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Abstract: This research work explains the practical realization of hybrid solar wind-based standalone
power system with maximum power point tracker (MPPT) to produce electrical power in rural places
(residential applications). The wind inspired Ant Colony Optimization (ACO)-based MPPT algorithm
is employed for the purpose of fast and accurate tracking power from wind energy system. Fuzzy
Logic Control (FLC) inverter controlling strategy is adopted in this presented work compared to
classical proportional-integral (PI) control. Moreover, single Cuk converter is operated as impedance
power adapter to execute MPPT functioning. Here, ACO-based MPPT has been implemented with
no voltage and current extra circuit requirement compared to existing evolutionary algorithms single
cuk converter is employed to improve conversion efficiency of converter by maximizing power
stages. DC-link voltage can be regulated by placing Cuk converter Permanent Magnet Synchronous
Generator (PMSG) linked rectifier and inverter. The proposed MPPT method is responsible for rapid
battery charging and gives power dispersion of battery for hybrid PV-Wind system. ACO-based
MPPT provides seven times faster convergence compared to the particle swarm optimization (PSO)
algorithm for achievement of maximum power point (MPP) and tracking efficiency. Satisfactory
practical results have been realized using the dSPACE (DS1104) platform that justify the superiority
of proposed algorithms designed under various operating situations.

Keywords: Ant Colony Optimization; cuk converter; dSPACE (DS1104); Fuzzy Logic Control

1. Introduction

Because of abounded necessity of energy harvest and continuous depletion of fossil fuels,
demands of renewable energy sources are gaining more attention [1]. Photovoltaic (PV) and wind are
the environment friendly renewable energy sources, which has more contemplation for backwoods
use [2]. Standalone wind energy conversion system (WECS)/PV system have been remarkably
employed to produce electrical power in rural places for agricultural applications [3]. Nevertheless,
fluctuations in solar insolation level and wind speed are the major shortcomings of these renewable
sources. Compared to individual PV/wind system, the hybrid PV/wind integrated system provides
high steady power generation. However, implementation of hybrid PV/wind systems is being future
assignments for researchers. It is also noted that in contrast to individual PV/wind system, the hybrid
system has low cost of implementation with augmented steady operation.
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Particularly, Permanent Magnet Synchronous Generator (PMSG) is enlisted prevalence for
variable speed WECS and has lossless rotor with limited stator winding and core power losses [4].
WECS coupled PMSG provides power generation under low speed region with gearless mechanism
which has high efficiency and reliability compared to gearbox system [5]. Maximum Power point
tracking (MPPT) methods are essential constituent for fast exact tracking of global maxima and
competency to achieve peak power generation under non-uniform environmental conditions. A
detailed literature look has been provided Viz. perturb and observe (P&O) [6]; Hill climbing (HC) [7]
and incremental conductance (INC) [8]. Nevertheless, mentioned algorithms lose control under
non-uniform weather conditions. Intelligent MPPT algorithms such as Fuzzy Logic Control (FLC) [9],
Artificial Neural Network (ANN) [10] methods have been exercised for peak power extraction under
abrupt operating conditions. However, by virtue of ample neurons, tracking data requirement and
complex fuzzy inference indicated algorithms are not applicable for lesser expense microcontroller.
Genetic algorithm does not guarantee the optimal solution and decline the performance as size of
population increases [11]. However, soft computing occupied MPPT algorithms are preferred for
exact exploration of maximum power point (MPP). Several soft computing algorithms such as particle
swarm optimization (PSO) [12], evolutionary algorithm Viz. firefly algorithm (FA) [13], artificial
bee colony (ABC) [14], Flower pollination (FP) [15]; Grey wolf optimization methods have been
reported in literature survey [16]. PSO technique consists of large number of iterations which results
diversion from MPP with slow updating speed. Belhachat et al. [17] has combined the performance of
various MPPT techniques, which reveals that Ant Colony Optimization (ACO) method has relatively
simpler implementation, very fast tracking velocity and high efficiency compared to other algorithms
discussed in literature. Sundeswaran et al. [18] has implemented cascaded P&O assisted Ant Colony
Optimization (ACO) method for rapid PV power tracking using PIC16F876A microcontroller. Under
partial shading situations, the behavior has been examined which provides fast global searching
and convergence. However, authors have discussed proposed MPPT algorithm for particular PV
system power generation. Emerson et al. [19] presented ACO algorithm for PV-fuel cell integration
with islanding employed with boost converter. However, there is no experimental work carried
out for the system verification and analysis of power quality issues. In this paper, an Ant Colony
Optimization-based MPPT technique has been employed to get acceptable solutions in non-linear
operating conditions compared to other method discussed in literature. The ACO-based MPPT
provides rapid battery changing operation with lesser dispersion of battery for hybrid PV-wind
power system.

