (SOG)
limitation. Constraint (23) also denotes the intertemporal constraint of SOG between sequential
time periods. To avoid end-of-horizon effects associated with a finite number of scheduling periods,
constraint (24) requires that SOG of storage at the end of scheduling window should be set as the initial
interval. It should be noted that other storage facilities like battery storage and power-to-gas device can
be easily introduced in the proposed model. It should be noted that other storage facilities like large
charging stations for EVs and power-to-gas devices can be easily introduced in the proposed model.
Factors like a driver’s behavior and a driver’s preference should be considered when EVs are included.
These facilities can provide buffer for IES operation and enhance system reliability and economy.

0 ≤ GCs
q,t ≤ UCs

q,tGCmax
q ∀q, ∀t, ∀s (21)

0 ≤ GDs
q,t ≤ (1−UCs

q,t)GDmax
q ∀q, ∀t, ∀s (22)

SGs
q,t = SGs

q,t−1 + ηc
qGCs

q,t − (1/ηd
q )GDs

q,t and SGmin
q ≤ SGs

q,t ≤ SGmax
q ∀q, ∀t, ∀s (23)

SGs
q,NT = SGq,0 ∀q, ∀s (24)
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2.4. Coupling Constraint

Since most of the thermal units are non-quick-start units, their ON/OFF status cannot be instantly
changed; the unit commitment strategy should be the same for all scenarios. Constraint (25) shows that
the decision of unit commitment should be made here-and-now, rather than wait-and-see after wind
uncertainty unfolds. However, other decision variables like unit generation and gas well production
can be adjusted according to wind variation, as shown above.

us
i,t = us′

i,t ∀i, ∀t, ∀s′ 6= s (25)

In an integrated energy system, electricity, and natural gas network are connected as a coupled
infrastructure through NGUs. NGUs serve as an energy producer in electricity system and an energy
consumer in natural gas system. Constraint (26) presents the coupled conversion from natural gas
input to electricity output through NGUs.

Ps
i,t = ϕNGU Fgas,s

i,t ∀i ∈ GU, ∀t, ∀s (26)

3. Integrated Demand Response

3.1. Overview of Integrated Demand Response

Figure 2 ilustrates the schematic of integrated demand response, inlcuding internal DR and
external DR, according to the actural implementer.

Within each energy hub, by integrating electricity, natural gas, heat, and other forms of energy
together, it is possible to switch the source of consumed energy flexibly [33]. For example, EH can
reduce electricity demand during power system peak, and resort to natural gas sources. Though
the optimal energy conversion strategy of EH, even must-run loads can actively participate in DR
programs without sacrificing end-users’ comfort. Since this kind of DR is achieved by the freedom of
EH inner operation, it is called the internal demand response in this paper.

In terms of the end-users’ side, users can respond to the system through adjusting their energy
consumption behaviour. Some demand can flexibly shifted to other time periods by end-users,
and some demand can be interrupted with a relatively low compensation. Since these responsive
energy demands are based on an outer signal like system command or ecominic incentive and
implemented by end-users, they are called external demand responses in this paper.

Note that both internal and external demand response can optimize the inputs of EHs,
the introduction of integrated DR and the full exploition of the demand side resource can therefore
help in the economy improvement and reliability enhancement of the multi-energy system.Energies 2018, 11, x FOR PEER REVIEW  8 of 23 
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3.2. Internal Demand Response by EH

Figure 2 also illustrates a typical topology of EH, consisting of three-conversion equipment. CHP
gets natural gas input from upper-layer transmission system and generate electricity and heat to
end-users. Electric boiler converts the electricity provided by a transmission system and CHP into
heat. Heat storage servers as a buffer to release or store heat.

EH can be modelled as a coordinated unit with multiple inputs and outputs as constraint (27).

Vs
out,r = CrVs

in,r ∀r, ∀t, ∀s (27)

where
Vs

in,r = [Ee,s
in,r,t, Eg,s

in,r,t, ∆Es
r,t, vs

1,r,t, vs
2,r,t, . . . , vs

11,r,t]
T ∀r, ∀t, ∀s (28)

Vs
out,t = [Ee,s

out,r,t, Eg,s
out,r,t, Eh,s

out,r,t, 0, . . . , 0]
T
∀r, ∀t, ∀s (29)

Based on the oriented graph of energy flows inside EH like Figure 2, coupling matrix Cr can be
denoted as constraint (30) [22]. Each row of coupling matrix Cr represents the relationship among
energy flows inside an EH. For example, the first three rows denote the constitution electricity, natural
gas and heat output, respectively. The forth row denotes that the input electricity can be either
transferred to EB or directly to end-users. The sixth row calculates the change of heat stored in HS
with storing and releasing efficiency. This graphics-based method leads to a compact formulation
of the energy converters and their connections. In this way, the relationship between inputs and
outputs in EH is linearly modelled. Compared to nonlinear matrix with variable dispatch factor, linear
model applied in this paper can highly improve solution efficiency while retaining the freedom for EH
operation.

