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Abstract: Biodiesel production is a field of outstanding prospects due to the renewable nature of
its feedstock and little to no overall CO2 emissions to the environment. Data-based soft sensors are
used in realizing stable and efficient operation of biodiesel production. However, the conventional
data-based soft sensors cannot grasp the effect of process uncertainty on the process outcomes. In this
study, a framework of data-based soft sensors was developed using ensemble learning method,
i.e., boosting, for prediction of composition, quantity, and quality of product, i.e., fatty acid methyl
esters (FAME), in biodiesel production process from vegetable oil. The ensemble learning method was
integrated with the polynomial chaos expansion (PCE) method to quantify the effect of uncertainties
in process variables on the target outcomes. The proposed modeling framework is highly accurate in
prediction of the target outcomes and quantification of the effect of process uncertainty.

Keywords: biodiesel; machine learning; ensemble learning; boosting; uncertainty analysis; polynomial
chaos expansion

1. Introduction

Extensive use of fossil fuels is causing environmental issues, i.e., global warming and pollution,
and depletion of energy resources [1]. These challenges drive the quest for exploring alternative
energy resources that can help in the reduction of fossil fuels consumption and environmental impact.
Bioenergy is one of the viable alternatives that is shifting the paradigm from conventional fuels to
more sustainable resources. Biodiesel is one of the major bio-based fuels, and a drastic increase in
its production has been reported in the last two decades, as shown in Figure 1 [2,3]. Efficient design
and operation of biodiesel production process are investigated to minimize the consumption of raw
materials and utilities and also produce a high quality product. Data-based soft sensors are used to
realize stable operation of the biodiesel production. The data-based soft sensors are more efficient than
the model-based soft sensors in capturing the non-linearity of complex processes and prediction of
desired outcomes; an extensive review on data-based soft sensors can be found in [4]. Their applications
in the biodiesel production process include online prediction, optimization, and control.
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Figure 1. Worldwide production of biodiesel [3].

Studies on online prediction mostly take kinematic viscosity, density, and cetane number of
biodiesel as their target outcomes. For instance, Meng et al. (2013) developed an artificial neural
networks (ANN) model to predict the biodiesel kinematic viscosity [5]. Rocabruno-Valdés et al.
(2015) used an ANN model to predict density, dynamic viscosity, and cetane number of biodiesel [6].
Mostafaei et al. (2016) evaluated the efficiency of the response surface methodology (RSM) and
neuro-fuzzy inference system (ANFIS) in modeling the yield achieved in an ultrasonic reactor [7].
Miraboutalebi et al. (2016) used random forest and ANN to predict cetane number of biodiesel [8].
Raman et al. (2018) developed an ANN model for estimation of densities of vegetable oil based ethyl
esters biodiesel [9].

The concept of data-based soft sensing is also extended to parametric analysis, optimization,
and control of the biodiesel production process. Wali et al. (2013) investigated online intelligent
controllers for real-time temperature control in an advanced biodiesel microwave reacting system [10].
Fayyazi et al. (2014) determined optimum temperature, catalytic concentration, and reaction time in
biodiesel production processes using genetic algorithm [11]. Sikorski et al. (2016) applied polynomial
and high-dimensional model representation (HDMR) fitting to analyze the effect of process variables
on the heat duties of equipment in a biodiesel production process [12]. Cheng et al. (2016) proposed a
genetic algorithm-based evolutionary support vector machine (GA-ESVM) to get optimum mixture
properties for higher biodiesel yield [13].