Several DC-DC converters have been reviewed for MPPT purpose, which is responsible for
load matching and converts peak powers from renewable sources to load. Generally, buck, boost,
buck-boost, Single-ended primary-inductor converter (SEPIC), Zeta, Cuk converters are considered
dc-dc converters for MPPT operation which accomplish impedance balance between renewable sources
and load [20,21]. Buck boost converters are unable to handle MPPT operations under changing weather
conditions. Moreover, compared to SEPIC and Cuk converters, buck, boost, buck-boost and Zeta
converter require high cost driver circuits with supplementary blocked diode for preventing reversal
current from battery. Equated with presented dc-dc converter topologies, Cuk converter is adequate
to provide MPPT operation through entire PV/wind characteristics under every changing operating
conditions with less input current ripple and inverted output. Particular power converters with battery
back up have been used for hybrid PV-wind power generation systems implementations. Furthermore,
individual powers converters are regulated with multiplex methods for optimal power generation
which consequence conduction and switched loss in power converters.

In this research work, a single Cuk converter is employed for improvement of power conversion
efficiency by reducing the power level translation. Moreover, in this hybrid PV-wind system, a Cuk
converter is straightly coupled with DC link voltage rather than using dc-dc converter. The Cuk
converter is placed between PMSG coupled rectifier and inverter, which is responsible DC, link voltage
regulations. The Cuk converters output acts as a load line to the solar module. With the application of
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FLC current controller, the inverter current can be regulated using PV-wind systems [22]. However, in
traditional topology the dc-dc converter is employed after PV module for optimal tracking of power.

Shiau et al. [23] has discussed FLC-based solar and battery-based power system for running
electric motor. The standalone PV system supply sufficient power to run electric motor which regulates
output voltage under presence of solar insolation. However, MPPT and battery operations are carried
out under insufficient solar insolation. In this research work, FLC-based MPPT is responsible for
MPPT functioning of hybrid system. Simulations have been performed to validate dc motor control
and voltage regulation functioning of MPPT controller. Nevertheless, the experimental discussions
have not been reported in this research work. Algarin et al. [24] has implemented FLC-based MPPT
with 65W rated PV capacity. Buck converter has been employed and simulated results are compared
with the P&O method for justification of the PV design. Only simulation analysis has been performed
for demonstrations of proposed PV-based power system. Hong et al. [25] has discussed radial basis
function network-based MPPT control to track peak PV power with pitch angle control employing
Elman neural network for MPP achievement in wind turbine-based wind energy conversion system.
Only simulation analysis has been implemented for dynamic modeling for solar-wind-diesel hybrid
system. However, practical analysis using recent intelligent MPPT algorithms is missing in this
research work. Lin et al. [26] presented back propagation method for RBFN regulation and fuzzy
logic-based loss minimization, sliding mode controller for wind energy conversion system. The peak
wind power has been achieved at speed below the PMSG rated speed. Although practical verifications
are nowhere has been found in this research work. Ou et al. [27] has implemented a multi-input power
converter for hybrid renewable power system which integrates it to dc-bus for household applications
and load. Total 8 modes of proposed power converter have been discussed and experimental analysis
of grid current/voltage injection using bi-direction inverter is carried out for proposed hybrid power
system. However, optimized energy preservation investigations are not accounted in this research
work. Ou et al. [28] has tested unsymmetrical fault conditions by hybrid compensating system with
micro grid applications. In this research work, two matrices-based mismatch (Branch current and
bus voltages) for fault analysis (single and unsymmetrical) with micro grid turbine system under
islanding and grid integration has been discussed. Ou et al. [29] examined operation and control of
PV-Wind hybrid micro grid system under dynamic conditions. General regression neural network with
PSO technique has been employed to test the PV system behavior. Moreover, Radial basis function
network-sliding mode is used for optimal power tracking from wind turbine. The simulation validation
has been performed to analyze the hybrid micro grid system. However, the mutual power sharing of
wind and PV system under changing environment has not been discussed practically. Ou et al. [30]
has proposed direct building algorithm for ground fault interpretation with micro grid system. A total
of four possible network topologies have been discussed with battery storage system for islanding
and grid integration modes of operation. However, detailed differentiations and combination with
different apparatus models to proposed design has not been presented. Ou et al. [31] has tested
novel intelligent damped control for STATCOM which minimizes oscillations, damping and backing
voltage level to hybrid power system. Simulation analysis has been demonstrated for analysis of
balanced/imbalanced faults with mutual power sharing for hybrid power system. However, practical
discussion has not been reported in this research work. Mellit et al. [32] has implemented FPGA
employed P&O method for PV MPPT system. VHDL and Xilinx interface has been used for hardware
testing which provides high convergence speed, simpler implementation, reliable and has optimal cost.
However, this proposed design is not suitable under fast fluctuating weather conditions. Liu et al. [33]
has discussed asymmetrical FLC method for PV system. Comparison of P&O, symmetrical FLC and
asymmetrical FLC has been performed using DSC dsPIC33FJ16GS502 platform with 300 W rated PV
modules. Asymmetrical FLC method provides accurate tracking ability with zero steady state error.
However, calculation burden is high under changing weather conditions for proposed MPPT controller.

