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Abstract: Peak current-mode (PCM) control has been a very popular control method in power
electronic converters. The small-signal modeling of the dynamics associated with PCM control has
turned out to be extremely challenging. Most of the modeling attempts have been dedicated to
the converters operating in continuous conduction mode (CCM) and just a few to the converters
operating in discontinuous operation mode (DCM). The DCM modeling method published in 2001
was proven recently to be very accurate when applied to a buck converter. This paper provides the
small-signal models for a boost converter and analyses for the first time its real dynamic behavior
in DCM. The objectives of this paper are as follows: (i) to provide the full-order dynamic models
for the DCM-operated PCM-controlled boost converter; (ii) to analyze the accuracy of the full and
reduced-order dynamic models; and iii) to verify the validity of the high-frequency extension applied
in the DCM-operated PCM-controlled buck converter in the case of the boost converter. It is also
shown that the DCM-operated boost converter can operate only in even harmonic modes, similar to
all the CCM-operated PCM-controlled converters. In the case of the DCM-operated PCM-controlled
buck converter, its operation in the odd harmonic modes is the consequence of an unstable pole in its
open-loop power-stage dynamics.

Keywords: boost converter; peak-current-mode control; dynamic modeling; discontinuous
operation mode

1. Introduction

The concept of peak current-mode (PCM) control was launched publicly in 1978 [1,2], and it
has become a very popular control method in DC–DC converters. The popularity is a consequence
of the properties it provides, such as virtually first-order control dynamics, inherent overcurrent
limiting of the switching elements, and high input-to-output voltage–noise attenuation in buck-derived
converters [3]. The dynamic modeling of PCM control has turned out to be quite challenging.
A large number of different modeling attempts has been published for the converters operating
in continuous conduction mode (CCM), as discussed in [4], but just a few for the converters operating
in discontinuous conduction mode (DCM), such as [5–9]. The DCM models in [5] (pp. 478–480) were
given implicitly as equivalent circuits for buck, boost, and buck-boost converters, but the low-frequency
control-to-output-voltage transfer function was given explicitly in a generalized form applicable to
the named converters, which seemed to predict quite well the location of the load-resistor-affected
low-frequency pole in the case of a buck converter [9]. The models are load-resistor affected, and the
effect cannot be removed to obtain the required unterminated models. The dynamic models in [6] were
derived assuming that there was no internal feedback from the inductor current even if it was used
for generating the duty ratio. The author of [6] promoted earlier, in the case of CCM operation, the
influence of the sampling effect on the dynamic behavior of PCM-controlled converters but forgetting
it in the case of DCM-operated converters. The basic assumption in the modeling method in [6] was
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wrong, and therefore, the dynamic models were inaccurate as well. A discrete-time modeling method
was applied to PCM-controlled DCM-operated buck converter in [7], but no explicit dynamic models
were given. The modeling method proposed in [8] in the early 2000s and applied to buck converters
was proven to be very accurate in [9]. The dynamic models in [8] were load-resistor affected, which hid
the true, unterminated dynamic behavior, as discussed in [9,10]. The reduced-order (i.e., no parasitic
elements are considered), unterminated small-signal state spaces applicable to DCM-operated PCM
control in buck, boost, and buck-boost converters were also given in [11] (pp. 222–224), but the transfer
functions were not solved for comparison.

It was recently proven that the small-signal models of PCM control in CCM contain infinite
duty-ratio gain at the mode limit (i.e., the maximum duty ratio after which the converter enters into the
harmonic mode of operation), which forces the converter to enter into the second-harmonic mode of
operation, as discussed and demonstrated explicitly in [4]. The modeling method introduced in [8] also
includes the infinite duty-ratio gain, which takes place at the boundary between the DCM and CCM
operations. This implies that the existence of the infinite duty-ratio gain at the mode limit between the
operations at the switching frequency and its harmonics are characteristic features of PCM control.

It is widely assumed that PCM-controlled converters are very sensitive to bifurcation phenomena
and chaotic operation regardless of the operation mode (i.e., CCM or DCM) [12,13]. The harmonic
operation modes are assumed to be the consequence of the bifurcation phenomena, which can take
place in open and closed conditions as well. The infinite duty-ratio gain at the mode limit forces the
converter to enter into the harmonic operation mode, as discussed explicitly in [4,9]. The harmonic
operation mode can also take place as a consequence of a high-switching frequency ripple applied to
the duty-ratio process, as discussed in [12,13]. Actually, a proper controller design will eliminate the
appearance of the harmonic modes; when the control bandwidth is limited to 1/5th of the switching
frequency, the controller is provided with a high-frequency noise filtering, and the operation is
limited to the duty ratios less than the mode-limit duty ratio, as discussed and demonstrated in [4].
Both Reference [12] (plain proportional controller) and Reference [13] (proportional-integral (PI)
controller without high-frequency pole) demonstrate the appearing of the bifurcation phenomena by
using highly impractical controllers.

