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Abstract: Solar Photovoltaic (PV) systems have been in use predominantly since the last decade.
Inverter fed PV grid topologies are being used prominently to meet power requirements and to
insert renewable forms of energy into power grids. At present, coping with growing electricity
demands is a major challenge. This paper presents a detailed review of topological advancements in
PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The
different types of inverters used in the literature in this context are presented. Reactive power is one
of the ancillary services provided by PV. It is recommended that reactive power from the inverter
to grid be injected for reactive power compensation in localized networks. This practice is being
implemented in many countries, and researchers have been trying to find an optimal way of injecting
reactive power into grids considering grid codes and requirements. Keeping in mind the importance
of grid codes and standards, a review of grid integration, the popular configurations available in
literature, Synchronization methods and standards is presented, citing the key features of each kind.
For successful integration with a grid, coordination between the support devices used for reactive
power compensation and their optimal reactive power capacity is important for stability in grid
power. Hence, the most important and recommended intelligent algorithms for the optimization and
proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed
inverters connected to the grid is presented in this paper, which can serve as a guide for researchers
and policymakers.

Keywords: ancillary services; grid; inverter; PV; reactive power; solar; Quasi-Z source inverter
(QZSI); Y source inverter (YSI)

1. Introduction

Grid-tied photovoltaic systems are power-generating systems that are connected with grids. Solar
PV energy that is generated must be processed with the help of a grid-connected inverter before putting
it to use. This inverter is present between the solar PV arrangement and the utility grid; it could be a
single unit or a collection of small inverters attached to the individual PV units. Due to the lowered
cost of power electronic devices and advancements in renewable energy technology, there is significant
encouragement for the power industry to utilize PV solar energy and to attach it to a medium or low
voltage distribution grid. The renewable electrical energy market has experienced an extraordinary
increase in scope in recent years. Its main catalyst in 2016 was solar photovoltaics, whichare boosting
the capacity of renewables all over the world. Due to reductions in costs, solar and wind energy are
playing an increasingly important role and are proving to be competitive with fossil fuels in many
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countries. Two-thirds of overall electricity additions in 2016 were from renewable sources of energy [1].
According to the International Energy Agency, solar is leading in additions compared to wind and
hydropower. The statistics of net additions and retirements in electricity capacity are shown in Figure 1.
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Figure 1. Net additions and retirements of Electricity capacity in 2016. Reproduced from [1],
International Energy Agency: 2017.

From [2], it is noted that Solar PV has dominated all other forms of electricity production. Its
capacity comprises almost 600 Giga Watt (GW) more than all other forms of energy combined. Thus,
with this increasing trend in use of Solar PVs, it becomes even more important to study the obstacles
faced in extracting energy from solar PV systems and then exporting it or integrating it with the grid.
The primary factors to be borne in mind while integrating PV solar energy with the grid are:

1. Reducing the cost during power conversion stage
2. Improving the reliability of the converter in use
3. Reducing the harmonics in the output current obtained
4. Reducing the number of switches/components used in grid integration
5. Ensuring continuity in supply by providing back up power for PVs.
6. Controlling the real and reactive power
7. Maintaining a constant direct current (DC) link voltage via a suitable control scheme
8. Detecting the maximum power point of PV panel using Maximum Power Point Tracking

(MPPT) techniques.

Henceforth, a detailed review is done, keeping in mind the current trend and effectiveness of
energy produced, and the simplicity of its integration with the grid. This paper is organized as follows:

Section 2: Ancillary services in electric market
Section 3: PV-grid inverters—A summary of different topologies
Section 4: A Review on Intelligent Algorithms and Optimization Techniques
Section 5: Conclusion & future scope
Section 6: References
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2. Ancillary Services in Electric Market

2.1. Definitions of Ancillary Service

In this section, a brief introduction to ancillary services has been given with standard definitions
from the literature. An insight to Reactive Power (Q) being an ancillary service is provided. In order to
understand the concept of ancillary services, a few definitions from the literature have been listed here.