Cr =



0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1
−1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 ηHC 0 0 0 ηHC −1/ηHC
0 0 0 0 0 ηCE 0 −1 0 0 −1 0 0 0
0 0 0 0 0 ηCH 0 0 −1 −1 0 0 0 0
0 0 0 0 ηEB 0 0 ηEB 0 0 0 −1 −1 0


∀r (30)

Since all rows of input vector Vs
in,t except ∆Es

r,t represent energy flow with certain direction,
they should be positive. Constraint (31) denotes the storing and releasing capability of heat storage.
The intertemporal constraint of stored heat in HS is given as constraint (32), and the capacity limit of
stored heat is also provided. Constraint (33) guarantees that the inputs of CHP and EB should be no
more than their maximum bounds.

vs
6,r,t + vs

10,r,t ≤ HUs
r,t HCmax

r and vs
11,r,t ≤

(
1− HUs

r,t
)

HDmax
r ∀r, ∀t, ∀s (31)

SHs
r,t = SHs

r,t−1 + ∆Es
r,t and 0 ≤ SHs

r,t ≤ SHmax
r ∀r, ∀t, ∀s (32)

vs
3,,r,t ≤ CPmax

r and vs
2,r,t + vs

5,r,t ≤ EBmax
r ∀r, ∀t, ∀s (33)

In this paper, we only focus on a typical EH with CHP, EB, and HS. Actually, conversion equipment
like electricity storages, electric vehicles, and photovoltaics can also play important roles in EH
operation. For example, similar to heat storage, electricity storage can enhance operation reliability
through smoothing electricity demand curve. With the graph-based method, the EH can still be
easily and linearly modelled with extended input/output vector and coupling matrix when other
components are considered.
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3.3. External Demand Response on Users’ Side

Demand side nowadys becomes much more active in energy management. For typical end-user,
its demand can be categorized into three types, which are base load, shiftable load, and interruptible
load. Base load is the part that should be entirely satisfied during operation. However, when system
reliablity is in danger during peak hours or contingency, load shedding can be implemented. Shiftable
and interruptible load are the parts obligated to time-shifting and interruptible DR, respectively.
The energy demand of customers after external demand response can be calculated as constraint (34),
where the first term is original energy demand, the second and third terms are the time-shifting DR,
the forth term is the interrpuible DR, and the last represents the load shedding in emergency. Due to
the extremely high punishment fee, demand tends not to be shed unless necessary.

E{·},sout,r,t = DE{·}r,t + (DRSI{·},sr,t − DRSO{·},sr,t )− DRI{·},sr,t − LD{·},sr,t ∀r, ∀t, ∀s, {·} = electricity, gas or heat (34)

(1) Time-shifting DR

Shiftable load represents the demand, which can be flexibly shifted from peak to off-peak periods
as per the system operator’s command. Since this kind of DR has almost no effect on customer
satisfaction, no additional dispatch fee is needed [27,29]. Constraints (35)–(37) demonstrate the
constraints of time-shifting DR in various forms of energy, including electricity, natural gas and heat.
Constraints (35) and (36) restrict the amount of demand that can be shifted in or out of interval t,
respectively. Constraint (37) denotes that the daily demand of the same form of energy stays unchanged
after time-shifting DR program.

0 ≤ DRSI{·},sr,t ≤ DRSI{·},max
r ∀r, ∀t, ∀s, {·} = electricity, gas or heat (35)

0 ≤ DRSO{·},sr,t ≤ DRSO{·},max
r ∀r, ∀t, ∀s, {·} = electricity, gas or heat (36)

∑
t

DRSO{·},sr,t =∑
t

DRSI{·},sr,t ∀r, ∀t, ∀s, {·} = electricity, gas or heat (37)

(2) Interruptible DR

Interruptible load represents the demand that can provide demand relief when necessary.
End-users should make contracts with system operators to reserve interruptible demand resource.
Constraint (38) calculates the cost of interruptible DR, including the capacity fee and energy fee
compensated to end-users [32]. Constraint (39) represents the maximum amount of interruptible load,
which is decided before day-ahead or even a longer time period.

