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Abstract: For a long-distance pipeline, the seismic load is a four-dimensional space-time excitation
that simultaneously changes with time and space. In this work, a novel random space-time seismic
model is established for a long-distance pipeline, which uses the Clough-Penzien model based on a
random process and model of a random field. The response analysis of a long-distance pipeline for
multipoint excitation and a buried pressure pipeline are established, while the stress analysis of the
buried pressure pipeline is carried out in combination with von Mises theory. In addition, we consider
the impact of the site type. The application of the proposed methodology is proved through numerical
simulation. A fuzzy damage model and fuzzy safety criteria are established to assess the degree of
the structure. The results indicate that a reasonable assessment and design method should consider
the coupling multi-influence domain. In particular, evaluation of the structural damage should be
done to establish fuzzy damage models and fuzzy safety criteria. The effective measurement of the
uncertainty of such parameters forms an important basis for subsequent structural reliability analysis
and design.
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1. Introduction

Oil/gas use has increased with the increasing development of the world economy. For the
transport infrastructure, pipelines are regarded as an important lifeline engineering component [1–3].
Over the past decade, the world has entered an era of frequent earthquakes. Therefore, the evaluation of
pipelines should be treated as essential research. The ground motion of earthquakes is a nonstationary
random process [4]. For a long-distance pipeline, structures with large spatial spans are not only
affected by the time-varying characteristics of seismic loads but are also sensitive to the spatial
correlation of seismic loads. With the development of the theory of the random process of ground
motion, the research field has included objective analysis of the influencing factors. However, only
the European seismic code has considered the spatial impact of the load, while the other standards
have addressed the uniform excitation of a seismic load [5]. Under the effects of spatial ground
motions, Novak and Hindy were the first to analyze the response analysis of structures statistically [6].
Until the array recording device was widely used, researchers studied the multipoint excitation
response problem of large-span structures from a statistical point of view. The data recorded by the
SMART-1 seismic array were used as a representative source to derive the spatial correlation of ground
motion [7]. The time variation can be used in the theory of random process. The random process
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is an infinite dimensional random variable, which is significantly represented by a huge amount of
computation in the analysis of ground motion. Although the classical representation Karhunen-Loeve
decomposition generally requires a large number of random variables, the quadratic orthogonal
expansion method uses approximately only 10 random variables to definite the random process of
ground motion [8–10]. In addition, He et al. proposed a space–time influence domain to quantify the
subsequence of earthquakes that were directly influenced by previous earthquakes [11]. To solve the
uncertainty in safety evaluation, Zadeh proposed fuzzy set theory [12]. Some researchers have applied
fuzzy logic to address the risk assessment for pipelines [13,14]. However, there is currently no fuzzy
damage evaluation system for pipelines subjected to earthquakes.

In response to the limitations of research of pipelines exposed to earthquakes, this paper presents
a methodology to couple the multi-influence domain of seismic factors. It puts forward an appropriate
methodology to analyze the response of long-distance pipelines exposed to four-dimensional
earthquakes. Based on the theory of random process and random fields, this paper establishes a
model to apply in the design of pipeline engineering. Specifically, the construction procedure of the
stochastic space-time seismic model is unified. In this way, numerical examples are investigated to
prove the necessity of considering the space-time characteristics of a long-distance pipeline. Hence,
the role of the impact of the local site owing to different site types is also presented. In addition, fuzzy
damage criteria are established based on uncertainty theory. Based on the established model and
assessment criteria, the safe evaluation system of a long-distance pipeline can be supplemented.

2. Ground Motion of the Random Field

The spatial variation of ground motion refers mainly to the coherence effect, traveling wave effect
and site effect. The coherence effect is the loss of spatial coherence due to reflection and refraction in the
propagation of seismic waves. Due to the different phases, frequencies in different structural locations
and the different formation media, the influence on the structural response is affected. The traveling
wave effect refers to the change of phase difference caused by a finite velocity of a seismic wave, which
is essential to the response change of the time when the seismic wave arrives at each position of the
structure with hysteresis. Local site effects refer to the effects of different soil properties on seismic
waves. When the duration of seismic waves, the spectral characteristics of ground motions and the
intensity of ground motions differ greatly, local site effects are particularly significant. Clearly, as for
the long-distance structure, the response of the pipeline influences the random space.

2.1. Definition of Random Fields

According to the theory of random process, (Ω, P,η) is the probability space, and T is a subset of
the real number set. If t ∈ T, then X(t, ω) is a random variable in the probability space (Ω, P,η). Thus,
the family of random variables {X(t, ω), t ∈ T} is a random process on the probability space (Ω, P,η).
Therefore, the random field can be defined such that the concept of a stochastic process is generalized
in the spatial fields. When x is the spatial position, H(x) is expressed as a random variable. Then, the
random field is a random variable in the field parameter set [15].