The efficiency of the data-based soft sensing methods is deteriorated due to uncertainty in process
conditions. To realize a more robust sensing system, some uncertainty quantification mechanism
should be incorporated in the soft sensor framework [14]. Uncertainty analysis is used to quantify
the impact of uncertainty in model input on the model output [15]. It has been the focus of research
and several methods are reported in the literature [16]. Scenario analysis, multiple model simulation
methods, inverse modeling method, sensitivity analysis, and sampling-based method are commonly
used for uncertainty analysis. The scenario analysis quantifies the impact of uncertainty associated
with future developments on the model performance or relevance [17]. The multiple model simulation
evaluates several modeling structures to determine the overall impact of structural uncertainty on the
model performance [18,19]. The inverse modeling method assesses the effect of uncertainty in process
parameters on the model performance and helps in optimizing the parameters [20,21]. Sensitivity
analysis (SA) derives a hierarchy of model input in terms of their contribution to the model output
uncertainty [22]. The sample-based uncertainty analysis methods, i.e., Monte Carlo and polynomial
chaos expansion (PCE), quantify the collective impact of uncertainty in model input on its output [15].
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In this study, an integrated framework of data-based soft sensing and uncertainty analysis was
proposed. Data-based soft sensors were developed using ensemble learning method, i.e., boosting,
to predict composition, quantity, and quality of fatty acid methyl esters (FAME) in the outlet streams of
biodiesel production process; cetane number of the FAME was used as a quality parameter. The cetane
number relates to the ignition delay time of a fuel and is applied to alternative diesel fuels such as
biodiesel and its components [23]. An increase in cetane number reduces the ignition delay period
and stabilizes running of the engine. However, an excessive rise in cetane number causes too much
reduction in the ignition delay. As a result, the fuel does not have proper time to spread into the
combustion chamber and performance of the engine decreases. Prediction of composition helps in
maintaining desired level of mole fraction of components while prediction of cetane number assists
in realizing high quality of FAME. Prediction of quantity, i.e., flow rate, of FAME is important for
evaluating conversion efficiency of the process. Polynomial chaos expansion (PCE) method was
incorporated into the development of the soft sensor to quantify the effect of process uncertainties on
the target outcomes, i.e., composition, quantity, and quality of FAME. PCE is computationally less
expensive than other sampling method such as Monte Carlo. The incorporation of PCE transformed
the prediction of the ensemble model from deterministic to stochastic format where the effect of process
uncertainties is visualized in the form of predictive distributions.

Section 2 explains the process description for biodiesel production followed by modeling methods
described in Section 3. Section 4 outlines the proposed method. Section 5 shows the results and
discussion, while Section 6 concludes the work.

2. Process and Data Description

A process flow diagram of biodiesel production from vegetable oil is shown in Figure 2.

Figure 2. Process flowsheet of biodiesel production from vegetable oil.

It is a base catalyzed process that utilizes NaOH as a catalyst. The main steps in the process
involve transesterification reaction, biodiesel separation, glycerol separation, and recovery of methanol.
Vegetable oil feed along with recycled oil is heated to reaction temperature using heater (HX1) and
then fed to the reactor (Reactor 1). In addition, a mixture of NaOH and methanol (MeOH) is also



Energies 2019, 12, 63 4 of 13

charged into the reactor where transesterification reaction occurs. Effluent of the reactor is separated
into two component by the first separator (SP1); excess methanol is recovered as the top stream and
recycled, while bottom stream, i.e., fatty acid methyl esters (FAME), is sent to the second separator
(SP2) for further purification.

Water washing is performed in SP2 to remove glycerol, catalyst, and unconverted methanol from
FAME. The top stream (S12) is sent to the third separator (SP3) where unconverted oil is separated to
get further purified FAME as a product. The bottom stream of SP2 is fed to the other reactor (Reactor 2)
where phosphoric acid is used to neutralize the stream. Solids are removed from the effluent of Reactor
2 by filtration in SP4. Then, another separator (SP5) is used to remove water from the top stream of
SP4 and produce pure glycerol as a by-product.

3. Fundamentals of Modeling and Analysis Methods

3.1. Soft-Sensor Development

Boosting, which is an ensemble learning technique, is adopted in this study for the soft sensor
development. Boosting is based on the idea of developing a robust model by combining several weak
models [24]. The concept of boosting is demonstrated in Figure 3 [25]. The models are developed in a
series of rounds where the focus on incorrectly predicted target samples is increased with the help of
increasing their respective weight. Several boosting mechanism are developed on the basis of variation
in their methods. Least Squares Boosting (LSBoost) was adopted in this study [26].