Cs
DR = ∑

r
∑
{·}

(λCAP,{·}·DRI{·},max
r + λIL,{·}·∑

t
DRI{·},sr,t ) ∀s, {·} = electricity, gas or heat (38)

0 ≤ DRI{·},sr,t ≤ DRI{·},max
r ∀r, ∀t, ∀s, {·} = electricity, gas or heat (39)

Note that our proposed integrated DR model is facing to future integrated energy system, which is
much more intelligent and advanced than is present. Three important issues should be addressed
to guarantee the implement of proposed DRD program. Firstly, communication between system
operators and end-users should be enhanced. Detailed information should be provided to reflect
system commands and users’ preference. Secondly, appropriate incentive policy is acquired to motivate
the interaction on user’ side. Factors related to users’ response should be further analyzed. Last,
but not least, advanced electronic equipment like smart meters should be widely applied to control
demand response accurately.
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4. Solution Methodology

4.1. Scenario Reduction

Scenario-based optimization is a typical method to solve the stochastic model. In this paper,
backward scenario reduction is applied to preserve N scenarios out of M wind power scenarios [39].
The input stochastic data includes the hourly wind energy forecast and error with a normal distribution.
The original M scenarios are thus generated by sampling.

Details of backward scenario reduction is given as follows:

Step 1.1: Initialize the probability of all the scenarios as Prsi = 1/M. Set the number of current
scenarios ns∗ = M.

Step 1.2: Compute the Kantorovich distances of all the scenario pairs (ξsi, ξsj, si 6= sj) as:

dk(ξsi, ξsj) =
∣∣ξsi − ξsj

∣∣
2

Step 1.3: For each wind power scenario si, find the minimum distance and multiply it with the
probability of scenario si by

PKD,si = Prsi·min
{

dk(ξsi, ξsj), si 6= sj
}

Step 1.4: Remove scenario si with the minimum PKD and accumulate its probability on its closest
scenario sj as:

Prsj = Prsj + Prsi

Step 1.5: Update the number of preserved scenarios by ns∗ = ns∗ − ni, where ni is the number of
removed scenarios. Repeat Steps 1.2–1.5 until ns∗ = N.

4.2. Sequential Linearization for Better Computational Performance

Due to the quadratic Weymouth function (16) in a natural gas system, the proposed model
is nonlinear and inapplicable to efficient optimizer like Gurobi (6.5.0, Gurobi Optimization, Inc.,
Beaverton, OR, USA). While linearization method is provided in constraints [13,14] to transform the
primal nonlinear model into solvable MILP, the approximation accuracy and solution efficiency are
mutually exclusive and highly rely on the number of piecewise linear segments. How to balance
accuracy and efficiency is an interesting topic.

Noticing that the major challenge of MILP solution is integer variables (piecewise linear segments),
a novel sequential linearization method for a natural gas system is proposed in this paper. The key
idea is to find the relative rough operational domain of a gas system by initial linearization, and then
determine the more accurate domain through further linearization until the approximation accuracy
is satisfied.

Details of the proposed sequential linearization method is given as follows:

Step 2.1: Set the whole operational domain as active segments. Set the initial approximation accuracy
indexes Af = 1, Ap = 1. Set the satisfied accuracy Af

min, Ap
min.

Step 2.2: Set the piecewise segment numbers of natural gas flow kf and nodal pressure kp.

Step 2.3: Based on the current active segments, linearize quadratic terms in constraint (16) through
incremental formulation. Gas flow squared Qmn

∣∣Qmn
∣∣ can therefore be linearized as

constraints (40)–(42), where δmn,l is the binary for segment l. Similar linearization can
be applied to pressure squared π2

m.

Qmn

∣∣∣Qmn

∣∣∣= (cmn,1Qmn,1 + bmn,1δmn,1
)
+ . . . +

(
cmn,k f Qmn,k f + bmn,k f δmn,k f

)
(40)
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δmn,lQ
min
mn,l ≤ Qmn,l ≤ δmn,lQ

max
mn,l (41)

Qmn =
k f

∑
l

Qmn,l and
k f

∑
l

δmn,l = 1 (42)

Step 2.4: Solve the converted MILP model through the linearization of natural gas system in Step 2.3
Find the rough domain of system operation and set new active segments.

Step 2.5: Update approximation accuracy indexes by Af = kf·Af and Ap = kp·Ap, and check if the
approximation accuracy is satisfied:

Af ≥ Af
min and Ap ≥ Ap

min

If yes, the sequential linearization procedure ends. Otherwise, repeat Steps 2.2–2.5 for
further linearization.

Through the proposed sequential linearization method, the piecewise procedure is only applied
to the selected active segments rather than the whole operational domain, which can greatly reduce
the quantity of integer variables (piecewise segments) while guaranteeing the same solution accuracy.
Both approximation accuracy and computational efficiency can therefore be achieved.