2.2. Model of Random Fields

The power spectrum matrix of the spatial ground motion model is [16]

[S(iωe)] =



S11(iωe) · · · S1n(iωe) · · ·
...
Sn1(iωe) · · · Snn(iωe) · · ·
...
Sm1(iωe) · · · Smn(iωe) · · ·

S1m(iωe)
...
Snm(iωe)
...
Smm(iωe)


(1)
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where [S(iωe)] is the power spectrum matrix; Sii(iωe) is the power spectral density of the ground
motion, which describes the frequency domain characteristics of ground motions at various
points in the seismic field and the comparison of the frequency characteristics; and ωe is the
earthquake frequency.

Smn(iωe) = |ρmn| exp (−iωe
dmn

v
)
√

Smm(iωe)Snn(iωe) (2)

where Smn(iωe) is seismic power spectral density of the two points m and n; |ρmn| is the partial
coherence effect, with |ρmn| ≤ 1; exp (−iωe

dmn
v ) is the traveling wave effect; dmn is the distance

between m and n; and v is the speed of the visual wave.

2.3. Pipeline Random Field Model Based on Statistical Data

The random field is the process of spatial variation of the ground motion. In recent years, with
the increase of observation arrays for recording strong earthquakes, researchers have proposed to use
statistical regression to obtain the coherence function model to express the random field of ground
motion [17,18].

Under the frequency domain, we can introduce a coherence function to definite the spatial
coherence degree of the two points A and B, which is defined as follows:

γAB(ωe) =

∣∣∣∣∣ SAB(ωe)√
SAA(ωe)SBB(ωe)

∣∣∣∣∣ exp[−iθAB(ωe)] (3)

where γAB(d, ω) is the coherence function; SAB(ωe) is the cross-power spectrum of A and B; SAA(ωe)

and SBB(ωe) are the self-power spectrum of two points A and B, respectively; and θAB(ωe) is the
coherence angle of the traveling wave effect for A and B.

The coherence function of the ground motion is obtained by the self-power spectrum
standardization of the cross-power spectrum between two points of the structure [19]. The majority
of the coherence functions are based on the earthquake statistics records obtained by the earthquake
station. Moreover, these data can be generally divided into empirical coherence models, theoretical
coherence models and semiempirical semitheoretical coherence models.

This paper proposes the semitheoretical semiempirical coherent model proposed by Luco and
Wong, which features universality and is the most widely used [20]:

γp(ωe, d) = exp
[
−α2ωe

2d2
]

(4)

where γp(ωe, d) is the semitheoretical semiempirical coherence function; α is the coherent attenuation
parameter, with (2 − 3) × 10−4 s in the current study; and d is the distance between any two points.

The damped natural vibration frequency of the long-distance pipeline in this paper has the
following form:

ωξ =

√
k
m

+
n2π2K

l2m
(1− ξi), (i = 0, 1, 2, 3 . . . n) (5)

where ωξ is the damped frequency of the pipeline; m is the weight of the pipeline per unit length; k is
the stiffness coefficient around the pipeline per unit length; K is the axial stiffness of the pipeline; l is
the length of the pipeline; and ξi is the damping ratio of the i-th vibration type.

3. Random Process of Ground Motion

3.1. Definition of a Nonstationary Earthquake Random Process

According to the statistical data, the random process is divided into a stationary random process
and a nonstationary random process. A one-dimensional random process can be regarded as a
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generalization of multiple random variables. Thus, when the dimension of a multivariate random
variable is a parameter, the time parameter of a one-dimensional random process is the result of a
continuous change. The statistical features of earthquake action change with time. In addition, strong
ground motion is a nonstationary process with transient time. For the nonstationary random process
of earthquake loads, researchers typically use a deterministic intensity function that varies over time
and a stationary random process to reflect the nonstationarity.

In the view of statistics, the autocorrelation function is defined as the Pearson’s correlation
between the values at different times of a random process. This parameter is a signal of the reflexive
cross-correlation at different time points or a function of the time difference between pairs of similarity
between two observations. Since the autocorrelation function of the stationary stochastic process
is equivalent to the auto spectral density about the information of the process, the spectral density
can be defined from the Fourier transform representation theorem of the autocorrelation function.
The spectral density represents the statistical information about the amplitude of the random process
in the frequency fields. The equation of spectral density proposed by Wiener and Khintchine according
to the Fourier transformation [21] is

Sx(ω) =
1

2π

∫ ∞

−∞
Rx(τ) exp (−iωτ)dτ (6)

Rx(τ) =
∫ ∞

−∞
Sx(ω) exp (iωτ)dω (7)

Assuming τ = 0,

Rx(0) = E
[

x2(t)
]
=
∫ ∞

−∞
Sx(ω)dω = σ2 (8)

where Sx(ω) is the self-power spectral density function; Rx(τ) is the autocorrelation function; i is
the virtual unit; τ is the time equation; ω is the frequency of vibration, with ω ∈ (−∞,+∞); x(t) is
the self-power spectral density function; t is time, with t ∈ (0,+∞); and σ2 is the mean square value
of x(t).