Figure 3. The framework of boosting.

3.2. Uncertainty Analysis

Uncertainty analysis quantifies the accumulated impact of uncertainties of all input variables
of a model [27]. Uncertainty has several dimensions, i.e., location, level, and nature; an extensive
review of dimensions of uncertainty in process modeling was done by Ahmad et al. [14].
There are several methods available for uncertainty analysis of a process model. This study utilized
sampling-based methods, i.e., polynomial Chaos Expansion (PCE), for uncertainty analysis of the
process. The sampling-based uncertainty analysis helps in determining collective impact of uncertainties
in all process variables on the process output.

In PCE, a random variable x is represented as a function ( f ()) of another random variable
(ξ) [28,29]:

x = f (ξ) (1)

The PCE seeks an appropriate function f (), by describing x through deterministic and
stochastic components:
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x = f (ξ) =
∞

∑
i=1

αiψi(ξ) (2)

where αi and ψi are the deterministic and the stochastic components, respectively. ψi is a polynomial
that satisfy the following condition:

〈ψj, ψk〉 =
∫

ψj(ξ)ψk(ξ)pξ(ξ)dξ = 0, j 6= k (3)

where 〈ψj, ψk〉 is the inner product of ψj and ψk, and pξ is the probability distribution function (PDF)
of ξ.

To implement the PCEs, the mode strengths should be estimated by intrusive or non-intrusive
(black box) methods [30,31]. In the current study, we implemented a non-intrusive approach where an
ensemble model was used as a black-box system.

4. Proposed Modeling and Analysis Framework

The proposed modeling strategy is shown in Figure 4 and summarized as follows:

1. Data generation: Data are generated by inserting variations in the steady state values of the process
model through interfacing of MATLAB R©, Excel R© and Aspen R© environments. Lists of process input
and output variables used for the model development are shown in Tables 1 and 2, respectively.

2. Soft-sensor Design: The generated data are used to develop the soft-sensors through the ensemble
learning method. The number of decision trees, i.e. weak learners, in the ensemble models
is optimized.

3. PCE based uncertainty analysis: The ensemble model developed in Step 2 is used within the
PCE framework. PCE level and the number of terms are optimized. A uniform uncertainty in
all input variables is assumed and PCE based random variables are generated for each of the
input variables. The PCE based generated random variables are fed to the ensemble model and
predictive distributions of respective outputs are obtained.

Figure 4. Proposed modeling framework.
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Table 1. Process input variables.

No. Names No. Names

1 MeOH steam’s flow rate 26 Water steam’s temperature
2 MeOH steam’s temperature 27 Water steam’s pressure
3 MeOH steam’s pressure 28 Water stream’s flow rate
4 NaOH steam’s pressure 29 H3PO4 steam’s temperatre
5 NaOH steam’s temperature 30 H3PO4 steam’s pressure
6 NaOH steam’s total flow rate 31 H3PO4 steam’s total flow rate
7 NaOH percentage in total fowrate 32 H3PO4 percentage in total flow rate
8 Water percentage in total flow rate 33 Water percentage in total flow rate
9 Oil stream’s temperature 34 Pump 1 pressure
10 Oil stream’s pressure 35 Pump 2 pressure
11 Oil stream’s total flow rate 36 HX1 temperature
12 Triolein flow rate 37 Reactor1 temperature
13 Trimyristin flow rate 38 Reactor1 pressure
14 Triplamitin flow rate 39 Reactor1 residence time
15 Polyphenyl sulfide flow rate 40 SP1 basis
16 Diphenyloxazole flow rate 41 SP1 reflux rate
17 Oleo-palmitostearin flow rate 42 Pump 3 pressure
18 Matrix metalloproteinase flow rate 43 HX2 temperature
19 Dipalmitoyl linoleoyl glycerol flow rate 44 SP3 basis
20 Palmitoyl dioleylglycerol flow rate 45 SP3 reflux frate
21 Linoleoyloleoyl palmitoyl glycerol flow rate 46 Reactor2 temperature
22 Dioleoyl stearo glycerol flow rate 47 Reactor2 pressure
23 Dilinoleoyl stearoyl glycerol flow rate 48 SP5 basis
24 Monolauroyl dioleoyl glycerol flow rate 49 SP5 reflux rate
25 Dipalmitoyl glycerol flow rate