4.3. Overall Procedure

The overall procedure of proposed stochastic model for interconnected EHs is described as
Figure 3, which consists of two main parts. One is to build a coordinated stochastic model considering
transmission network and integrated demand response. The other is to solve the model by the
proposed sequential linearization method.Energies 2018, 11, x FOR PEER REVIEW  12 of 23 
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It should be noted that through the proposed linearization method in Section 4.2, the whole
optimization model is converted into MILP, whose compact construction can be described as:

Min cTx
s.t. Ax + By ≤ d

Ax + By = e
(43)

where x denotes an m-dimensional vector including continuous variables, y denotes an n-dimensional
vector including integer variables. A, B, cT, d and e are matrixes or vectors for parameters. MILP is a
common optimization model that has a mature and global optimal solution. Since existing solvers
like Cplex (https://www.ibm.com/analytics/cplex-optimizer) and Gurobi (http://www.gurobi.com)
show high-quality performance in MILP, the convergence of the proposed model and sequential
linearization method is perfectly guaranteed, as long as the topology and parameters of the test
systems are reasonable.

5. Case Studies and Discussion

In this section, simulation results are tested on three-hub and seventeen-hub interconnected
system in day-ahead scheduling window to demonstrate the effectiveness and practicability of the
proposed model. Three-hub systems mainly focus on the characteristics of proposed integrated energy
system, including energy conversion, distributed storage, integrated demand response, and wind
uncertainty. A seventeen-hub system mainly discusses the computational performance of the proposed
sequential linearization method. Penalty of load shedding and wind curtailment are set at 1000 $/MWh
and 20 $/MWh, respectively. Compensation of IL capacity and energy are set at 1$/MW and
100 $/MWh, respectively. Tests are performed on a PC with Intel Core i7—4790 CPU (4.0 GHz)
and 8 Gb of memory. The proposed model is coded in MATLAB 2014 b platform with YALMIP toolbox,
and solved by the MILP of Gurobi 6.5.0 toolbox. Parameters of the solvers are set as default. The full
system data is available on our provided website, and the source code is available from the authors
upon reasonable request.

5.1. Three-Hub Interconnected System

The system is tested in day-ahead scheduling window and its topology is shown as
Figure 4. Three EHs are embedded on bus C/node 2, bus D/node 3 and bus E/node 1,
respectively. The power transmission system has two natural gas-fired units, one coal-fired
unit, one wind farm, and seven transmission lines. Gas transmission system consists of two
gas wells, one natural gas storage, and five pipelines. All the system parameters are given in
motor.ece.iit.edu/data/ConnectedEH3_stochastic.xlsx.

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
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In this section, three following cases are examined:

Case I: Deterministic scheduling of EHs under forecasting wind power and without integrated
demand response.

Case II: Integrated DR is considered in Case I.
Case III: Stochastic scheduling of EHs with variable wind power and integrated DR.

(1) Case I

This case aims at analyzing the effectiveness of proposed interconnected EHs model in terms of
energy conversion and distributed storages. The integrated DR program is not considered in this case.
Perfect wind forecast is obtained from the Belgium market operator’s website [40]. Figure 5 shows the
construction of the input and output energy of EHs. In the transmission level, electricity is provided
by wind and thermal units, while natural gas is provided by gas wells. These resources are then
transmitted to terminal EHs as input energy. Natural gas, thermal power, and wind power account
for 56.3%, 30.6%, and 13.1% of the total input energy, respectively. Figure 6 shows the heat demand
satisfied by different energy conversion equipment. CHP provides most of heat demand due to its
high conversion efficiency, especially during daytime. However, due to the increased heat demand
at night, the capacity of CHP is not adequate to satisfy all the heat demand, so other conversion
equipment like electric boiler and heat storage function as alternative heat suppliers. In this case study
without DR program, 263.56 MW heat demand is inevitably shed at night due to system congestion
and inadequate equipment capacity. Infrastructure construction is needed for reliable system operation.
In terms of electricity demand on users’ side, the majority is directly provided by input electricity
without conversion loss, the rest is the electricity CHP generates when producing heat. The portion of
electricity demand supplied by CHP stays unchanged since EH is unable to adjust its operation status
when internal DR is not considered.
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Since natural gas system is congested during peak hours in this case, more electricity tends to be
generated by non-NGUs since some NGUs cannot get adequate gas sources in transmission system.
In terms of terminal EH, EH refers to electricity for energy conversion due to inadequate natural gas
input. In this situation, distributed gas storage is a good cushion for system operation, which can
serve as a gas supplier or a gas demand depending on load curve. The amount of natural gas stored in
storage and total system load is shown in Figure 7. It is obvious that stored gas has different peak and
valley characteristics as system load. Since system load is in its valley in the early morning, the system
has redundant transmission capacity and natural gas storage is filled during this period. The SOG of
storage reaches to its peak at seven h and keeps constant until 16 h. Since then, distributed storage
releases natural gas corresponding to the subsequent peak load. Storage is filled again and prepare
for next-day operation. $26,170 is saved with the introduction of natural gas storage, and less-load is
curtailed since storage benefits in switching gas demand from peak to off-peak hours.Energies 2018, 11, x FOR PEER REVIEW  15 of 23 
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(2) Case II