However, when the actual waveform x(t) is as the object, the relationship of Sx(ω) and Gx(ω) are
shown in Figure 1, and the self-power spectral density function Gx(ω) in the positive number domain
has the following expression:

Sx(ω) = 2Gx(ω) (9)
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model has an explicit physical meaning, it exaggerates the energy of low-frequency ground motion.
In addition, it does not satisfy the bounded conditions of ground motion.

Subsequently, many scholars have revised the Kanai-Tajimi model. The most widely used is
the Clough-Penzien model of the random ground motion power spectrum, which is proposed as
follows [22]:

Scp(ω) =
ω4

gω4 + 4ξ2
gω2

gω6[
(ω2 −ω2

f )
2
+ 4ξ2

f ω2
f ω2

][
(ω2 + ω2

g)
2 + 4ξ2

gω2
gω2

]S0 (10)

where S0 is the spectral density of Gaussian white noise (filter input) with mean 0; ωg is the
characteristic frequency of the site; ξg is the damping ratio of the characteristic site; ωf is the site
characteristic frequency of low-frequency filtering; and ξf is the characteristic damping ratio of
low-frequency filtering.

3.2.2. Orthogonal Expansion of Random Processes of Ground Motion

In practical engineering, there are mostly random dynamic loads. Therefore, many random
phenomena need to be described by random processes. The rational use of the power spectral density
function to analyze the random process of ground motions is mathematically within the scope of
numerical characteristics. Thus, it is challenging to intuitively reflect the certainty of the power
spectral density function and the random process sample. In the essential point of view, the random
process is a method of efficient data compression and extraction of the essential features of the random
process. For continuous stochastic functions, the Karhunen-Loeve (K-L) decomposition provides
a class of integral spectrum operators. Based on the standard orthogonal basis of random process
expansion method, the basic guideline is to describe the random process as a linear combination of
deterministic functions modulated by a small number of uncorrelated random coefficients [4]. The K-L
decomposition generally requires a large number of random variables to describe the random process,
while the orthogonal expansion of the Hartley orthogonal basis for a random process use only a small
number of independent random variables, which reflects the complex random process probabilistic
characteristics of ground motion.

The K-L decomposition of random processes describes the random process as a linear combination
of deterministic functions described by mutually independent random coefficients. This approach
provides a study of random processes from the independent set of random variables [23]. The main
purpose of the K-L decomposition is to characterize the main energy coherent structure of the random
process with only a small amount of expansion terms.

The K-L decomposition is defined in the probability space (x, y, z) and the bounded interval’s
real-valued random process u(θ, x). For any x ∈ D, the mean function is u(x), and the finite variance
E[u(θ, x)− u(x)]2 is bounded. Thus, the random process u(θ, x) can be expressed as

u(θ, x) = u(x) +
∞

∑
i=1

√
λiξi(θ) fi(x) (11)

where u(θ, x) is a stochastic process; u(x) is the mean function; λi is the eigenvalue of the covariance
function C(x1, x2) for the random process u(θ, x); fi(x) is the characteristic function of the covariance
function C(x1, x2) for the random process u(θ, x); and x1 and x2 are variables.

According to Mercer’s theorem, the covariance function of a random process can be decomposed
into the following:

C(x1, x2) =
∞

∑
i=1

λi fi(x1) fi(x2) (12)

where C(x1, x2) is the covariance function and fi(x1) and fi(x2) are characteristic functions of
variable xi.
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λi and fi(x) can be obtained by the integral equation of Fredholm:∫
D

C(x1, x2) fi(x1)dx1 = λi fi(x2) (13)

3.3. Orthogonal Expansion of the Clough-Penzien Model Based on an Orthonormal Basis

With the study of probabilistic features, the random expansion based on the standard orthogonal
basis is intended to reflect the random process with a small number of random variables. The form of
the C-P model is equivalent to K-L decomposition.

This paper uses the spectral density function of the C-P model for ground motion, whose values
of parameters are shown in Tables 1 and 2, and the corresponding autocorrelation function is

Rx(τ) = S0π
4

∑
i=1

Ai(τ) (14)

where Ai(τ) is the i-th orthogonal expansion term, with i = 1, 2, 3, 4.
Thus, the expression Ai(τ) can be expressed as

A1(τ) =
ω4

g + 4ξ2
gω2

gω2
1

(ω1 −ω2)(ω1 −ω3)(ω1 −ω4)
× exp (i|τ|ω1)

(ω2
1 −ω2

f )
2
+ 4ξ2

f ω2
f ω2

1

(15)

A2(τ) =
ω4

g + 4ξ2
gω2

gω2
2

(ω2 −ω1)(ω2 −ω3)(ω2 −ω4)
× exp (i|τ|ω2)

(ω2
2 −ω2

f )
2
+ 4ξ2

f ω2
f ω2

2

(16)