The ability of proposed hybrid control system is decided on the basis of optimal use of battery
voltage by sensing PV and wind DC bus voltage. The PV and wind DC voltage level should be
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matched prior to battery connection. Santra et al. [34] has discussed stability realization of hybrid
PV-wind system using small signal stability analysis. Under fault conditions, the main problems
associated with hybrid power system has one or more supply voltages to become zero. Moreover, the
renewable energy sources should provide required load power under normal operating conditions.
During fault situations, the delivered load power are reduced because of one of the renewable energy
sources are unable to deliver power to converter [35].

Included work, based on ACO MPPT has no requirement of supplement circuitry with
voltage/current sensors and independent system responses compared to different evolutionary
techniques used. Novelty of this research paper is MPPT action with ACO technique followed
by FLC inverter controller for residential PV-Wind power generation has neither been discussed nor
implemented experimentally under changing operating conditions with single Cuk converter as an
impedance balancer using dSPACE (DS1104) platform. The significant contributions of this research
work are mentioned below:

• In this research work, the proposed hybrid PV-Wind system performance have been evaluated
with PSO, FA, ABC and ACO maximum power point tracking. Compared to other methods,
ACO-based MPPT provides lesser tracking period to achieve MPP.

• The optimal power from PV-Wind hybrid system has been extracted with rapid convergence
velocity, battery searching performance and simpler hardware implementation.

• Under low wind velocity also, the hybrid PV-Wind system has low battery consumption. The PV
and wind energy sources are working independently without influencing one another. Compared
to PSO-based MPPT method, the ACO MPPT techniques has seven times faster MPP achievement
with accurate convergence velocity.

This paper starts Section 1 with a detailed introduction of hybrid PV-Wind system using different
MPPT algorithms followed by several literature reviews. Section 2 discusses the complete schematic
of PV-Wind system controlled through ACO-based MPPT which is employed with single Cuk
converter. This section describe the PV modeling PMSG modeling, mathematical modeling of wind
turbine system, electric circuit-based battery model and mathematical analysis of Cuk converter
modes of operations. Section 3 explains the ACO-based optimized maximum power point tracking
algorithm with detailed specifications used. Section 4, deals the FLC-based inverter control for smooth
maintenance of load voltage and frequency, MPPT and inverter controller action with single Cuk
converter and experimental setup. Section 5 describes the practical responses followed by conclusions
in Section 6 and references. The proposed model can be converted to real time application, by applying
load requirement of household applications with battery charging during duration of surplus power.
Battery is responsible to compensate load requirement under hybrid power insufficiency. Low wind
velocity with high sun insolation operating conditions has also been hybridized by proposed PV-Wind
power system for real time implementation. The main advantage of the adopted PV-Wind hybrid
system is minimization of intermittence issues of PV and wind renewable sources which can work
under low wind velocity and during night periods.

2. Complete Schematic of PV-Wind System

Figure 1a demonstrates standalone hybrid PV-wind-Battery power system comprises of PV
modules, PMSG-based WECS, battery, voltage source inverter (VSI) and load. The ACO-based
MPPT is employed with single Cuk converter is operating in hybrid power generation for residential
application. FLC-dSPACE-based controller is used for inverter voltage regulation to retain inverter
voltage regulation and frequency invariable. The employed Cuk converter imparts consistent DC link
voltage for charging of battery by application of ACO MPPT.
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Figure 1. (a) Standalone hybrid PV-wind-Battery power system; (b) PV cell equivalent model.