In this part, four different DR strategies (without DR, internal DR only, external DR only and
with integrated DR) are compared to validate the advantage of demand response in interconnected
EHs. Solution results are given in Table 1. Without DR program in Case I, the total operation cost is
the highest. Congestion in upper-level transmission network prevents the efficient transmission of
energy, a total load of 423.12 MW is inevitably shed between 16 h and 22 h, while a total amount of
725.81 MW wind generation needs to be curtailed for reliability reasons. With the introduction of DR
program, system operation efficiency is improved tremendously. Internal DR provides each EH with
the freedom of operation decision, so the distribution of input energy within EH does not need to
be a fixed value. Fewer wind curtailments and load shedding is needed in this case. When external
DR is considered, end-users can shift their hourly demand within a certain range to nearby periods
according to operators’ commands, and interrupt parts of energy demand contract during peak hours.
These two types of internal DR both benefit in reducing system operation cost. When the integrated
DR program is considered, the combination of internal and external DR saves 45.21% of original cost
and guarantees that the end-users’ base load is perfectly satisfied without shedding. It should be
noted that flexible loads help economy improvement and reliability enhancement, and much more
load should be shed without the internal DR program. However, due to the inevitable capacity fee
of interruptible load, interruptible demand response is not recommended when the reliability of the
system is high enough.

Table 1. Comparison between different demand response (DR) strategies.

DR strategy Total Cost
($)

Coal Cost
($)

Natural Gas
Cost ($)

Curtailed
Wind (MW)

Interrupted
Load (MW)

Shed Load
(MW)

Case I
918,980 49,338 432,000 725.81 0 423.12(Without DR)

Case II.a
816,240 49,338 422,020 435.26 0 336.12(Internal DR only)

Case II.b
670,530 49,338 422,470 223.66 457.94 148.40(External DR only)

Case II.c
503,440 49,338 423,870 116.58 278.51 0(Integrated DR)

Figure 8 compares the profiles of system total demand with and without integrated demand
responses. Before the introduction of IDR, there is significant difference in the demand curve with a
peak after work and a valley early in the morning. With the implementation of IDR, end-users can
actively shift their flexible demand from peak to valley, which helps in suppressing the fluctuation
of demand curve. The peak and valley loads are efficiently decreased by 12.58 MW and increased by
52.43 MW, respectively. Standard deviation of system hourly demand is dramatically reduced from
59.25 to 35.09. The smoother demand curve helps in alleviating system congestion, improving energy
transmission capacity, and avoiding low operational efficiency during peak periods.
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Figure 9 shows the suppliers of output electricity after integrated DR is considered. In this case,
the sources of end-users’ electricity demand can be flexible rather than predefined. Energy hubs are
able to resort to more economical resources while maintaining users’ satisfaction. Note that during the
night (1 h~6 h, 22 h~24 h), less electricity tends to be supplied by CHP since the direct sources from
the upper-level system are redundant and with no conversion loss. The portion of electricity demand,
supplied by CHP, accounts for 23.6% during the day and decreases to 17.7% during the night.
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(3) Case III

Stochastic optimization is simulated in this part to analyze the effect of wind uncertainty on
interconnected EHs operation. In this case, the day-ahead scheduling problem is modelled and solved
using the proposed scenario-based stochastic formulation. The standard deviation of wind fluctuation
is set at 10% of its predicted value. Latin hypercube sampling method is employed to generate 1000
scenarios of hourly wind power, which are further efficiently reduced to 10 selected scenarios within
36.4 s through the backward scenario reduction process.

Solution results are detailly given in Table 2, which present wind power, total operation cost,
natural gas cost, wind curtailment, interrupted load, and load shedding of each scenario with
corresponding probability. Note that the operation cost of deterministic solution in Case II is $503,440,
whereas the expected cost of all the 10 scenarios increases by $180 as wind power uncertainty is
considered in Case III. The increment is caused by the overestimation of wind output. In most cases,
system energy demands can be fully satisfied without load shedding when the integrated demand
response is included. However, the actual wind power over the day is 2289.1 MW and 2307.0 MW
in S2 and S9, respectively, which is much lower than the predicted value of 2407.0 MW. In these
extreme scenarios, even the introduction of integrated DR cannot guarantee system operation security.
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This overestimation results that 10.32 MW and 6.74 MW of demand are inevitably shed in S2 and S9
during peak hours, and the operation costs of these two scenarios are hence much higher.

Table 2. Results of different wind uncertainty scenarios.