* As per International Electro technical Commission (IEC) 60050-617, ancillary services are “services
necessary for the operation of an electric power system provided by the system operator and/or
by power system users” [3].

* According to the Union of Electric Industry EURELECTRIC: “Ancillary Services are those services
provided by generation, transmission and control equipment which are necessary to support the
transmission of electric power from producer to purchaser. These services are required to ensure
that the System Operator meets its responsibilities in relation to the safe, secure and reliable
operation of the interconnected power system. The services include both mandatory services and
services subject to competition” [3].

* Federal Energy Regulatory Commission (FERC) defined ancillary services as those “necessary
to support the transmission of electric power from seller to purchaser given the obligations of
control areas and transmitting utilities within those control areas to maintain reliable operations
of the interconnected transmission system” [4].

2.2. Popular Ancillary Services in Electric Power Market

Figure 2 shows some popular ancillary services in electric power market. They are:

1. Q Management: Q Management is a service that is unbundled to both suppliers and consumers.
A system operator can control this service but the control is limited to local control area. Q
management is the same ancillary service as voltage control. Voltage control is done to balance
voltages in accordance with the prescribed limits during different time slots of power transmission.
Q injection and absorption leads to system stability and yields protection against unforeseen
events that may cause voltage breakdown. Hence, reactive-power must be made available to
meet the expected demand and serve as a reserve margin during emergencies.

2. Real power (P) loss replacement: P loss is the variation in P generated and delivered. Due
to resistance in each active and passive element in the transmission line, loss is unavoidable.
International Organization for Standardization (ISO) should generate power online in order to
cope up with P losses although suppliers also make up for the losses.

3. Supplemental operating reserve: Supplemental-operating reserve includes generating units,
which must supply power within ten minutes and must be completely available within
thirty minutes.

4. Reliability reserve: Reliability reserve includes generating units and spinning reserves, which
must be made available completely within ten minutes.

5. Operating reserve: Operating reserve ancillary service is used to balance the power generation to
the load because of unexpected outages.

6. Load following: Load-following ancillary service includes two functions performed by the
control area (interconnection frequency maintenance and load balance) and two more functions
performed by customer (monitoring fluctuations in load and keeping in track of long-term
changes). Thus, there are four different components in load following ancillary service.

7. Scheduling and dispatch: Scheduling is a separate ancillary service and not connected to dispatch,
but they are lumped together since they are less expensive and coordinated by ISO. Scheduling is
to anticipate load requirement and assign generating units accordingly. Dispatch is the actual
control of generation units and transmission units, which are available in order to satisfy the load
demand. Scheduling, as well as dispatch, are quite inexpensive.
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2.3. Additional Services in Electric Power Market

Figure 3 shows additional services in electric power market suggested by FERC. They are:

1. Black start capability: Under certain conditions in which the system collapses, drawing power
from the grid becomes an impossible event. Thus, some special generating units called black start
units are used to restart devoid of taking power from grid.

2. Time correction: Generally, most of the electrical clocks work by means of counting the cycles in
the frequency of power. Although this frequency is kept constant, there will be an error of 0.01 Hz.
If time correction were not done, there would be an error of roughly 10 s a day considering
50 Hz cycle.

3. Standby Service: Standby service serves as a generating capacity, which is kept at reserve to
supply energy when emergencies occur. Standby capacity is used in circumstances in which a
customer’s power is interrupted due to an outage or when the generating unit is under scheduled
maintenance or when a customer’s power demand exceeds the actual contracted one.

4. Planning Reserve: It serves as a planned generating unit based on customer requirement. Hence,
it is a customized one and cannot be the same for all customers.

5. Redispatch: Due to transmission losses and constraints, least cost power dispatch is not possible.
This is known as congestion. In order to avoid congestion, redispatch is done to adjust the power
that is input to the transmission line. This method is applied within control areas.

6. Transmission Services:

• Transmission system monitoring and control
• Transmission reserves
• Repair and maintenance of the transmission network
• Metering, billing and communications.