2.1. PV Modeling

The equivalent mode of PV cell presented in Figure 1b comprises current source, diode and
series/parallel resistances. The mathematical equations describing output current (Iout) based on the
electrical circuits can be derived with used abbreviations [36] as:

The output current is equated finally with used abbreviations [36] as:

Iout = Iphoton − IRS

[
e

Q(Vout + Rsr × Iout)
βKT − 1

]
− 1

RPR
(Vout + Rsr × Iout) (1)

2.2. PMSG Modeling

To describe the operation of PV-Wind system under intermittent operating conditions, Permanent
Magnet Synchronous Generator is employed because of zero reactive power consumption. In addition,
it does not have need for a gearbox with better power factor and accuracy due to self-execution
behavior. The PMSG model has been developed using steady current depicted in Figure 2a. Voltage
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and current (VRE&IRE) obtained from rectification is expressed [1] mathematically with regard to stator
voltage/current (Vst, Ist).

VRE = 3√6
/

π Vstator (2)

IRE = π
/√6 Istator (3)
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2.3. Mathematical Modeling of Wind Turbine System

The produce power rating of wind turbine based on aerodynamic behavior is evaluated
mathematically as [1]:

PTurbine = 1/2× CP(λt, βP)ρairπR2
TV3

wind (4)

The turbine tip speed is correlated with wind velocity and wind turbine rotating velocity
ΩTurbine as:

λt =
ΩTurbine × RT

Vwind
(5)

The power coefficient CP(λt, βP) is calculated using mathematical relation as:

CP(λt, βP) = (0.34− 0.00166)× (βP − 2)× sin K× (−184)× 10−5(λt − 3)(βP − 2) (6)
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And

K =
π
(
λt + 10−1)

1434× 10−2 − 3× 10−1(βP − 2)
(7)

Mechanical torque τmechanical developed using wind turbine is related with produced mechanical
power as:

τmechanical =
Pmechanical
ΩTurbine

(8)

The mechanical relation governing wind turbine system is expressed mathematically as:

(JTurbine + JGenerator)
dΩTurbine

dt
+ fviscous ×ΩTurbine = τmechanical − τEM (9)

Mathematical Modeling of PMSG in dq frame is described as:
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2.4. Electric Circuit-Based Battery Model

In this research work, electric circuit-based battery model is employed which provides better
dynamicity for state of charge approximation. It comprises voltage source (ideal) with series internal
resistance, which evaluates battery behavior, depicted using Figure 2b. A Battery (Ni-Cd) discharging
characteristic is presented with Figure 3a [36].

Final voltage controlled is obtained mathematically as:

V = EB −
VPO ×QBat

QBat −
∫

IBatteydt
+ Aexp × e(Bexp

∫
IBatterydt) (11)

2.5. Cuk Converter

The major disadvantages of switched mode power converters have discontinuity of supply
current, low dynamic response and higher power device peak current, which made this less acceptable.
In contrast with classical switched mode dc-dc converter, Cuk converter comprises less switched
power loss, high current behavior with better efficiency, which acts as a power adapter between
inverter and renewable sources. The Cuk converter operation presented in Figure 3b is described
in two working modes. When power switch gets short-circuited and energy has been released by
capacitor. Table 1 presents the specifications used during design of Cuk converter. The mathematical
expression-governing mode-I conducting state is described as:

VLA = Vin (12)

VLB = −VCA −VCB (13)

ICA = ILB (14)

ICB = ILB −
VCB

RLoad
(15)
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Table 1. Cuk converter parameters.