The main objective of this paper is to provide a comprehensive analysis of the dynamic behavior
of a PCM-controlled boost converter operating in DCM including all the relevant parasitic circuit
elements. The corresponding analyses are not published earlier in the literature. The investigations of
this paper show clearly that the modeling technique introduced in [8] will also accurately predict the
dynamic behavior of the DCM-operated PCM-controlled boost converter, when the relevant parasitic
elements are considered [14] and the load-resistor effect is removed [10]. In addition, the boost
converter is shown to operate only in even harmonic modes, where the averaged duty ratio equals
approximately the duty ratio in boundary conduction mode (BCM). The validation of the proposed
models was performed in a simulated environment, where all the components with parasitic elements
were exactly known, and there were no extra source or load interactions.

The rest of the paper is organized as follows: Section 2 introduces the modeling method briefly and
provides the relevant full and reduced-order state spaces, as well as the corresponding explicit transfer
functions. Section 3 provides the validation of the developed small-signal models by utilizing MatlabTM

Simulink-based switching models [11] (pp. 279–291) and the pseudorandom-binary-sequence-based
frequency-response measurement technique introduced in [15,16]. The conclusions are presented in
Section 4.

2. Modeling of PCM Control in DCM

The PCM small-signal state space can be obtained from the corresponding state space of a
direct-duty-ratio (DDR) or voltage-mode (VM) controlled converter [4,11]. The transformation can be
performed by replacing the perturbed duty ratio (d̂) with the duty-ratio constraints given in Equation
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(1), where Fm denotes the duty-ratio gain, xc is the control variable, xi is the state and input variable,
and qi is the different feedback and feedforward gains related to xi.

d̂ = Fm(x̂c −
n

∑
i=1

qi x̂i). (1)

The DCM dynamic modeling under DDR control was established in the late 1990s [17], and it
was later elaborated into a more convenient form in [14], providing the possibility of adding the effect
of parasitic circuit elements and performing mixed-conduction-mode modeling as well. The models
in [15] were load-resistor affected, and therefore, the modeling technique introduced in [14] is applied
in this paper to obtain the unterminated state space, which accurately represents the DDR control
dynamics in DCM. The power stage of the boost converter is given in Figure 1 with the open-loop
PCM control system that is analyzed in this paper. The selection of the inductor was performed in such
a manner that the converter would operate in DCM, when the duty ratio varied from approximately
0.039 to 0.786. The given duty-ratio range can be computed based on Kcrit = DD′2 and K = 2L/Ts/RL

(i.e., Kcrit = K), as instructed in detail in [5] (pp. 107–125) (Note: The method based on the application
of Kcrit can yield quite inaccurate values for the corresponding minimum and maximum duty ratios,
because it omits the effect of the circuit parasitic elements).
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Figure 1. The power stage of the peak current-mode (PCM)-controlled boost converter in open loop
with definitions of the component values and the operational conditions.

In principle, the accuracy of the DDR small-signal models in DCM is important for obtaining
accurate PCM small-signal models due to the method used to develop the latter models. The frequency
response of the control-to-output-voltage transfer function of the DDR-controlled boost converter
in DCM (cf. Figure 2) is extracted from the Simulink-based switching model by applying the
pseudorandom-binary-sequence method described in [15,16]. The construction of the Simulink-based
switching models is described in detail in [11] (pp. 279–291).
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Figure 2. The frequency responses of the control-to-output-voltage transfer function of the
direct-duty-ratio (DDR)-controlled boost converter at the input voltages of 20 V (red) and 50 V (blue).
The solid lines denote the predicted responses, and the squares (20 V) and diamonds (50 V) denote the
simulated responses.

Figure 2 shows explicitly that the predicted (solid lines: red at Vin = 20 V and blue at Vin = 50 V)
and simulated (squares marked at 20 V and diamonds marked at 50 V) frequency responses matched
each other perfectly. The predictions were based on the full-order models, which were computed
according to the method introduced in [12]. The used modulator gain (i.e., 1/VM) equaled 1/1 V
(cf. [5]).