A3(τ) =
ω4

g + 4ξ2
gω2

gω2
5

(ω5 −ω6)(ω5 −ω7)(ω5 −ω8)
× exp (i|τ|ω5)

(ω2
5 −ω2

g)
2
+ 4ξ2

gω2
gω2

5

(17)

A4(τ) =
ω4

g + 4ξ2
gω2

gω2
6

(ω6 −ω5)(ω6 −ω7)(ω6 −ω8)
× exp (i|τ|ω6)

(ω2
6 −ω2

g)
2
+ 4ξ2

gω2
gω2

6

(18)

where ωi is the i-th order of vibration frequency.
The orthogonal expansion of the random process of ground motion in the Clough-Penzien model

is as follows:
..
X(t) =

√
2S0

n

∑
i=1

√
λiςiFi(t) (19)

where
..
X(t) is the acceleration of ground motion; λi is the eigenvalues; ςi is the unrelated standard

Gaussian random variables {ςi|i = 1, 2, · · · , n}; and Fi(t) is a characteristic function of the covariance
of the C-P model.

Moreover, Fi(t) can be expressed as

Fi(t) = −
N

∑
n=1

(
2nπ
Ts

)
2
ηn+1 ϕi,n+1 ψn(t) (20)

where Ts is the duration time of the ground motion; N is the number of expansion terms, as shown
in Table 3; n is the number of truncation terms, as shown in Table 3; ηn+1 is the energy efficiency
coefficient; ϕi,n+1 is the n + 1th row element of the standard feature vector of the correlation matrix of
the ground motion; and ψn(t) is a normalized Hartley orthogonal basis function.
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Table 1. Intensity factor of the C-P model spectrum.

Site Category Spectral Intensity Factor S0 Peak Factor f ωe Maximum Acceleration amax

Hard soil site 54.14 3.0 78.84 196 (0.2 g)
Medium soil site 81.15 3.1 49.26 196 (0.2 g)

Weak soil site 145.98 3.2 25.70 196 (0.2 g)

Table 2. Values of C-P model parameters [24,25].

Site Category ωg ωf ξg ξf

Hard soil site 8π 0.8π 0.60 0.60
Medium soil site 5π 0.5π 0.60 0.60

Weak soil site 2.4π 0.24π 0.85 0.85

Table 3. Values of the parameters of ground motion expansion.

Site Category Expand Items N Truncated Items n

Hard soil site 500 10
Medium soil site 500 10

Weak soil site 500 10

4. Random Space-time Earthquake Load Considering Site Conditions

After the determination of the coherence function and the power spectral density function, the
earthquake load model with space-time effects can be generated. Therefore, this paper establishes
the spectral density function of the earthquake load with space-time characteristics considering the
site condition:

S(t, d, ω) = κg(t)γp(ωe, d)Scp(ω) (21)

where S(t, d, ω) is the seismic load spectral density function with spatiotemporal characteristics; g(t)
is the nonstationary envelope function; and κ is the magnification factor at the local site, whose values
are shown in Table 4 [26].

Table 4. Magnification factor of the local site.

Structure Type
Combined Site Type

I-II II-III III-IV

Single dimension and single span 1.20 1.15 1.22
Multidimension and multispan 1.32 1.27 1.34

In practical earthquakes, the loads exhibit the random characteristics of nonstationarity. Therefore,
the nonstationary model of the uniform modulation process can be expressed as [27]

y(t) = g(t)x(t) (22)

where x(t) is the stationary random process of ground motion.
The three-stage nonstationary envelope function is often used in engineering as the following

expression [28]:

g(t) =


(t/t1)

2, 0 ≤ t < t1

1, t1 ≤ t < t2

e−c(t−t2), t2 ≤ t
(23)

where t1 is the rise time of the peak; t2 is the fall time of the peak, and c is a constant.
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Therefore, it can be proposed the equation that the acceleration of any point z considering the
local site effect is as follows:

az(t) = κg(t)γp(ωe, d)
√

2S0

n

∑
i=1

√
λiςiFi(t) (24)

where az(t) is the value of acceleration considering the site effects.

5. Response Analysis of Long-Distance Pipelines under a Random Space-Time Earthquake

5.1. Computational Assumptions

The dynamic response of the buried pipeline is based on the following considerations [29]:

1. The quality of the pipeline is concentrated on the node;
2. We ignore the influence of the rotational component of the ground motion;
3. The absolute coordinate system is relative static to the geocentric;
4. The damping force is proportional to the relative velocity.

5.2. Equation of Motion

The dynamic equation of the structure can be generally expressed as

[M]
{ ..

U
}
+ [C]

{ .
U
}
+ [K]{U} = −[M]

{ ..
Ug

}
(25)

where [M] is the mass matrix; [C] is the damping matrix; [K] is the stiffness matrix; {U} is the
displacement vector of the structure;

{ .
U
}

is the velocity vector of the structure;
{ ..