S.N. Parameters Values

1. Inductor (LA = LB) 0.5 mH
2. Capacitor (CA = CB) 1.5 µF
3. Frequency of Switching 10 KHz
4. Diode 500 V/7 A
5. MOSFET (Power Switch K) 600 V/12 A
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In case of power switch gets open circuited, the energy flow takes place with forward biasing
diode and input supply is responsible to charge capacitor CA. Described mathematical relations of this
mode of operations are:

VLA = Vin −VCA (16)

VLB = −VCB (17)

ICA = ILA (18)

ICB = ILB −
VCB

RLoad
(19)

3. Ant Colony Optimization-Based MPPT

Colorni, Dorigo and Maniezzo invented meta-heuristics-based optimized algorithm to solve
difficult non-linear issues. The particular ant to obtain the shortest path optimization generates
pheromones. For the searching of foods, the movements of ants take place in different direction
followed with generated pheromones. The shortest path should have high pheromones probability as
it evaporates in short and methodology is repeated for different iterations to optimize the problems.
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In this research work, ACO methodology is implemented by considering VPV and IPV followed by
generation of target output (VTarget). Ants have been situated randomly and its movement is noted to
achieve VTarget which returns to the colony after this process. Moreover, the VTarget and colony distance
is treated as duty ratio of Cuk converter. Let AP variables have targeted to optimize which comprises
YP produced randomly solutions (YP ≥ AP). Sampling Gaussian Kernel methodology is used for
mathematical description as:

Hj(y) =
X

∑
L=1

ωLhj
L(y) =

X

∑
L=1

ωL
1

σ
j
L ×
√

2π
× e

−(X−µ
j
L)

2

2σ
j2
L (20)

Mathematically mean, weight, standard deviations are derived with VP random solutions.

(I) Mean

(µj) =
[
µ

j
1, . . . , µ

j
L, . . . , µ

j
x

]
(21)

(II) Standard deviation (
σ

j
L

)
= εconv

x

∑
j=1

∣∣∣µj
i − µ

j
L

∣∣∣
YP − 1

(22)

(III) Weight

ωL =
I√

2π ×QL ×YP
e
− (L−1)2

2Q2
LK2

L (23)

(IV) Probability of Gaussian function selection

PL = ωL

/
∑x

R=1 ωR (24)

The proposed sample Process is repeated for optimization of parameters. Let ZP newly solution
are produced and has addition with YP initially obtained solution. Total ZP + YP solutions have been
obtained in which YP best are replicated and overall methodology is recapitulated for several iterations.
Figure 4 presents the flowchart of ACO-based MPPT which describes the step by step process.

Step I: Parameters (ZP, YP, QP, ξconv) have been initialized.
Step II: The voltage, current and power associated with every ant can be calculated and process has

been repeated until YP ant.
Step III: Gaussian function has been evaluated to get ZP new solutions.
Step IV: ZP + YP has been ranked to store YP best solution.
Step V: All 4 steps have been repeated till maximum iterations.
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Table 2 shows ACO parameters used during practical verification. This methodology is stimulated
by foraging nature of ants, which are treated as blind living things, and conversion among them
takes place-using pheromone alchemical. It comprises positive feedback affection, which provides
better-optimized solutions.

Table 2. ACO parameters used during experiment.

S.N. Parameters Values

1. Total iterations 250
2. Size of Population 10
3. Produced random solution 8
4. Rate of convergence 0.35
5. Best Rank solution (QL) 0.85

4. Inverter Control, MPPT and Inverter Controller Action with Single Cuk Converter and
Experimental Set Up

4.1. FLC-Based Inverter Control

The inverter depicted in Figure 5a is controlled with Fuzzy Logic Control (FLC)-based intelligent
methodology, which provides the smooth maintenance of load voltage and frequency. Irrespective of
wind velocity, loading conditions and level of sun insolation inverter regulates voltage and frequency
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instant. Figure 5b depicts the FLC regulated inverter controller. For maintenance of voltage output
(Vout) and frequency, a phase locked loop (PLL) presented in Figure 5b associated with synchronized
frame of reference is employed. The FLC inverter control regulation provides better efficiency, stable
operation and less frequency, disturbances with respect to PI-based inverter regulation [21]. Figure 6a–d
demonstrate the PWM pulse generation using FLC inverter strategy and membership functions used
during implementation, respectively.
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4.2. MPPT and Inverter Controller Action with Single Cuk Converter

CASE I: The two controllers operations are decided based on the presence of PV/Wind renewable
sources. In case of generation of power from PV as well as wind sources, the ACO-based MPPT
(controller 1) produces duty ratio for Cuk power converter and FLC inverter control (controller 2)
provides power generation from PV and wind renewable sources.
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CASE II: In case of power generation from only wind renewable sources (Not PV), the duty ratio of
the Cuk converter is generated to make DC link voltage fixed and controller 1 works in voltage control
mode. In addition to this controller 2 tries to obtain optimal wind power by generating current signal.