Table 2. Process output variables used for ensemble learning.

No. Names Values Units

1 Oleic Acid Methyl Ester(Methyl O) 397.8 kg/h
2 Palmitic Acid Methyl Ester(Methyl P) 518.9 kg/h
3 Myristic Acid Methyl Ester(Methyl M) 22.57 kg/h
4 Linoleic Acid Methyl Ester(Methyl Li) 79.68 kg/h
5 Stearic Acid Methyl Ester(Methyl S) 29.67 kg/h
6 FAME 1050 kg/h
7 Cetane Number 64.78

MATLAB R©, Excel R©, and Aspen R© were interfaced to generate 525 data samples. In the ensemble
modeling, the weak learners and their optimized number for the respective models are shown in
Table 3. In the PCE based method, Hermite function was used for a level of 6 and initial 20 terms.

Table 3. Summary of soft sensors predictions.

No. Output Variable Weak Learners % Accuracy RMSE Value SSE Value

1 Methyl Li 1200 98.779 3.954 × 10−6 1.61 × 10−9

2 Methyl O 1200 99.153 2.391 × 10−5 5.89 × 10−8

3 Methyl M 400 98.901 6.906 × 10−6 4.912 × 10−6

4 Methyl P 600 99.394 1.488 × 10−5 2.279 × 10−8

5 Methyl S 2000 98.337 4.188 × 10−6 1.807 × 10−9

6 FAME flow rate 800 99.527 0.6025 37.99
7 Cetane Number 650 99.531 0.0396 0.1407

5. Results and Discussion

This section covers the application of the proposed integrated framework of data-based
soft sensing and uncertainty analysis to the biodiesel production process from vegetable oil.
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Seven ensemble models (soft sensors) were developed, one for flow rate of FAME, one for cetane
number, and one each for prediction of the mole fractions of the components, i.e., Methyl-Li, Methyl-M,
Methyl-O, Methyl-S and Methyl-P.

Cetane number for biodiesel was calculated using the following equation:

CN = ∑
t

Xt × CNt (4)

where CN represents cetane number of biodiesel; t refer to the type of methyl ester component,
i.e., Methyl-Li, Methyl-M, Methyl-O, Methyl-S and Methyl-P; and X represents mass fraction.

A total of 525 datasets comprising the input and output data were generated for each model;
data were divided into training (80%) and validation (20%) sets. Training sets were used for model
development, while validation sets were used to evaluate models’ accuracy.

Performance of the soft sensors is plotted in Figures 5 and 6.

(a) (b)

(c) (d)

(e) (f) (g)

Figure 5. (a–g) Regression performance of ensemble model of Methyl-Li, Methyl-O, Methyl-M,
Methyl-S, Methyl-P, Fame and Cetane number.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6. (a–g) Target and predicted values of Methyl-Li, Methyl-O, Methyl-M, Methyl-S, Methyl-P,
Fame and Cetane number.