Expected Cost of the Ten Scenarios: $503,620

Scenario Probability Wind Power
(MW)

Total Cost
($)

Gas Cost
($)

Curtailed
Wind (MW)

Interrupted
Load (MW)

Shed Load
(MW)

S1 0.169 2387.4 501,760 423,030 75.92 278.15 0
S2 0.030 2289.1 515,440 424,930 62.76 295.46 10.32
S3 0.189 2482.1 501,430 421,920 143.18 272.52 0
S4 0.074 2425.6 503,320 423,780 132.46 275.02 0
S5 0.062 2406.9 504,640 425,050 145.75 272.84 0
S6 0.159 2367.4 505,470 425,360 114.33 284.35 0
S7 0.053 2410.0 503,370 423,910 120.34 276.67 0
S8 0.149 2454.8 502,170 423,260 148.82 265.42 0
S9 0.032 2307.0 511,040 424,210 57.53 295.46 6.74
S10 0.083 2397.8 503,970 424,060 111.93 282.76 0

Compared to the computation time in deterministic model (4.08 s in Case I and 6.32 s in Case
II), the solution procedure takes much longer as 266.87 s in Case III with 10 retained scenarios.
The computation time strongly depends on the scale of optimization model, that is, the number of
scenarios. However, few scenarios can deteriorate solution precision. Ten scenarios will be a good
tradeoff between the solution efficiency and accuracy.

5.2. Seventeen-Hub Interconnected System

To validate of the proposed model in large-scale systems, numerical test on the seventeen-bub
interconnected system is carried in 6 h scheduling window. These EHs are interconnected through a
modified RTS-79 power system and two connected Belgian natural gas systems [12]. The test system
has 24 electric buses, 40 gas nodes, 12 natural gas-fired units, 17 coal-fired units, and four wind farms.
Interruptible DR is not considered in this section. Topology and parameters of the tested system are
detailed given in motor.ece.iit.edu/data/ConnectedEH17_stochastic.xlsx.

Based on the five selected scenarios after reduction, results of stochastic programming are given
as Table 3. With the consideration of integrated demand response and distributed natural gas storage,
the expected operation cost is reduced by 24.8%. Simulation shows that transmission constraint is the
main reason for load shedding in our case, more wind power can only benefit in system operation
cost, but not load shedding. However, more load will be shed when wind power is not adequate in S3,
since thermal units and integrated DR cannot provide sufficient backup in this situation.

Table 3. Results of different wind uncertainty scenarios.

Expected Cost of the Five Scenarios: $776,290

Scenario Probability Wind Power
(MW)

Total Cost
($)

Coal Cost
($)

Gas Cost
($)

Shed Load
(MW)

Curtailed
Wind (MW)

S1 0.252 1670.5 775,130 196,190 569,720 9.22 0
S2 0.338 1658.1 776,070 197,130 569,720 9.22 0
S3 0.104 1603.0 779,440 198,080 569,720 11.64 0
S4 0.140 1652.5 776,030 197,090 569,720 9.22 0
S5 0.166 1628.0 776,750 197,810 569,720 9.22 0

Table 4 illustrates the impact of wind penetration level on operation strategy. It is observed that
system operation cost can be significantly reduced when wind penetration level is higher (doubled as
the base case). The reduction is mainly due to the saving of thermal units’ production. Meanwhile, 253.2
MW wind is curtailed for system security, and the amount of load shedding stays nearly unchanged
since the transmission network is in congestion. When wind penetration is reduced by 50%, as in the
base case (low level), system operation cost is increased by 11.95% due to the additional generation of
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thermal units and load shedding increment. Proper penetration of renewable energy like wind power
is beneficial to the efficiency of system operation.

Table 4. Results under different wind penetration levels.

Wind Penetration Total Cost ($) Wind Curtailment (MW) Shed Load (MW)

Low Level 869,060 0 55.32
Base Level 776,290 0 9.44
High Level 683,630 253.2 9.41

Present in Table 5 is the different piecewise strategies, which are compared to test the computation
performance of the proposed sequential linearization method. The ideal approximation resolution is
set as 1/16 of the range of pipeline gas flow and nodal gas pressure. Without a sequential procedure,
the traditional one-time method requires dividing the primal domain into 16 piecewise segments,
which introduces so many integer variables that solution efficiency is the worst (>6 h). While these
abundant piecewise segments guarantee approximation accuracy, the traditional method is weak in
real-time performance, which makes it hard for practical engineering application.