2.1. Small-Signal State Space of DDR-Controlled Boost Converter in DCM

The average state space of the DDR-controlled boost converter can be derived from Figure 1 by
applying the methods described in detail in [14], which yields the following:

d〈iL〉
dt = d((R1−R2)〈iL〉+〈vC〉−rC〈io〉+VD)

L − 2〈iL〉
dTs
· R1〈iL〉+〈vC〉−rC〈io〉+VD−〈vin〉

〈vin〉−R2〈iL〉
d〈vC〉

dt = 〈iL〉
C −

d2Ts
2LC (〈vin〉 − R2〈iL〉)− 〈io〉C

〈iin〉 = 〈iL〉

〈vo〉 = 〈vC〉+ rCC d〈vC〉
dt

R1 = rL + rd + rC R2 = rL + rds

. (2)

The corresponding small-signal state space can be derived from Equation (2) by linearizing the
averaged state space at a certain operating point by applying a partial-derivative-based method, which
was introduced in detail in [11] (pp. 60–61). This procedure yields the following:

dîL
dt = − A1

L îL − A2
L v̂C + A3

L v̂in + A4
L îo + Ve

L d̂

dv̂C
dt = (1+B1R3)

C îL − B1
C v̂in − îo

C −
Ie
C d̂

îin = îL

v̂o = v̂C + rCC dv̂C
dt

(3)

where A1−4, B1, Ve, and Ie are given in Equation (4), as well as V1−3 and R1,2 in Equation (5),
respectively.
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A1 = D(R2 − R1) +
2L

DTs

(
V1+R1 IL

V3
+ R2 ILV1

V2
3

)
A2 = −D + 2LIL

DTs
1

V3
A3 = 2LIL

DTs
· V2

V2
3

A4 = ( 2ILL
DTs
· 1

V3
− D)rCB1 = D2Ts

2L

Ve = V2 +
2LILV1
D2TsV Ie = DTsV3

L

. (4)

V1 = Vo −Vin + VD + R1 IL − rC Io

V2 = Vo + VD + (R1 − R2)IL − rC IoV3 = Vin − R2 IL

R1 = rL + rd + rC R2 = rL + rds

. (5)

The operating points (i.e., IL and D) with the parasitic circuit elements can be computed by
the following:

IL =
Io+

D2Ts
2L Vin

1+ D2Ts
2L R2

f (D) = a4D4 + a2D2 + a0 = 0
(6)

where
a4 = − T2

s
2L (Vin IoR2(R1 − R2) + V4 IoR2

2)

a2 = −Ts(R2(R1 − R2)I2
o + Vin IoR1 −V2

in + 2V4 IoR2)

a0 = 2LIo(Vin −V4 − R1 Io)

V4 = Vo + VD − rC Io

(7)

and without the parasitic circuit elements by

IL = MIo

D =
√

KM(M− 1)
(8)

where M = Vo/Vin. The duty ratio (D) in Equation (6) (i.e., f (D) = 0) can be solved by MatlabTM

as follows:
D = min(abs(roots( f (D))). (9)

2.2. Averaged Comparator Equation for PCM-Controlled DCM Boost Converter

The development of the generalized form of the duty-ratio constraints, which is applicable to
the second-order converters, was given explicitly in [9]. The comparator equation applicable to the
conventional boost converter can be given by the following:

〈ico〉 −mcdTs = 〈iL〉+ m1dTs(1−
d
2
· m1 + m2

m2
) (10)

where ico denotes the control current (cf. Figure 1: Rsico), d denotes the duty ratio, m1 and m2 denote
the inductor-current up and down slopes as absolute values, and mc denotes the inductor-current
compensation slope (cf. Figure 1: RsMc), respectively.

The averaged comparator equation in Equation (10) can be given as a function of D in a steady
state with Mc = 0 [11] (p. 199) according to Equation (10) by the following:

D2 − 2M2

M1 + M2
· D +

2M2∆IL

M1(M1 + M2)Ts
= 0 (11)

where ∆IL = Ico − IL. Equation (11) can be developed further in terms of M and K (i.e.,
Req = RL), when the inductor-current slopes M1 and M2 are substituted with their physical values
(Note: the parasitic circuit elements are omitted) corresponding to the actual converter as follows:
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2D− KRL Ico

Vin
= 0 (12)

which is applicable for boost and buck-boost converters. The final form of Equation (12) can be
obtained for a boost converter by substituting D with

√
KM(M− 1) (cf. (8)) yielding

M2 −M− K
(

IcoRL

2Vin

)2
= 0. (13)

Equation (13) has two real roots, which means that there are no right-half-plane (RHP) poles in the
open-loop dynamics of a boost converter (i.e., the converter is stable in open loop). The corresponding
buck converter incorporates one RHP pole, and therefore, it is unstable in open loop, as discussed and
demonstrated in [9].