A correlation coefficient between the target and predicted values of soft sensors was used to
evaluate prediction accuracy. The correlation coefficients of soft sensor for Methyl-Li, Methyl-O,
Methyl-M, Methyl-P, and Methyl-S components were 0.9877, 0.9915, 0.9890, 0.9939 and 0.9833,
respectively. Root-mean-square errors (RMSE) for Methyl-Li, Methyl-O, Methyl-M, Methyl-P and
Methyl-S components were 3.954 × 10−6, 2.391 × 10−5, 6.906 × 10−6, 1.488 × 10−5, and 4.188 × 10−6,
respectively. Squared errors of prediction (SSE) for Methyl-Li, Methyl-O, Methyl-M, Methyl-P and
Methyl-S components were 1.61 × 10−9, 5.89 × 10−8, 4.912 × 10−6, 2.279 × 10−8, and 1.807 × 10−9,
respectively.

The correlation coefficient of flow rate of FAME was 0.9952, as shown in Figures 5 and 6. RMSE and
SSE values for FAME were 0.6025 and 37.99, respectively. Similarly, the correlation coefficient for cetane
number was 0.9953 as shown in Figures 5 and 6. RMSE and SSE were 0.0396 and 0.1407, respectively.

Table 3 shows a summary of prediction accuracy (correlation coefficient), RMSE and SSE values
for all the seven soft sensors. Actual values of target variables in validation datasets and percent errors
in their corresponding predicted values are shown in Table 4.
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Table 4. Actual values of target outcomes of soft sensors and errors exhibited during their prediction.

Actual Values Error (%)

P Li O M S CN FAME P Li O M S CN FAME

0.49334 0.07575 0.37823 0.02147 0.02821 64.77983 1051.82387 0.00352 0.00336 0.00323 0.05590 0.01239 0.07194 0.05856
0.49337 0.07577 0.37815 0.02149 0.02822 64.28166 1059.97524 0.00346 0.00203 0.00479 0.00775 0.00722 0.03378 0.00347
0.49354 0.07579 0.37793 0.02150 0.02823 64.52924 1055.90848 0.00104 0.00039 0.00378 0.01603 0.01017 0.07744 0.05311
0.49344 0.07576 0.37814 0.02145 0.02821 64.85225 1050.64924 0.00793 0.01181 0.00439 0.04947 0.01045 0.01915 0.01297
0.49331 0.07575 0.37829 0.02145 0.02820 64.36030 1058.68015 0.00235 0.00113 0.00015 0.02177 0.01737 0.07569 0.04245
0.49318 0.07575 0.37833 0.02152 0.02822 64.35063 1058.83926 0.00194 0.00751 0.00459 0.08273 0.03344 0.00743 0.05034