7. Power Quality: Power quality means provision of uninterrupted power which is purely sinusoidal
to customers

8. Planning, Engineering & Accounting Services:

a. Planning services:
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• Load forecasting
• Scheduling
• Coordination of the maintenance of generating units
• Coordination of power transmission maintenance and power outages.

b. Engineering services:

• Black-start studies
• Load-flow analysis
• Planning for bulk-power system expansion.

c. Accounting services:

• Scheduling
• Billing
• Contract administration
• Reporting to several regulatory bodies.
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2.4. Q Injection to Grid

One of the primary ancillary services that is necessary for a power system operator is Q injection to
grid [5]. In Figure 4, the red curve indicates the capability of the PV inverter to provide Q. Furthermore,
based on the voltage at point of common coupling (PCC), freedom of having higher current distortion is
permissible. Several countries have added Reactive power injection to grid into the countries’ standard
grid code (GC) requirements. In general, if a country follows standard GC, power generation by PVs is
required to cease immediately when there is a fault occurring in the grid. However, because of high
level of penetration of PVs into grid, a sudden and quick power interruption due to a fault in the grid
would cause severe problems. For to this reason, many countries like Spain, Italy, Germany and Japan
have modified their GCs [6–9].
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There are numerous services that can be extracted with the use of PVs. Figure 5 shows some of
the important ancillary services involving solar PVs. It can be noted that ancillary services provided by
PV systems open an important pathway in electric power market and Q injection to grid has been area
of research for the last three decades [10–22].
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Figure 5. Services provided by PV systems.

Solar-PV panels do not possess Q, since they provide electric power by using PV effect. The power
conversion from DC of solar panels to AC injected to grid takes place due to inverter circuitry. This
inverter has the capability of providing Q support in fault/normal conditions. Inverters could provide
various other ancillary services. Some of these such as lowvoltage ride-through (LVRT) and MPPT
have become necessary. Although, Q support has not been made mandatory for grid connected PV
systems, the higher penetration levels of PVs indicate more accessibility to control of P and Q. Hence, it
would become a code included in GCs of all countries using more renewable form of power conversion.
In general, for PV-grid topologies, the inverter converts the DC of PV panels to alternating current
(AC) that is to be supplied to grid. Figure 6 shows a single-phase PV-grid system that can be used
for requirements up to 7 kW. There are many types of inverters that are used in a PV-grid scenario.
In the following section, a brief summary of inverter topologies for use in grid-connected systems
is provided.
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3. PV-Grid Inverters—A Summary of Different Topologies

Numerous works have been proposed in literature to illustrate various topologies of inverters
including state-of-art review [23]. Traditional inverters such as voltage source inverter (VSI) and current
source inverter (CSI) have a major drawback, i.e., voltage buck and boost actions cannot take place
simultaneously. In order that buck and boost actions take place collectively, an additional converter
has to be added in the circuitry, making the whole system more expensive. Popular impedance source
inverters (ZSIs) have been discussed in the literature; they have the ability to overcome the major
disadvantage of involving a two-stage topology in power conversion. Both boosting and bucking
actions are possible with this topology. ZSI is a combination of VSI and CSI. Boosting of voltage
takes place at the DC link with the help of a unique technique called shoot-through [24,25]. In recent
years, an interesting inverter topology namely admittance source inverter (YSI) was introduced. The
following section gives an overview on different inverter topologies available in literature.

3.1. Traditional Inverters Vs Multilevel Inverters

One of the traditional configurations of inverters that is connected to power grid is VSI (shown in
Figure 7). In VSIs, the output voltage is always lesser than the input voltage. VSIs have the ability to
introduce currents with low harmonics into the grid. When a CSI (shown in Figure 8) is used instead
of VSI, current injection to grid can take place without the need of an additional converter. The output
from a VSI and CSI comprises of two unique levels of voltage, but it suffers from higher switching
losses. The rate of change of voltage (dv/dt) is higher for traditional two-level inverters. The frequency
of switching is also high. They are most suited for low voltage applications.
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Figure 7. Voltage source inverter. Figure 7. Voltage source inverter.