As discussed in [9], the duty-ratio gain (Fm) will become infinite when the converter enters into
the boundary between DCM and CCM operation, i.e., into the boundary-conduction-mode (BCM)
operation, which will take place in the case of the boost converter in Figure 1, at approximately
Vin ≈ 17.5 V with D ≈ 0.76. Figure 3 shows the behavior of the inductor current, when the converter
enters into the mode boundary at Vin ≈ 17.5 V and goes deeper into the harmonic operation mode.
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Figure 3. The behavior of (a) the inductor current and (b) the average duty ratio in the mode limit
(boundary conduction mode (BCM)) and in harmonic operation modes.

Figure 3a shows that the converter entered into the second harmonic mode when the operating
point passed through the BCM mode of operation (i.e., the black line), and it kept operating in DCM
and in the second harmonic mode as well (i.e., the blue, magenta, and green lines). Figure 3b shows
that the averaged duty ratio, which was computed based on Dav = 1−Vin/Vo, stays approximately at
the value of D ≈ 0.76, equaling the value in BCM. This kind of behavior equals the behavior of Dav in
CCM, as discussed in [4]. The origin of such a behavior is the infinite duty-ratio gain at the mode limit,
maintaining the average derivative of inductor current at zero.

The DCM-operated PCM-controlled buck converter can adopt both odd and even harmonic
operation modes, when the operating point passes through the mode limit, as demonstrated in [5].
The existence of the odd harmonic operation modes is the consequence of the open-loop instability at
M ≈ 2/3 at the resistive load. In Reference [8], the operation at odd and even harmonics was assumed
to be a characteristic feature of the DCM-operated PCM-controlled converters in general. The analyses
performed with the boost converter, in this paper, show clearly that the even harmonic operation is a
general characteristic of PCM control.
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2.3. Small-Signal Duty-Ratio Constraints for PCM-Controlled DCM Boost Converter

The coefficients of the duty-ratio constraints in Equation (1) can be solved by replacing m1 and m2

with their physical values, which are given for a boost converter in Equation (14), and by linearizing
the averaged comparator equation in Equation (10), including all the parasitic circuit elements.

m1 = 〈vin〉−R2〈iL〉
L

m2 = R1〈iL〉+〈vC〉−rC〈io〉+VD−〈vin〉
L

. (14)

The duty-ratio constraints for a boost converter can be given in general by

d̂ = Fm(îco − qL îL − qCv̂C − qinv̂in − qo îo) (15)

and the corresponding full-order coefficients by

Fm = 1

Ts

(
Mc+

V3(D′(Vo+VD)−Vin+(D′R1+DR2)IL−D′rC Io)
LV1

)
qL = 1− DTs

L R2 − D2Ts
2LV1

(
(R1 − R2)Vin − R2(V2 + (R1 − R2)IL))− R1V2V3

V1

)
qC = D2Ts

2L
V2

3
V2

1

qin = DTs
L (1− D

2 ·
V2

2
V2

1
)

qo = D2TsrC
2L

V2
3

V2
1

(16)

where V1−3 and R1,2 are defined in Equation (5).
The duty-ratio constraint coefficients in Equation (16) can also be given in a reduced-order

form as a function of M and K by omitting all the parasitic circuit elements, as in [8,11], as given in
Equation (17).

Fm = 1

Ts

(
Mc+

Vin(D′M−1)
L(M−1)

)
qL = 1

qC = M
Req(M−1)

qin = 1
Req

(
2
√

M(M−1)
K − M

M−1

)
qo = 0

. (17)

2.4. Full-Order PCM State-Space for PCM-Controlled DCM Boost Converter

The full-order PCM state space can be obtained by replacing the perturbed duty ratio in
Equation (3) with Equation (15) yielding

dîL
dt = − A1+FmqLVe

L îL − A2+FmqCVe
L v̂C + A3−FmqinVe

L v̂in + A4−FmqoVe
L îo + FmVe

L d̂

dv̂C
dt = (1+B1R2+FmqL Ie)

C îL + FmqC Ie
C v̂C

− B1−Fmqin Ie
C v̂in − 1−Fmqo Ie

C îo − Fm Ie
C d̂

îin = îL

v̂o = v̂C + rCC dv̂C
dt

(18)

where A1−4, B1, Ve, and Ie are given in Equations (4) and (5).
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The reduced-order state space can be obtained from Equation (18) by applying the reduced-order
duty-ratio constraints in Equation (17) and replacing A1−4, B1, Ve, and Ie with

A1 = Req

√
K(M−1)

M A2 =
√

KM
M−1

A3 = M2
√

KM
M−1 A4 = 0 B1 = M(M−1)

Req

Ve = 2Vo Ie = 2Io

√
M−1
KM

. (19)

2.5. Full-Order PCM Transfer Functions for PCM-Controlled DCM Boost Converter

The full-order transfer functions can be solved from the linearized state space in Equation (18)
with the complete duty-ratio constraints in Equation (16) and the complete DDR elements (i.e., A1−4,
B1, Ve, and Ie) in Equation (4) by formulating the state space into a matrix form and applying matrix
manipulation techniques (cf. [11] (pp. 57–64).