0.49343 0.07577 0.37814 0.02146 0.02821 64.46647 1056.93662 0.00450 0.01071 0.00623 0.05596 0.00571 0.00400 0.00197
0.49337 0.07576 0.37820 0.02147 0.02821 65.35289 1042.60063 0.00331 0.00485 0.00585 0.03767 0.01174 0.04987 0.02124
0.49323 0.07574 0.37838 0.02146 0.02820 64.51843 1056.08529 0.00121 0.00075 0.00278 0.00945 0.00470 0.03943 0.01381
0.49335 0.07575 0.37824 0.02146 0.02820 64.91510 1049.63203 0.00247 0.00833 0.00870 0.00704 0.00951 0.05944 0.07687
0.49319 0.07573 0.37842 0.02146 0.02820 65.06075 1047.28217 0.00027 0.00619 0.01187 0.00108 0.00013 0.02891 0.02542
0.49352 0.07578 0.37800 0.02148 0.02822 65.04558 1047.52648 0.00036 0.00243 0.00264 0.01259 0.00175 0.07035 0.08327
0.49317 0.07573 0.37844 0.02146 0.02820 64.46980 1056.88189 0.00317 0.00209 0.00205 0.01450 0.00381 0.01719 0.00665
0.49332 0.07575 0.37825 0.02147 0.02821 64.57717 1055.12474 0.00224 0.00774 0.00933 0.02765 0.00063 0.01173 0.00227
0.49346 0.07576 0.37815 0.02143 0.02820 64.87258 1050.32008 0.00256 0.00124 0.00737 0.03615 0.01075 0.00821 0.03637
0.49316 0.07571 0.37857 0.02139 0.02817 65.16236 1045.64917 0.00273 0.00275 0.01595 0.04569 0.03807 0.11464 0.10758
0.49356 0.07579 0.37797 0.02147 0.02822 64.39687 1058.07882 0.00281 0.00591 0.00420 0.04087 0.00622 0.16337 0.14401
0.49327 0.07572 0.37847 0.02138 0.02817 64.82592 1051.07598 0.00120 0.00937 0.00967 0.00119 0.01301 0.14071 0.14541
0.49332 0.07574 0.37829 0.02145 0.02820 65.26961 1043.93092 0.00181 0.00229 0.00010 0.00044 0.00617 0.04575 0.01654
0.49327 0.07574 0.37832 0.02147 0.02820 65.19200 1045.1737 0.00167 0.00131 0.00610 0.00296 0.00477 0.03743 0.01871
0.49351 0.07578 0.37801 0.02148 0.02822 65.12934 1046.17934 0.00443 0.00215 0.00833 0.01145 0.00528 0.00977 0.01049
0.49348 0.07578 0.37803 0.02149 0.02822 65.42734 1041.41424 0.00570 0.01090 0.00177 0.05628 0.01134 0.00765 0.00286
0.49334 0.07573 0.37835 0.02140 0.02818 65.37571 1042.23679 0.00163 0.02018 0.00616 0.04574 0.02140 0.04538 0.05826
0.49353 0.07580 0.37792 0.02151 0.02824 65.24007 1044.40363 0.00295 0.00026 0.00585 0.02183 0.00675 0.12215 0.10655
0.49325 0.07575 0.37831 0.02148 0.02821 65.16601 1045.59063 0.00001 0.00042 0.00527 0.00645 0.01937 0.01289 0.04896