Multilevel inverters (MLIs) were introduced to overcome the drawbacks of traditional inverters.
The classification of MLIs is given in Figure 9. Switching losses are a main factor of concern in two level
inverters. Using MLIs, they can be minimized.MLIs aid to reduce switching losses and harmonics.
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They can be used for high voltage applications. The rate of change of voltage (dv/dt) is lesser for MLIs.
The levels of voltage could be increased to greater than two. Hence, apure sinusoidal waveform is
obtained as the output of the inverter. The harmonics in the output are mitigated and losses could
be reduced largely. With the introduction of multilevel topology in CSI (shown in Figure 10), low
harmonic currents are obtained. The frequency at which the switching action takes place is reduced
with the introduction of a multilevel topology for a current source inverter. A brief comparison between
traditional inverters and multilevel inverters is presented in Table 1. Table 2 summarizes the state of
art PV grid inverter topologies of MLIs.Energies 2019, 12, x FOR PEER REVIEW 8 of 28 
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Table 1. Traditional two-level inverters Vs MLI.

Factor under Consideration Two Level Inverter Multilevel Inverter

Switching loss High Low
dv/dt High Low

Voltage stress on switches More Less
Switching frequency High Low

Levels of voltage in output Two more than two
Harmonics More Less

Table 2. State of art PV grid inverter topologies of MLIs.

Network Structure Advantages Disadvantages

Diode-Clamped

• Control of Reactive power flow
is possible.

• High efficiency.
• Filters are not essential to

reduce harmonics.

• For high levels of
diode-clamped structure,
thenumber of diodes required
is more.

• Control of Real power flow for
individual converter is tedious.

Flying Capacitors

• Extra ride through capability during
power outage.

• It gives proper switching
combination to balance different
voltage levels.

• Real and reactive power flow can
be controlled

• No need of filters to
reduce harmonics.

• The number of capacitors
required is high for high level.

• For real power transmission,
losses and switching frequency
are high

Cascade Multilevel
Inverter With Separate

DC Sources

• Because of same structure, it allows
the scalable, modularized circuit
layout and packaging.

• Less number of components is
needed for getting same number of
voltage level.

• No need of extra diodes
and capacitors.

• Separate DC sources are
required for the real
power conversion.

3.2. Concept of Z Source and Its Application in Solar Industry

Even though multilevel inverters have shown better performance than traditional inverters, they
still have drawbacks. The number of switches is quite high in an MLI. Although the switches required
need smaller rating, the number of required switches is high, thus making the circuit complex and costly.
Thus, ZSIs with several advantages over the aforementioned inverters were introduced. Figure 11
shows a voltage fed ZSI.

A ZSI is a combination of inductors and capacitors. A ZSI would operate as a VSI or CSI depending
on the application. The output voltage ranges from zero to infinity. Many researchers have adapted
impedance source topologies and many advances in the topologies have been listed in literature like
YSIs and their advancements [26,27] and ZSIs and their advancements [28–65]. Figure 12a–c give an
overall classification of topologies of impedance source networks. A summary of these topologies, as
presented in different literature works, is presented in the following section.
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Solar modules are widely preferred in both residential and commercial applications. PV cells are
connected in parallel and series in order to form one module. Many such modules in combination
is a panel. To develop economical and efficient PV systems, MPPT algorithms are used. Generally,
the inverter portion of the PV-inverter-grid structure comprises of a boost circuit and a filter. MPPT
algorithms may or may not be used depending upon the application. In PV systems, in order to obtain
dc-ac conversion, ZSI is an intelligent choice [66]. ZSIs can boost the voltage levels with a very compact
structure. For a 10 kilowatt (kW) PV system, 20 kW inverter is required with a traditional inverter but
by using ZSIs, a 10 kW inverter is enough for a 10 kW PV system with same kilo volt-ampere (KVA)
maintained. Traditional inverters pose challenges in their control and modulation mmechanisms.
These issues are eradicated using ZSIs.