The determinant (∆) of the transfer functions can be given by

s2 + s
(

A1 + FmqLVe

L
− FmqC Ie

C

)
+

(A2 + FmqCVe)(1 + B1R2) + Fm Ie(A2qL − A1qC)

LC
(20)

and the transfer functions representing the input dynamics by

∆Gci-o = Fm(s Ve
L + A2 Ie

LC )

∆Toi-o = s A4−FmqoVe
L + A2+FmqCVe

LC − Fm Ie(A4qC+A2qo)
LC

∆Yin-o = s A3−FmqinVe
L + A2B1−Fm Ie(A2qin+A3qC)

LC + B1FmqCVe
LC

(21)

where Gci-o = îin/îco, Toi-o = îin/îo, and Yin-o = îin/v̂in and the transfer functions represent the output
dynamics as follows:

∆Gco-o
(1+srCC) =

Fm(−sLIe+(1+B1R2)Ve−A1 Ie)
LC

∆Gio-o
1+srCC =

sL(Fmqin Ie−B1)+A3(1+B1R2+FmqL Ie)−A1(B1−Fmqin Ie)+FmVe(B1(qL+qinR2)+qin)
LC

∆Zo-o
1+srCC = sL(1−Fmqo Ie)+A1(1−Fmqo Ie)−A4(1+B1R2+Fmqo Ie)+FmVe(qL+(1+B1R2)qo)

LC

(22)

where Gco-o = v̂o/îco, Gio-o = v̂o/v̂in, and Zo-o = v̂o/îo.

2.6. Reduced-Order PCM Transfer Functions for PCM-Controlled DCM Boost Converter

The denominator (∆) of the reduced-order transfer functions can be given by

s2 + s

(
ReqD

D′M− 1
(

M− 1
LM

− KM
R2

eqC
)

)
+

1
LC

(√
KM

M− 1
+

KM2

D′M− 1

)
. (23)

The transfer functions representing the input dynamics can be given by

∆Yin-o = s

(
M2
√

KM
M−1−2FmqinVo

L

)
+

M(M−1)
Req (

√
KM

M−1−2FmqCVo)+2Fm Io(qin+M2qC)

LC

∆Toi-o =

√
KM

M−1+2FmqCVo

LC

∆Gci-o = 2Fm Io
LC (sReqC + 1)

(24)
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and the transfer functions representing the output dynamics can be given by

∆Zo-o
1+srCC =

(sL+Req(
√

K(M−1)
M + K(M−1)M

D′M−1
))

LC

∆Gio-o
1+srCC = s

2Fmqin Io

√
M−1
KM −

M(M−1)
Req

C +

M2
√

KM
M−1−(M−1)

√
KM(M−1)+2Fm Io(qinReq

M−1
M +M2)

LC

∆Gco-o
1+srCC =

2FmVin(1−s· DTs
2 )

LC

. (25)

2.7. Load-Resistor-Affected Dynamics

The load resistor effect on the control-to-output-voltage transfer function (Gco-o) can be computed
by [11] (pp. 38–39)

GRL
co-o =

Gco-c

1 + Zo-o
RL

(26)

where Gco-o and Zo-o (i.e., output impedance) are the unterminated transfer functions of the converter
given in Equation (22) or in Equation (25). Here, we treat only the load effect on the denominator of the
transfer functions, which represents the dynamics of the system. The load-resistor-affected full-order
denominator is given in Equation (27), and the reduced-order denominator with Mc = 0 is given in
Equation (28), respectively.

s2 + s
(

1
RLC + A1+FmqLVe

L −
Fm Ie(qC+

qo
RL

)

C

)
+

(A2+FmqCVe)(1+B1R2))+
A1−A4(1+B1R2)

RL
LC

+
+FmVe

qL+qo(1+B1R2)
RL

+Fm Ie(A2qL−A1qC−
A1qo+A4qL

RL
)

LC

(27)

s2 + s

(
1

RLC
+

ReqD
D′M− 1

(
M− 1

LM
− KM

R2
eqC

)