CASE III: When PMSG is not in operation and only PV sources are generating power, Cuk
converter has no input and there is no pulse generation using controller 1. Controller 2 produces
current command signal to obtain optimal PV power generation from PV modules.

4.3. Experimental Set Up

Figure 7A depicts the practical set up developed for proposed hybrid (PV-Wind) system
controlled through dSPACE, which comprises PV module, wind emulator, Cuk converter, and electric
circuit-based battery model.
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Figure 7. (A) Practical set up developed for proposed hybrid (PV-Wind) system; (B) ACO MPPT
implementation using dSPACE; (C) Power tracking (a) PSO, (b) FA, (c) ABC, (d) ACO; (D) Duty ratio
(a) PSO, (b) ABC, (c) ACO.

With application of ACO model based MPPT the sensed (Voltage/Current) is transformed to
digital pulses by analog to digital converter and controller 1 and controller 2 generated signals
are collected from control desk I/O of dSPACE which is processed through insolation interface.
LA50-P (current transducer) and LV20-P (voltage transducer) are employed during experimentation,
respectively. The ACO based MPPT is modeled in Figure 7B using MATLAB which generates PWM
signal for Cuk converter linked through dSPACE hardware based CT60 AM IGBT, SKHI22 AR gating
driver, power supplication using programmed DCMAGNA (programmable DC power supply) and
PMSG wind emulators are employed during practical investigation.

5. Experimental Responses

Practical justification is done by comparing power tracking behavior of ACO algorithm vs.
PSO, FA and ABC techniques using Figure 7C. The average period required to achieve MPP is
presented with comparison using Table 3. The ACO based MPPT method takes lesser time compared
to other algorithms mentioned. Moreover, the duty ratio performance with ACO MPPT is better
compared to other techniques employed in Figure 7D. Figure 8a portrays the starting operation before
GMP achievements in which PV module voltage level tries to reach preset level of voltage. The
steady state behavior of the designed PV system is also examined and is justified with matched PV
characteristics depicted by Figure 8b. By means of proposed intelligent ACO, the inverter current
becomes synchronized in Figure 8c. The dynamic performance of ACO based PV power system has
been justified with variations in fluctuating sun insolation and can be depicted in Figure 8d. Figure 9a
demonstrates the responses obtained from hybrid PV-wind controlled ACO, which clearly interprets
that MPPT operation is achieved independently without influencing one another.

Table 3. Performance MPPT comparison.

S.N. Techniques Tracking Time (Avg.)

1. PSO 5.1 s
2. FA 2.75 s
3. ABC 0.75 s
4. ACO 0.38 s
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Figure 8. (a) Starting operation PV MPPT; (b) Steady state behavior of the designed PV system;
(c) Inverter current and voltage; (d) ACO based PV power system with variations in fluctuating
sun insolation.

The intermittent behavior of PV-wind system with proposed methodology is accurately tested
experimentally using proposed algorithm. Abruptly, the PV-wind power system has been turned
ON/OFF and output responses are noted under these operating situations. Figure 9b presents the
responses of hybrid system when wind turbine gets turns ON/OFF abruptly. It is clearly visualized
that the PV system works independently and provides output power without influencing one another.
The PV/Wind renewable sources are transferring power one of two concurrently or particularly.
Complementary, the performance of hybrid PV-Wind system is evaluated when PV system is turned
ON/OFF which does not influence the wind turbine operation when abrupt changes occurs in PV
system, which is depicted in Figure 9c. The transient performance of the hybrid control system has
been evaluated by keeping wind condition constant and sun insolation variable. The corresponding
change in VPV, IPV and Ibattery is noted under fluctuating sun irradiance. Battery gets charge and
discharge depending on increasing/decreasing nature of solar insolation, which maintains the terminal
voltage fixed and validates the effective design of proposed algorithms regulation. The power output
generations from hybrid (PV and Wind) energy sources are compared using Figure 10a,b, respectively
using PI and FLC regulated inverter control. In case of PI based inverter controller, voltage output
(Vout) is found unstable and has more frequency perturbation in contrast to FLC based inverter control
illustrated using Figure 10 responses.
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Figure 9. (a) PV-wind MPPT operation without influencing one another; (b) Responses of hybrid
system when wind turbine gets turns ON/OFF abruptly; (c) Performance of hybrid PV-Wind system is
evaluated when PV system gets turned ON/OFF.
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Figure 10. Transient performance of the hybrid control system (a) FLC inverter control; (b) PI-control.