U
}

is the acceleration

vector of the structure; and
{ ..

Ug

}
is the acceleration vector of the ground motion.

When considering the multipoint excitation of actual pipeline engineering, the motion equation
of the structure under multipoint excitation can be estimated by Equation (25) as follows:

[
[Mss]

0
0
[Mmm]

] { ..
Uss

}{ ..
Umm

} +

[
[Css]

[Cms]

[Csm]

[Cmm]

]
{ .

Uss

}{ .
Umm

} +

[
[Kss]

[Kms]

[Kms]

[Kmm]

]{
{Uss}
{Umm}

}
=

{
0
{Rbb}

}
(26)

where [Mss], [Css], and [Kss] are the mass matrix, damping matrix, and stiffness matrix of the
unsupported nodes of the structure, respectively; [Mmm], [Cmm], [Kmm] are the mass matrix, damping
matrix, and stiffness matrix for the support nodes of the structure, respectively; {Rbb} is the vector
under the earthquake force; {Uss},

{ .
Uss

}
,
{ ..

Uss

}
are the displacement vector, velocity vector, and

acceleration vector for an unsupported node of the structure, respectively; {Umm},
{ .

Umm

}
,
{ ..

Umm

}
are the displacement vector, velocity vector, and acceleration vector for the support nodes of the
structure, respectively; and [Cms], [Csm] and [Ksm], [Kms] are the coupled damping matrices and
stiffness matrices, respectively.

Further simplification of Equation (26) can be quantified through the dynamic balance formula
under multipoint earthquake excitation:

[Mss]
{ ..

Uss

}
+ [Css]

{ .
Uss

}
+ [Kss]{Uss} = −[Ksm]{Umm} (27)
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5.3. Response Analysis of a Buried Pressure Pipeline

Cylindrical shell elasticity theory under the case of internal pressure can be used to solve the
stress state of thin-walled pipelines. When operating underground pipelines with internal pressure,
the stress can be obtained by establishing the following equation [30]:

d4w
dx4 +

48
D2ε2 w =

12(1− ν2)

Eε3 − p (28)

where ε is the current wall thickness at any position of the pipeline; D is the diameter; E is the elastic
modulus; v is Poisson’s ratio; P is the internal pressure; and w is the radial displacement at any point
on the pipeline, which is a function of the axial coordinate x.

Under the condition of pressure transmission, the pipeline has axial stress σX, circumferential
stress σΦ and radial stress σr. When the pipeline is a thin-walled structure, the value of the radial stress
σr is 0. Moreover, when the value of x is 0, the stress value is the largest. The circumferential stress σΦ

can be expressed as follows [31]:

σΦ =
PD
2ε

(29)

The buried long-distance pipeline cannot be freely elongated due to the resistance of the soil,
which is due to Poisson stress. As shown in Figure 2, the axial stress σX can be described as

σX =
νPD

2ε
(30)
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where ε  is the current wall thickness at any position of the pipeline; D  is the diameter; E is the 
elastic modulus; v is Poisson's ratio; P is the internal pressure; and w is the radial displacement at any 
point on the pipeline, which is a function of the axial coordinate x. 
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Therefore, the fourth strength theory (von Mises yield failure criterion) is considered to be the
main factor causing the flow failure of the pipeline material, which is the maximum shape change
specific energy. The calculation can be expressed as

σs =
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2

2
(31)

where σs is the stress value corresponding to the strength condition established by the fourth strength
theory and σ1, σ2, and σ3 are the principal stresses in different directions.

Combined with the previous analysis, the response of the buried pressure pipeline under
earthquake action can be evaluated as follows:

σs =
(σx + σe − σΦ)

2 + (σx + σe)
2 + σΦ

2

2
(32)
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6. Numerical Simulation and Analysis

6.1. Structural Model and Earthquake Model

The parameters of the pipeline are shown in Table 5. The damage state delimits the near-field
earthquake, and the site type is medium soil. While the duration of an earthquake is 5 s, the time is
compressed by 2/5. Thus, the time is 2 s after compression.

Table 5. Basic parameters of pipeline X60.

Material Diameter of
Pipeline/mm

Elastic
Modulus/GPa Poisson Ratio Wall

Thickness/mm
Yield

Ttress/MPa

X60 457 207 0.3 28.7 423

The strength envelope function is

g(t) =


(t/2)2, 0 ≤ t < 0.8
1, 0.8 ≤ t < 1.2
e−0.3(t−3), 1.2 ≤ t ≤ 2

(33)

From Equation (33) and reference [32], it can be obtained that the random load of space-time
changes is as follows:

a(t) =


e−9.8×10−6d2

t2, 0 ≤ t < 0.8
4e−9.8×10−6d2

, 0.8 ≤ t < 1.2
4e−9.8×10−6d2−0.3(t−3), 1.2 ≤ t ≤ 2

(34)

Similarly, when the earthquake excitation is considered as a uniform input, the spectral density
function of the earthquake load under uniform excitation can be obtained according to Equation (16):