)
+

1
LC

(
2M− 1

M

√
KM

M− 1
+

KM(2M− 1)
D′M− 1

)
. (28)

The damping in the DCM-operated PCM-controlled converters is very high [9], and therefore, the
system poles are well separated, where the low-frequency pole (ωp-LF) is located close to origin and
the high-frequency pole (ωp-HF) is located close to the switching frequency or beyond it. Therefore, the
system poles can be approximated by utilizing the properties of a second-order polynomial s2 + sa + b
as follows:

ωp-LF ≈
b
a

ωp-HF ≈ a. (29)

According to Equation (29), the poles of the unterminated system in Equation (23) can be given by

ωp-LF ≈
√

KM
M−1+

KM2
D′M−1

ReqD
D′M−1

( M−1
M C− KM

R2
eq

L)

≈
(D′M−1)M

√
KM

M−1+KM3

CReqD(M−1)

(30)

and

ωp-HF ≈
ReqD

D′M− 1
(

M− 1
LM

− KM
R2

eqC
) ≈

ReqD(M− 1)
L(D′M− 1)M

. (31)

In the case of the load-resistor-affected system in Equation (28), the poles can be given by

ωRL
p-LF ≈

(2M−1)(D′M−1)
√

KM
M−1+KM2(2M−1)

RLCD(M−1)

≈ 2M−1
RLC(M−1) ·

(D′M−1)
√

KM
M−1+KM2

D

(32)
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and
ωRL

p-HF ≈ 1
RLC +

ReqD
D′M−1 (

M−1
LM −

KM
R2

eqC
)

≈ ReqD(M−1)
LM(D′M−1)

. (33)

According to Equations (31) and (33), we can conclude that the load resistor does not affect
significantly the location of ωp-HF. Equation (32) indicates that the low-frequency pole given in [5]
(p. 480) (i.e., Equation (34)) resembles the pole given in Equation (32) but it does not equal it.

ωRL
p-LF ≈

2M− 1
RLC(M− 1)

. (34)

The denominator of the transfer function in [5] can be computed to be

s2 + s
(

2
RLC

+
RL

L
· M− 1

M2

)
+

1
LC
· 2M− 1

M2 (35)

from which the low and high-frequency poles can be approximated to be

ωp-LF ≈ 2M−1
2M2 L

RL
+RLC(M−1)

≈ 2M−1
RLC(M−1)

ωp-HF ≈ 2
RLC + RL

L ·
M−1
M2 ≈ RL

L ·
M−1
M2

. (36)

The low-frequency pole in Equation (34) can be obtained from Equation (36) by setting L = 0,
as instructed in [5].

Table 1 shows the computed values for ωp-LF and ωp-HF at the input voltages of 20 V and 50 V.
The values in parenthesis equal the load-resistor-affected values. Table 1 shows clearly that the system
poles were well separated. It shows also that the effect of the load resistor was quite small. In addition,
it shows that the low-frequency pole ωRL

p-LF in Equation (34) and Equation (36) predicted quite well the

location of the load-resistor-affected low-frequency pole as well. The high-frequency pole ωRL
p-HF in

Equation (36) predicted quite inaccurately the load-resistor-affected pole.

Table 1. The location of the system poles ωp-LF and ωp-HF, as well as the location of the right-half-plane
RHP zero (ωz-RHP) of Gco-o at Vo = 75 V and Io = 1.5 A.

Input Voltage ωp-LH/Hz ωp-HF/Hz ωz-RHP/Hz

20 V 14 (24) 1 M (864 k) 53 k
50 V 29 (40) 193 k (192 k) 195 k

20 V [5] (24) (648 k) -
50 V [5] (40) (295 k) -

Equation (25) indicates that Gco-o contains a right-half-plane (RHP) zero approximately at 2/DTs.
Table 1 (i.e., ωz-RHP) shows that the RHP zero is located at much higher frequencies than in the
corresponding CCM boost converter (i.e., ωDCM

z-RHP ≥ fs/2 vs. ωCCM
z-RHP ≥ fs/100; cf. [9] (p. 153). Thus,

the main contributions of the RHP zero on the control design are reflected via the high-frequency
phase behavior in DCM, which allows for the use of higher bandwidth controllers than in CCM.