Under steady state operating conditions, the DC link voltage/current is noted under variable
solar insolation 400 W/m2 and PMSG turbine velocity 5 × 10−1 p.u. is illustrated using Figure 11a.
The dynamic behavior of proposed hybrid power system is tested under operating conditions
(Fixed Sun insolation 700 W/m2 and increment in PMSG shaft velocity 0.5 to 0.75 p.u.). Therefore,
consequent variation in VRectifier and Cuk converter duty ratio is reported to keep DC link voltage fixed
explained using Figure 11b. Figure 11c illustrates the corresponding rectifier waveforms and DC link
voltage/current obtained during experimentation. The performance of ACO based MPPT for wind
energy conversion system has been realized through experimental responses obtained during varying
wind velocity depicted in Figure 12a. The practical responses presented in Figure 12b,c extracted
wind turbine power and Cuk converter duty ratio, respectively justify the optimal tracking ability and
operation in maximum power point region of ACO based MPPT for wind energy conversion system.
The reliable operation of PV-Wind system with ACO MPPT control has been practically substantiated
using dSPACE interface. Table 4 demonstrates the used PV and Wind turbine specifications for
practical justification.



Energies 2019, 12, 167 19 of 23
Actuators 2018, 7, x FOR PEER REVIEW  19 of 23 

 
(a) 

 
(b) 

 
(c) 

Figure 11. (a) Steady state operating conditions, the DC link voltage/current; (b) Dynamic behavior 

of proposed hybrid power system variation in VRectifier and Cuk converter duty ratio; (c) Corresponding 

rectifier waveforms and DC link voltage/current. 

Figure 11. (a) Steady state operating conditions, the DC link voltage/current; (b) Dynamic behavior of
proposed hybrid power system variation in VRectifier and Cuk converter duty ratio; (c) Corresponding
rectifier waveforms and DC link voltage/current.
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Table 4. PV and Wind turbine specifications.

S.N. Parameters Values

1. PV rated power 200 W
2. Wind generation (Rated) 200 W
3. Stator and Rotor resistance 4.3 Ω, 3.8 Ω
4. Number of Poles 4

6. Conclusions

The ACO based optimized methodology provides optimal power extraction from solar and wind
energy sources for residential applications, which contained high convergence velocity, better-searched
performance and simpler implementation as major advantage. The completed hybrid solar wind
driven PMSG power system is modeled through MATLAB and provides hardware interface (dSPACE)
for validation and confirmation of high power generation. Under low wind velocity, the hybrid
system has low battery consumption, which demonstrates the improved controller performance.
Inverter regulated with FLC-dSPACE control has power efficiency equated with classical PI-controller.
The hybrid integration of solar and wind energy system have been realized experimentally under
various conditions to develop novel hybrid power system followed by Cuk converter. ACO algorithms
developed using m-file have complex coding interfaced to a dSPACE hardware board. The performance
of ACO based MPPT has been evaluated versus PSO, FA and ABC algorithms. Experimental results
reveal that the ACO based MPPT provides seven times faster convergence compared to the PSO
algorithm for achievement of MPP and tracking efficiency. The limitations of this adopted hybrid
control system are a requirement of ideal layout for installation of PV modules and wind turbine
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with adequate wind and solar insolation. The installation cost is another limitation of this hybrid
PV-Wind system. Included work can be extended to learning framework with Internet of Things-based
intelligent algorithms for PV-Wind hybrid system to achieve utmost power tracking efficiency.
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Nomenclature

CP(λt, βP) Power Coefficient of wind turbine
ρair Density of air
RT Blade (Wind turbine) radius
νwind Wind velocity
λt Tip speed ratio
βP Pitch blade angle
fviscous Viscous force
τEM Developed electromagnetic torque
Rstator Stator resistance
Ld−axis, Lq−axis Inductances of Stator winding
Isd−axis, Isq−axis Stator winding current
∅PM Flux generated by permanent magnet
P No. of Poles
EB Battery fixed voltage
VPO Polarized voltage
QBat Capacity of battery
IBattey Battery current
Aexp Amplitude of exponential zone
Bexp Inverse time constant exponential zone
Hj(y) jth Gaussian kernel

hj
L (y) jth Gaussian function

σ
j
L Standard deviation

µ
j
L Mean function

εconv Rate of convergence
QL Best rank solution
AP Parameters to be optimized
YP Initial random solutions
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