S(t, ω) = κg(t)S(ω) (35)

According to Equations (23), (24) and (35), the loads under uniform excitation have the
following expression:

a(t) =


t2, 0 ≤ t < 0.8
4, 0.8 ≤ t < 1.2
4e−0.3(t−3), 1.2 ≤ t ≤ 2

(36)

6.2. Finite Element Model

In the following sections, a numerical example is used by finite software such as Abaqus for
analysis. A three-dimensional finite element model of pipeline-soil interaction is established using
nonlinear surface-to-surface contact elements. The outer wall of the pipeline with a large stiffness is
selected as the main surface, while the soil with a small rigidity is selected as the surface. The normal
contact behavior is a “penalty” contact whose coefficient is 0.5. The pipeline is modeled by a solid
element with a depth of 3 m and a length of 200 m. Based on the Drucker-Prager (D-P) model, the
distal end of the pipeline constrains only the axial displacement in the model. Furthermore, the
symmetrical surface and the top surface are free of constraints, and all other surfaces are symmetrically
constrained. An 8-node linear hexahedral reduction integration unit (C3D8R) was used. There are
still some constraints left; the basic parameters of the material are shown in Table 6. In addition, the
meshing of the model is shown in Figure 3.
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Table 6. Basic parameters of the material.

Material
Category

Density/
(kg·m−3)

Elastic
Modulus/Pa

Poisson
Ratio

Expansion
Angle/◦

Friction
Angle/◦

Flow Stress
Ratio

soil 1867.3 2 × 108 0.4 28.7 18.4 0
pipeline 7850 2.07 × 1011 0.3 - - -
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6.3. Comparison and Analysis of Results

This paper establishes three different kinds of working conditions to discuss the research, namely,
continuous nonuniform excitation, noncontinuous nonuniform excitation and uniform excitation.
The uniform excitation takes the long-distance transmission pipeline as a “point” structure without
considering the spatial characteristics. The nonuniform excitation simulation considers the space-time
characteristics of seismic loads. To identify the effect of amplifying space, this paper establishes a
numerical model to address nonuniform noncontinuous excitation simulation related to the long-span
structure exposed to seismic loads. Under the supplement of spatial effect, the spatial impact of seismic
loads on the response of large-span structures becomes more apparent.

Through the finite element simulation of three kinds of working conditions, the stress at the
maximum, middle, and end of the pipeline stress can be compared, as shown in Figures 4–6, respectively.

As mentioned above, when analyzing the maximum stress value and middle stress value of the
pipeline, the nonuniform excitation stress value is larger than the uniform excitation stress value, which
indicates that it is necessary to take into account the influence of spatial variation on the earthquake
response of long-distance pipeline. The stress value of nonuniform noncontinuous configuration is
larger than the nonuniform stimulus, which further reflects the spatial effect. However, at the end of
the pipeline, the stress values for the three conditions are not substantially different. These results
show that if the pipeline is a “point” structure, there is no spatial influence of the loads.
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7. Fuzzy Damage Analysis of the Pipeline

7.1. Fuzzy Damage Model

The structure has three states to assess the safety: the failure state, the limit state and the safety
state. The structural transition from safety to failure occurs in a sudden manner. However, if the
stress value exceeds the specific stress value, it does not mean that the structure is completely reliable.
When the value of function is less than specific stress value, the structure is not completely destroyed.
The degree of structural damage is an adaptive process that involves a vague range between reliability
and failure, as shown in Figure 7. Thus, this paper proposes a fuzzy reliability evaluation model that is
suitable for the pipeline integrity based on the theory of fuzzy mathematics.
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When it is defined that the structure in a definite state as a fuzzy event
∼
B, the fuzzy event

∼
B is

represented by the membership function of state variable
∼
Z to

∼
B:

∼
uB(z) =


1
F(z), F(z) ∈ (0, 1)
0

(37)

The practical seismic damage has no clear classification, so it is a fuzzy concept, and the damage
degree of each component of the pipeline is different. In addition, the results of the damage assessment
of pipelines by different methods are not the same. Therefore, based on the three states of failure
criteria for the pipeline [33,34], the division of the degree of damage is shown in Table 7. According to
fuzzy mathematics, this paper establishes a fuzzy damage model of pipeline to assess the seismic risk.

Table 7. Division of the degree of damage to pipelines.

Earthquake Damage Level Description Quantitative Indicators

Essentially intact
The pipe may be slightly deformed, but it is not

damaged, there is no leakage, and it can continue to
operate without repair.

σ < 0.8σs

Medium damage
Large deformation or buckling of the pipeline, slight

damage, leakage, affecting the gas supply but allowing
resumption of operation after emergency repair.