2.8. Generalized Transfer Functions

The control engineering block diagrams, from which the generalized transfer functions in
Equation (37) (output dynamics) and in Equation (38) (input dynamics) are defined, are given explicitly
in [9]:



Energies 2019, 12, 4 11 of 16

GPCM
io-o = v̂o

v̂in
=

(1+
FmqB

L HsrB
A )GDDR

io-o −Fm(qB
in+

qB
L HsrC

A )GDDR
co-o

1+Lc+Lv

ZPCM
o-o = v̂o

îo
=

(1+
FmqB

L HsrB
A )ZDDR

o-o +
FmqB

L Hsr
A GDDR

co-o
1+Lc+Lv

GPCM
co-c = v̂o

îco
= FB

mGDDR
co-o

1+Lc+Lv

(37)

YPCM
in-o = îin

v̂in
= YDDR

in-o −
FB

mGDDR
ci-o

1+Lc+Lv
(qB

in +
qB

L HsrC
A + (qB

o +
qB

L Hsr
AZC

)GDDR
io-o )

TPCM
oi-o = îin

îo
= TDDR

oi-o +
FmGDDR

ci-o
1+Lc+Lv

((qB
o +

qB
L Hsr
AZC

)ZDDR
o-o −

qB
L Hsr
A )

GPCM
ci-o = îin

îco
=

FmGDDR
ci-o

1+Lc+Lv

(38)

where Lc and Lv denote the inductor-current and output-voltage feedback-loop gains as given in
Equation (39), GDDR

cL-o and GDDR
co-o denote the control-to-inductor-current and control-to-output-voltage

transfer functions of the corresponding DDR-controlled converter

Lc = FmqB
LHsrGDDR

cL-o

Lv = FmqB
o GDDR

co-c

(39)

and ZC denotes the impedance of the output capacitor, Hsr denotes the high-frequency extension for
correcting the phase behavior given in Equation (40), and A, B, and C are defined in Equation (41) for
a boost converter, respectively.

Hsr = 1 + s
2ζ

ωsr
+

s2

ω2
sr

. (40)

A = 1− D2Ts

2L
(rL + rds) B =

DTs

L
Vin C =

D2Ts

2L
. (41)

The duty-ratio constraints applicable for Equations (37) and (38) in the case of a boost converter
can be derived from Equation (16) by setting rC = 0 as

FB
m ≈ Fm

qB
L ≈ qL qB

in ≈ qin qB
o ≈ qC

(42)

and GDDR
cL-o and GDDR

co-o for computing GPCM
co-o of the boost converter in Equation (43) can be given by

Gco-c =
−sLIe+(1+B1R2)Ve−A1 Ie

LC(s2+s A1
L +

A2(1+B1R2)
LC )

(1 + srCC)

GcL-o = sVeC+A2 Ie

LC(s2+s A1
L +

A2(1+B1R2)
LC )

(43)

where A1,2, B1, Ve, and Ie are given in Equation (4), respectively.

3. Simulink-Based Model Validation

The validation was performed in such a manner that the simulated frequency responses were
extracted from the Simulink-base switching model corresponding exactly to the boost converter given
in Figure 1. The pseudo-random-binary-sequence-based method to extract the frequency responses is
described in [13,14]. The predicted frequency responses were computed based on the complete transfer
functions given in Equation (22), where the effect of the high-frequency extension Hsr in Equation (40)
is added with ζ = 0.5 and ωsr = 2π fs (i.e., fs = 100 kHz) (cf. [9]).

Figure 4 shows the predicted (solid lines) and simulated (diamond and square marks) output
impedance at the input voltages of 20 V and 50 V. The figure shows that there were no high-frequency
effects visible at the magnitude or phase, which were actually removed by the output capacitor, as also
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discussed in [5]. This means that the average-model-based transfer function given in Equation (22)
predicted exactly the dynamic behavior of the output impedance as such.
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of the output impedance at the input voltages of 20 V (red) and 50 V (blue).

Figure 5 shows the predicted (solid black lines) and simulated (red square marks at 20 V and
blue diamond marks at 50 V) frequency responses of the control-to-output-voltage transfer functions.
The figure shows that the predicted and simulated responses with the application of Hsr in Equation (38)
had very good matches with each other.
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Figure 5. The predicted (solid black lines) and simulated (diamond and square marks) frequency
responses of the control-to-output-voltage transfer functions at the input voltages of 20 V (red) and
50 V (blue).

Figure 6 shows the comparison of the predicted responses of the control-to-output-voltage transfer
functions, where the solid black lines denote the responses computed by using the full-order transfer
functions, and the dashed lines denote the responses by using the reduced-order transfer functions,
respectively. The figure shows that the responses coincided. This implies that the reduced-order
models can be used for different design purposes, but it is, however, recommended to verify the
situation with the actual design in a similar manner as shown in Figure 6.
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Figure 6. The black solid lines represent the frequency responses of the control-to-output transfer
function predicted by the full-order model, and the dashed lines represent the corresponding frequency
responses predicted by the reduced-order model at 20 V (red) and 50 V (blue).