When sequential linearization method is implemented, solution efficiency is greatly improved.
Three different piecewise strategies are provided to satisfy the approximation accuracy. In the first
case, four rough segments are divided in the first iteration and the total cost is $776,240. In the second
iteration, four detailed segments are further divided when the rough operation domain is decided,
and system operation costs increases to $776,290—as the ideal traditional method. Due to the far fewer
integers in each iteration, the whole solution time is dramatically decreases to 1818.1 s, and the CPU
time of the second iteration is a bit shorter since the feasible region has been tightened after precious
iteration. In the second case, only two segments are divided in the first iteration and solution results
are quick, given as 210.5 s. However, the division strategy is so rough that it may easily lead to local
optimal. While another eight segments are divided in the next iteration, the final operation cost is
$776,200 and different from the ideal value. In the third case, eight segments are detailly divided in
the first iteration and find a precise enough result (total cost is $776,280), but its solution time is much
longer than the first strategy (8475.1 s + 144.9 s = 8620.0 s). In our case, the first piecewise strategy is
regarded as the best choice, which can avoid local optimal with high solution efficiency. In practical
application, operators are suggested to equally divide piecewise segments in each sequential iteration.
Moreover, more segments are suggested in the first iteration to avoid local optimal if the time permits.

Table 5 also provides the simulation results through traditional nonlinear model, in which natural
gas flow is modelled by concave Weymouth functions and EH input/output relationship is modelled
by nonlinear matrix with an unfixed dispatch factor. The nonlinear model is handled by an IPOPT
solver. It shows that, due to the strong nonlinearity and nonconvexity of this model, the solution
is not converged even after 10 h. The systems total cost is given as $785,360 when the procedure is
interrupted at 10 h, which is sub-optimum since the primal model is concave. Global optimal is not
guaranteed in this nonlinear model.
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Table 5. Efficiency of the proposed sequential linearization method.

Results of the Traditional Method (16)

Iteration Total Cost ($) Flow Segments
(Integers)

Pressure Segments
(Integers) CPU Time (s)

1 776,290 16 * NGL * NT 16 * NGB * NT 23574.7

Results of the proposed method in strategy 1 (4 * 4 = 16)

Iteration Total Cost ($) Flow Segments
(Integers)

Pressure Segments
(Integers) CPU Time (s)

1 776,240 4 * NGL * NT 4 * NGB * NT 941.9
2 776,290 4 * NGL * NT 4 * NGB * NT 876.2

Results of the proposed Method in strategy 2 (2 * 8 = 16)

Iteration Total Cost ($) Flow Segments
(Integers)

Pressure Segments
(Integers) CPU Time (s)

1 776,170 2 * NGL * NT 2 * NGB * NT 210.5
2 776,200 8 * NGL * NT 8 * NGB * NT 6510.4

Results of The Proposed Method in Strategy 3 (8 * 2 = 16)

Iteration Total cost ($) Flow segments
(Integers)

Pressure segments
(Integers) CPU time (s)

1 776,280 8 * NGL * NT 8 * NGB * NT 8475.1
2 776,290 2 * NGL * NT 2 * NGB * NT 144.9

Results of the Traditional Nonlinear Model

Iteration Total Cost ($) Flow Segments
(Integers)

Pressure Segments
(Integers) CPU Time (s)

1 785,360
(sub-optimum) - - >10 h (not

converged)

Noted that it still takes about half an hour for solution, the solution speed can be further improved by techniques
like identifying inactive constraints and generating strong Benders cuts.

6. Conclusions and Future Work

This paper presents a novel stochastic programming framework for the optimal scheduling of
interconnected energy hubs, considering integrated demand response and wind power uncertainty.
The objective of the proposed model is minimizing the total operation cost, while satisfying end-user’s
energy demand. To achieve this objective, integrated DR programs, including internal and external
terms, are implemented. The internal DR program is achieved by the optimal operation within each
EH, while external DR denotes the adjustment of users’ demand through time-shifting or interruption
actions. Distributed natural gas storage is also included to smooth load profile and further improve
system efficiency. Moreover, to handle the primal nonlinear nonconvex programming problem, the
upper-level transmission network is linearized through the sequential linearization method, while the
terminal EH is linearly modelled by an output-input relationship with an augmented coupling matrix.
Simulation tests on three-hub and seventeen-hub interconnected system validate the effectiveness of
the proposed model and solution methodology.

Based on simulation analysis, following suggestions are provided to system operators and
government. Firstly, integrated demand response can benefit a lot in economy improvement reliability
enhancement and renewable energy penetration. Detailed and flexible demand response programs are
very welcomed in current Energy Internet environment, which can increase the interaction on users’
side and smooth demand curve. Secondly, distributed storage like gas tank can provide a buffer for
system operation during peak hours. With the development of storage technology, other forms of
storage like large battery, electric vehicle, and the power-to-gas facility can also play important roles in
IES operation. Thirdly, wind variation is a main challenge for future energy system with high renewable
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energy penetration. More accurate wind forecast is needed since load shedding usually occurs when
wind power is overestimated. Last but not least, the proposed linearized model and sequential
linearization method can provide a feasible solution for IES real-time dispatch. Piecewise segments
are suggested to be equally divided in each iteration for both solution efficiency and approximation
accuracy reasons.