0.8σs < σ < 0.8σb

Severe damage The pipe is broken, and the interface is pulled off,
causing secondary disasters and requiring replacement. σb < σ

The fragility domains of the pipeline are defined as follows:
U = [basic intact, minor damage, medium damage; severe damage; destruction]
Hence, this parameter can be expressed as

U = [A1, A2, A3, A4, A5] (38)

As with fuzzy mathematical theory, the fuzzy subset can be described as Ai(i = 1, 2, 3, 4, 5) ∈ [0, 1].
As shown in Figure 8, we can establish membership functions to express the distribution of Ai
as follows:

µ∼
B1(z) =

{
1, 0 ≤ z ≤ 0.4(3σs − σb)

= 2.5
σs−σb

z + 2σs
σb−σs

, 0.4(3σs − σb) ≤ z ≤ 0.8σs
(39)

µ∼
B2(z) =

{
−2.5

σs+σb
z + 3σs+σb

σs+σb
, 0.4(3σs − σb) ≤ z ≤ 0.8σs

2.5
σs−σb

z + 3σs+σb
σb−σs

, 0.8σs ≤ z ≤ 0.4(σs + σb)
(40)

µ∼
B3(z) =

{
2.5

σb−σs
z + 2σs

σs−σb
, 0.8σs ≤ z ≤ 0.4(σs + σb)

2.5
σs−σb

z + 2σb
σb−σs

, 0.4(σs + σb) ≤ z ≤ 0.8σb
(41)

µ∼
B4(z) =

{
2.5

σb−σs
z + σs+σb

σs−σb
, 0.4(σs + σb) ≤ z ≤ 0.8σb

2.5
σs−σb

z + σs−3σb
σs−σb

, 0.8σb ≤ z ≤ 0.4(3σb − σs)
(42)

µ∼
B5(Z) =

{
2.5

σb−σs
z + 2σb

σs−σb
, 0.8σb ≤ z ≤ 0.4(3σb − σs)

1, 0.4(3σb − σs) ≤ z
(43)

where δ(A, B) is the value of Euclidean closeness; ai is the corresponding element of the vulnerability
fuzzy subset; and bi is the corresponding elements of the standard vulnerability fuzzy subset.



Energies 2019, 12, 62 14 of 18

Energies 2018, 11, x 14 of 19 

 

( )

( )

σ σ
σ σ σ

σ σ σ σ
σ σ

σ σ σ
σ σ σ σ

μ
=

 +− + − ≤ ≤ + +


+ + ≤ ≤ + − −



s b
s b s

s b s b

s b
s s b

s b b s

2( )

32.5
,0.4 3 0.8

32.5
,0.8 0.4

B z

z z

z z

 (40) 

( )

( )

σ
σ σ σ

σ σ σ σ
σ

σ σ σ
σ σ σ σ

μ
=


+ ≤ ≤ + − −


 + + ≤ ≤ − −



s
s s b

b s s b

b
s b b

s b b s

3( )

22.5
,0.8 0.4

22.5
,0.4 0.8

B z

z z

z z

 (41) 

( )

( )

σ σ
σ σ σ

σ σ σ σ
σ σ

σ σ σ
σ σ σ σ

μ
=

 +
+ + ≤ ≤ − −


− + ≤ ≤ − − −



s b
s b b

b s s b

s b
b b s

s b s b

4( )

2.5
,0.4 0.8

32.5
,0.8 0.4 3

B z

z z

z z

 (42) 

( )

( )
( )

σ
σ σ σ

σ σ σ σ
σ σ

μ
=


+ ≤ ≤ − − −

 − ≤



b
b b s

b s s b

b s

5

22.5
,0.8 0.4 3

1,0.4 3
ZB

z z

z

 (43) 

 

Figure 8. Function of different fragility levels. 

where ( ),A Bδ  is the value of Euclidean closeness; ia  is the corresponding element of the 
vulnerability fuzzy subset; and ib  is the corresponding elements of the standard vulnerability fuzzy 
subset.  

Table 7. Division of the degree of damage to pipelines. 

Earthquake 
Damage Level Description 

Quantitative 
Indicators 

Essentially 
intact 

The pipe may be slightly deformed, but it is not 
damaged, there is no leakage, and it can continue to 

operate without repair. 
s0.8σ σ<  

Medium 
damage 

Large deformation or buckling of the pipeline, slight 
damage, leakage, affecting the gas supply but allowing 

resumption of operation after emergency repair. 
s b0.8 0.8σ σ σ< <  

Severe damage The pipe is broken, and the interface is pulled off, 
causing secondary disasters and requiring replacement. bσ σ<  

Figure 8. Function of different fragility levels.