Figure 7 shows the unterminated (dashed lines) and load-resistor-affected (solid lines) frequency
responses of the control-to-output-voltage transfer function at the input voltages of 20 V (red)
and 50 V (blue), respectively. The figure confirms that the load-resistor effects were concentrated
at the low frequencies, as discussed in Section 2.6. It is obvious that the load-resistor-affected
control-to-output-voltage responses can be utilized in the control design, when the feedback-loop
crossover frequency is designed to be at high enough frequencies (i.e., >1 kHz in this case).
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responses, and the solid lines denote the predicted load-resistor-affected frequency responses at the
input voltages of 20 V (red) and 50 V (blue).

The output-voltage feedback loop of the boost converter was designed at the input voltage of
20 V, where the RHP zero is at its minimum frequency (cf. Table 1). The phase behavior of the
control-to-output-voltage transfer function is such that a proportional-integral (PI) controller can be
used (cf. Figure 7) as given in

Gcc = Kcc
1 + s/ωz

s(1 + s/ωp)
. (44)

The controller zero (ωz) was placed at 1 kHz, the controller pole (ωp) was placed at 5 kHz, and
the controller gain (Kcc) was set to 88,614 to obtain the feedback-loop crossover frequency of 10 kHz
and the phase margin of 60 degrees, as shown in Figure 8. If looking carefully the behavior of the
high-frequency magnitude of the feedback-loop gain (solid red line) at the input voltage of 20 V, then
it would be clear that the sufficient gain margin (i.e., 6 dB at least) would determine the obtainable
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crossover frequency. The dashed lines denote the PI-controller design, where the high-frequency pole
was omitted, as in [17]. According to the corresponding high-frequency-magnitude behavior (dashed
red line), it would be obvious that the design would be easily sensitive to the high-frequency ripple
effects in the duty-ratio generation process.
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used (solid lines) and when the PI controller without the high-frequency pole is used (dashed lines).

Figure 9 shows the output-voltage response to a load current change of 1.5 A at the input voltages
of 20 V (red) and 50 V (blue). The responses were quite close to each other, because the feedback-loop
gains do not change much when the input voltage varies. The same responses in the case of the
CCM-operated PCM-controlled boost converter can be seen in [11] (p. 324, Figure 6.53), where the
voltage dipped at 20 V and 50 V to 1.37 V and 0.56 V, respectively, for a steep change in the output
current of 1.3 A. This is a very good indication of why the DCM operation is preferred in converters
having a RHP zero in their control dynamics.Energies 2018, 11, x FOR PEER REVIEW  16 
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4. Conclusions 

The full-order dynamic modeling and comprehensive analysis of a DCM-operated 
PCM-controlled boost converter are presented for first time in the literature in this paper. The 
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Suntio [8] stated explicitly that DCM-operated PCM-controlled converters will operate in 
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paper show explicitly that the even harmonic-mode operation is a characteristic feature of 
PCM-controlled converters in general because of the infinite duty-ratio gain at the mode limit. The 
even and odd harmonic-mode operations of the buck converter are the consequence of the 
open-loop RHP pole. 

It was also shown that the output-voltage transient response of the DCM-operated PCM- 
controlled boost converter is outstanding compared with the corresponding CCM-operated 
PCM-controlled boost converter. 
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4. Conclusions

The full-order dynamic modeling and comprehensive analysis of a DCM-operated PCM-controlled
boost converter are presented for first time in the literature in this paper. The investigations show that
the PCM-modeling technique introduced in [8] and validated in the case of a buck converter in [9]
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also produces accurate models for a boost converter, when the load-resistor effect is removed [10]
and the high-frequency extension introduced in [9] is added. In addition, this paper shows that the
reduced-order models also quite accurately predicted the dynamic behavior in this particular case.
This phenomenon should not be generalized until the validity of the reduced-order models in each
specific case is verified by means of the full-order models.

Suntio [8] stated explicitly that DCM-operated PCM-controlled converters will operate in
harmonic operation modes at both even and odd harmonic frequencies. The investigations in this paper
show explicitly that the even harmonic-mode operation is a characteristic feature of PCM-controlled
converters in general because of the infinite duty-ratio gain at the mode limit. The even and odd
harmonic-mode operations of the buck converter are the consequence of the open-loop RHP pole.

It was also shown that the output-voltage transient response of the DCM-operated PCM-
controlled boost converter is outstanding compared with the corresponding CCM-operated
PCM-controlled boost converter.
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