Our future work will focus on the planning strategy and risk management for interconnected
EHs considering the integrated DR program. Other conversion equipment in Energy Internet
including electric vehicles, electricity storage, photovoltaics, and the power-to-gas facility will also be
comprehensively considered in our further research.
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Nomenclature

A. Sets and Indices

i, w Indices of thermal units and wind farms
t, s Indices of time intervals and scenarios
h, j Indices of electricity buses
m, n Indices of natural gas nodes
hj, mn Indices of transmission lines and pipelines
sp, q Indices of natural gas wells and gas storages
r Indices of energy hubs (EH)
NP Sets of piecewise segments of linear cost function for non-NGU
NT, GU Sets of time intervals and natural gas-fired units (NGU)
CGj, CEHj Sets for generators and EHs connected to bus j
CUm, CEHm, Sets for NGUs and EHs connected to node m

GWm, GNm, GSm
Sets for gas wells, gas nodes and gas storages connected to node
m

PLFj PLEj Sets for transmission lines from/to bus j

B. Parameters

Prs, ρgas Probability of scenario s and price of gas
ω, α{·} Penalty of wind curtailment and load shed
PWw,t Power of wind farm w at time t
Pmax

i , Pmin
i Max/min capacity of thermal unit i

cgi,p Marginal cost of non-NGU i on segment p
RUi, RDi Up/down ramping limit of unit i
suci, sdci Startup/shut cost of non-NGU i
sugi, sdgi Startup/shut gas of NGU i
Ton

i , Toff
i Min ON/OFF time of thermal unit i

xhj Reactance of transmission line hj
p f max

hj Capacity of transmission line hj
θ j, θ j Max/min phase angle of bus j
gwmax

sp , gwmin
sp Max/min natural gas production of well sp

πmin
m , πmax

m Max/min pressure of gas node m
ηc

q, ηd
q Storing/releasing efficiency of natural gas storage q
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GCmax
q , GDmax

q Max storing/releasing capacity of natural gas storage q
HCmax

r , HDmax
r Max storing/releasing capacity of heat storage in EH r

SGmax
s , SHmax

r Max gas and heat stored in storage utility
CPmax

r , EBmax
r Max power input of CHP and electric boiler in EH r.

DE{·}r,t Original energy demand of end-users of EH r at hour t

DRSI(·), max
r , DRSO(·), max

r Max shiftable load of EH r

DRI(·), max
r Max interruptible load of EH r

Cr Coupling matrix of EH r
ηCE, ηCH Efficiency of CHP converting gas to electricity and heat
ηEB Efficiency of electric boiler
ηHC, ηHD Storing/releasing efficiency of heat storage
ϕNGU Efficiency of NGU, MW/m3

γ Energy conversion constant between gas and electricity, m3/MW

Kg f
mn, Klp

mn Gas flow/linepack constant of pipeline mn
λCAP,{·}, λIL,{·} Capacity and energy compensation for IL

C. Variables

CDR Cost of integrated DR program
Fc

i,t() Linear operation cost function of non-NGU i
ui,t Status indicator of thermal unit i at hour t
Xon

i,t , Xoff
i,t ON/OFF time counter of unit i at hour t

Pi,t Generation of thermal unit i at hour t
SUCi,t, SDCi,t Startup/shut cost of non-NGU i at hour t
SUGi,t, SDGi,t Startup/shut gas of NGU i at hour t
LWw,t Wind curtailment of wind farm w at hour t

LD(·)
r,t Energy demand shedding of EH r at hour t

p fhj,t Power flow on transmission line hj at hour t
θj,t Phase angle of bus j at hour t
Fc

i,t, Fg
i,t Cost/gas consumed by unit i at hour t

gwsp,t Production of natural gas in well sp at hour t
πm,t Pressure of gas node m at hour t
πmn,t Average pressure of pipeline mn at hour t
Qmn,t, Qin

mn,t, Qout
mn,t Average flow, in-flow and out-flow of pipeline mn at hour t

LPmn,t Linepack of pipeline mn at hour t
LGm,t Total gas load at node m at hour t
GCq,t, GDq,t Storing/releasing rate of storage q at hour t
UCq,t Status of storage q at hour t
SGq,t Natural gas stored in storage q at hour t
Vin,r, Vout,r Input/output vectors of EH r

E(·)
in,r,t, E(·)

out,r,t Energy of EH r as inputs/outputs at hour t
v(·),n,t Energy flows in EH r at hour t
∆Er,t Change of heat storage in EH r at hour t
HUr,t Status of heat storage in EH r at hour t
SHr,t Heat stored in EH r at hour t

DRSI{·}r,t , DRSO{·}r,t Energy demand shifted in/out in EH r at hour t

DRI{·}r,t Energy demand interrupted in EH r at hour t
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