From the fuzzy region of the earthquake damage level B
∼

, the paper establishes a fuzzy region of
structural response B

∼
with a higher level of seismic damage than B

∼
, as shown in Figure 9a. Therefore,

we can also obtain the fuzzy safe field of B
∼

based on the fuzzy mathematical theory, as shown in
Figure 9b, while their membership function can be expressed as

uBi
∼
(z) + uBi

∼
(z) = 1 (44)
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Clearly, when the structure’s response is in a fuzzy safety field, the structure does not break.
Considering that the seismic response is ambiguous, the structural response also has random
characteristics. The structural safety guidelines can be expressed as

χ =
{
−B
∼
⊃
∼

X(σ, t) ⊂
∼

B
∼

, ∀t ∈ T
}

(45)

where X(σ, t) is the structural reaction and T is the duration time of the earthquake.
Combined with Section 6, this paper proposes a fuzzy description to define the degree of structural

damage. Thus, using the fuzzy membership function model can evaluate the damage state of the
structure. Therefore, the fuzzy set of the structure can be defined as

B
∼
=

B(x1)
∼

U1
+

B(x2)
∼

U2
+

B(x3)
∼

U3
+

B(x4)
∼

U4
+

B(x5)
∼

U5
(46)
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7.2. Application of Pipeline Analysis

Safety evaluations generally refer to the stress-based failure principle and strain-based failure
principle. Those methods all cause results divided into two completely opposite states: “good” and
“failed”. Actually, the system is in an intact state or the failure state is ambiguous at any moment.
Therefore, a fuzzy damage criterion is proposed to evaluate the statue of the pipeline, which links the
value of stress and fuzzy value. Figure 10 shows an example of a process from three varying points (A,
B and C) along the pipeline. Under this situation, the process can realize fuzzification of values and
perform fuzzy evaluation. Since there are a large amount of data to show the change of damage for
pipeline, we can construct the system of the degree of damage.Energies 2018, 11, x 16 of 19 
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According to the results of Section 6, this paper analyzes the degree of fuzzy damage when the
pipeline is exposed to a random seismic load. The case is taken into the most representative value for
the stress value of the pipeline. When selecting the maximum stress value for time-varying analysis,
we obtain the following equation to define the damage level of the structural integrity:

a
∼
=

1
U1

+
0

U2
+

0
U3

+
0

U4
+

0
U5

(47)

b
∼
=

0
U1

+
0.098

U2
+

0.902
U3

+
0

U4
+

0
U5

(48)

c
∼
=

0
U1

+
0

U2
+

0
U3

+
0

U4
+

1
U5

(49)

Clearly, as shown in Figure 11, using the fuzzy seismic damage model established in this paper
not only evaluates the degree of structural damage very intuitively but also constructs a fuzzy safety
criterion for the structure. This approach also verifies the importance of random space-time loads in
seismic analysis. Using fuzzy damage levels, structural safety guidelines can describe the failure of a
structure that does not occur at a certain level or higher level based on structural responses.
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Based on the theory of random process and random field, this paper proposes the concept of a 
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assessment model for the pipeline is proposed to degree of damage based on fuzzy mathematics. A 
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conclusions: 

1. Using random processes and random fields, the coupling of a universal stochastic space-time 
earthquake load based on the power spectrum is investigated, and the seismic load of space-
time characteristics is summarized. 

2. For long-distance pipelines, under the action of earthquake loads, it is necessary to consider not 
only the time-varying characteristics with time but also the factors brought about by the spatial 
characteristics. Due to the influence of spatial factors on the long-distance pipeline, relative to 
non-uniform excitation, the result will be quite different. 

3. The response of a long-distance pipeline under nonuniform earthquake excitation is solved, and 
it is of great significance to establish the response design system for a long-distance pipeline 
under an earthquake. 

4. Establishing the fuzzy damage model of the pipeline and the fuzzy safety criterion can more 
reasonably describe the damage of the structure with a certain level or higher level. This 
approach has laid the foundation for the establishment of comprehensive assessment of pipeline 
safety in the future. 
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8. Conclusions

Based on the theory of random process and random field, this paper proposes the concept
of a random space-time seismic load through coupling multiple factors. After considering the
site conditions and the nonstationary nature of the load, a nonstationary spectral density function
with space-time characteristics suitable for a long-distance pipeline is established. In addition, a
reasonable assessment model for the pipeline is proposed to degree of damage based on fuzzy
mathematics. A combined analysis with numerical simulation and fuzzy damage criteria gives the
following conclusions:

1. Using random processes and random fields, the coupling of a universal stochastic space-time
earthquake load based on the power spectrum is investigated, and the seismic load of space-time
characteristics is summarized.

2. For long-distance pipelines, under the action of earthquake loads, it is necessary to consider not
only the time-varying characteristics with time but also the factors brought about by the spatial
characteristics. Due to the influence of spatial factors on the long-distance pipeline, relative to
non-uniform excitation, the result will be quite different.

3. The response of a long-distance pipeline under nonuniform earthquake excitation is solved, and
it is of great significance to establish the response design system for a long-distance pipeline
under an earthquake.

4. Establishing the fuzzy damage model of the pipeline and the fuzzy safety criterion can more
reasonably describe the damage of the structure with a certain level or higher level. This approach
has laid the foundation for the establishment of comprehensive assessment of pipeline safety in
the future.
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