Note: P, Li, O, M and S refer to Methyl-P, Methyl-Li, Methyl-M, Methyl-S and Methyl-P, respectively.
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The non-intrusive PCE based predictive distributions of Methyl-Li, Methyl-O, Methyl-M,
Methyl-P, and Methyl-S components, and FAME flow rate and cetane number are shown in Figure 7;
the dotted gray lines show actual values of the respective components, while the blue lines show the
PCE based predictive distributions. Actual values refer to the steady state values of the target variables
of the process model. Table 5 shows mean absolute deviation percent (MADP) in the target variables
of some selected validation datasets for 1% uncertainties in actual values of all input variables.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7. (a–g) PCE based Predicted distribution of measured composition, cetane number and flow
rate of FAME (blue lines), measured values of composition, cetane number and flow rate of fame
(grey dotted line).



Energies 2019, 12, 63 11 of 13

Table 5. Mean absolute deviation percent (MADP) of output variables, i.e., compositions, flow rate and
cetane number, from their respective measured values.

P Li O M S CN FAME

0.16552 0.27808 0.34019 2.40974 0.82984 1.08191 1.05554
0.16577 0.27457 0.31979 2.38871 0.83584 1.05563 0.95637
0.16292 0.27772 0.31339 2.39248 0.83512 1.02864 0.91446
0.16308 0.27550 0.31750 2.34861 0.84314 1.04743 1.03876
0.16093 0.27067 0.33528 2.41099 0.82704 1.08012 1.00535
0.16059 0.27486 0.31578 2.45583 0.83230 0.99584 0.96712
0.16267 0.27954 0.31831 2.37411 0.83245 1.03889 0.95274
0.16841 0.27268 0.31927 2.40162 0.83223 0.96045 0.96516
0.16376 0.27824 0.32129 2.37550 0.82250 0.99785 0.93083
0.16149 0.27109 0.33075 2.42211 0.83674 0.93986 0.99403
0.16636 0.26695 0.32182 2.41314 0.82858 1.04694 1.00870
0.16065 0.26844 0.32060 2.40208 0.82506 0.95842 1.01706
0.16265 0.27800 0.32840 2.46668 0.82138 1.01479 1.01629
0.16915 0.28244 0.32207 2.37457 0.83700 0.99861 0.98543
0.16623 0.27555 0.31957 2.33797 0.83614 1.07821 1.06566
0.16651 0.27631 0.32403 2.36810 0.84555 1.06042 1.02553
0.15890 0.27896 0.32217 2.39600 0.81433 0.96692 1.10511
0.16413 0.26931 0.31606 2.38986 0.82274 1.03271 0.97631
0.16124 0.27469 0.33022 2.41911 0.84660 1.03330 1.00750
0.16817 0.28308 0.32721 2.42816 0.83586 1.04583 1.00173
0.16146 0.27422 0.31547 2.40128 0.83253 0.98816 1.00466
0.16226 0.27761 0.32194 2.43287 0.83526 0.91761 0.86320
0.16428 0.27386 0.31823 2.40904 0.84382 0.98527 0.92505
0.15903 0.27715 0.31880 2.36198 0.82594 1.05677 0.98890
0.16761 0.27635 0.33213 2.41000 0.83058 1.09828 1.08529

Note: P, Li, O, M and S refer to Methyl-P, Methyl-Li, Methyl-M, Methyl-S, and Methyl-P, respectively.

For Methyl-Li, Methyl-O, Methyl-M, Methyl-P, and Methyl-S components, MADP values were
0.27479, 0.32227, 2.41208, 0.1651, and 0.82135, respectively. For FAME flow rate and cetane number,
MADP values were 0.96546 and 0.97013, respectively.

The boosting framework adopted in this study demonstrated high efficiency in predicting the
desired outcomes. It is worth mentioning that boosting based soft sensors outperform other soft
sensors based on single data-driven model such as ANN and other ensemble learning models such
as RF [32,33]. The current soft sensing framework is more intuitive because the outputs cover all
features of the product, i.e., quantity, quality and components affecting the quality. The multi-layer
estimation of the process outputs promotes the efficiency of the process operation. In development of
the soft sensors, many input variables were used, which enables them (soft sensors) to capture the
actual dynamics of the process better than the soft sensors based on lesser number of input variables.
Although the data used in the development of the soft sensors were extracted from an Aspen PLUS R©

model, the framework can be replicated for the process of a real biodiesel production plant where the
raw material is vegetable oil.

The assumption of 1% uncertainty in all input variables was not based on reference information
from plant operation but it helps in establishing a quantitative relation between the input uncertainty
and their collective impact on the process outputs. MADP was used to quantify the deviation in the
process output from their actual values. The deviation determined through the proposed framework
can help in developing a control system for ensuring high yield and quality in a biodiesel production
plant. In that context, parametric analysis of the process would be needed to identify the variables to
be manipulated for maintaining desired values of the process outputs.
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6. Conclusions

In this study, a data-based soft sensing mechanism was developed to predict composition, flow
rate, and cetane number of fatty acid methyl esters (FAME). The non-intrusive polynomial chaos
expansion (PCE) method was integrated in the soft sensors framework to quantify the effect of
uncertainty on the soft sensors outcomes. A separate model (soft sensor) was developed for each of the
components, flow rate and cetane. Prediction accuracies of Methyl-Li, Methyl-M, Methyl-O, Methyl-S,
Methyl-P, FAME flow rate, and cetane number were 0.9877, 0.9890 , 0.9915, 0.9833, 0.9939, 0.9952
and 0.9953, respectively. For 1% uncertainty in all input variables of the soft sensors, mean absolute
deviation percent (MADP) values of 0.27479, 0.32227, 2.41208, 0.1651, 0.82135, 0.96546, and 0.97013 were
noticed in the predicted values of Methyl-Li, Methyl-O, Methyl-M, Methyl-P, Methyl-S, FAME flow
rate, and cetane number, respectively. The sensors are highly accurate in prediction and uncertainty
quantification which make them suitable for real time applications.
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