The boost factor for a simple boost control method can be obtained from Equations (1)and (2)
where M is the modulation index, and B is the Boost factor, T is the total time-period, which is one
complete cycle. T0 is the time-period for which the output waveform is obtained.

B = 1/(2M− 1) (1)

1−M = T0/T (2)
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Summaries of stateof the art PV-grid inverter topologies of Z source networks without transformer
and with transformer/coupled inductor arepresented in Tables 3 and 4 respectively. The features of
each structure with components used, including passive elements and semiconductor devices peer
reviewed from different literature works are listed. Detailed topological figures can be obtained from
the respective reference papers cited for each structure listed in the tables.
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Table 3. State of art PV grid inverter topologies of transformer less Z source networks.

Network Structure NOS NOC NOL Features

Z-Source [67] 1 Diode 2 2

• The first introduced, basiccircuit to overcome conceptual and theoretical barriers of VSI and CSI.
• The inductor of current-fed ZSI must sustain high currents.
• Many topologies are derived from this topology.
• Discontinuous input current and higher voltage stress on capacitors.

Quasi Z-Source [68] 1 Diode 2 2

• The very first changeof Z-source network.
• Continuous input current.
• Reduced passive component ratings.
• Reduced component count.

Improved Z-Source [31,32] 1 Diode 2 2 • Reduced capacitor voltage stress.
• Limit inrush current at start up.

Semi Z-Source, Semi Quasi Z-source
[33–35] 2Switches 2 2

• Higher voltage stress across switches compared to ZSI/qZSI.
• Reduced count of active components.
• Lower cost.
• Eliminates leakage currents
• Most suitable for grid-connected PV system.

Embedded Z-Source [36–38,48] 1 Diode 2 2 • Extractssmooth current from the source without adding additional components or passive filter

Z-H Converter [39] 4 Switches 2 2 • Shoot through state is not required for voltage boosting.
• Diode at front-end is eliminated.

Z-Source B4 [43] 1 Diode 2 2 • Reduced number of active semiconductors.
• Simplify the control and gating circuitries.

Diode/Capacitor assisted [41,51] 3 diodes
2 diodes

3
4

3
3

• Higher voltage boost and lower voltage stress across the capacitor compared to ZSI/QZSI
• Number of components increases based on number of stages

Switched capacitor/inductor [17,50] 7 diodes 2 4
• Higher voltage boost capability.
• Component countincreases based on corresponding size and cost
• Lower voltage stress across the capacitor compared to ZSI/QZSI

TSTS Z source [45,55] 3 switches 2 3

• Reduced number of active semiconductors
• Common ground.
• Lower device stress.
• It has Buck-boost capability.
• High power density

Distributed Z source [60] Distributed Z
• Removesdiscrete passive and active components for Z source design.
• Eliminates parasitic effect.
• High frequency operation and better efficiency
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Table 4. State of art PV grid inverter topologies of Z source networks with transformer/coupled inductor.

Network Structure NOS NOC NOL Features

Y SOURCE [27] 1 diode 1 Integrated three windings

• Better utilization of input voltage
• THD is reduced
• Versatile
• More degrees of freedom for choice ofgain of converter
• Higher voltage boost and higher modulation index could be achieved
• Very high gain could be achieved with small duty cycle

Γ SOURCE [45,53,65] 1 diode 2 One inductor and one two-winding
coupled inductor

• Higher gain could be achieved by reducing the turns ratio of the coupled inductor
• Better spectral performance at the inverter output

T SOURCE [59,61] 1 diode 1 Integrated two windings

• Increased voltage gain compared to ZSI and QZSI.
• Reduced component stress
• Fewer reactive components compared to ZSI and QZSI
• Common ground with load

TZ SOURCE [62] 1 diode 2 Two integrated two windings • Produces higher voltage boost with N

LCCT Z SOURCE [54,64] 1 diode 2 One inductor and one two-winding
coupled inductor

• Continuous input current despite light load condition
• Capable of filtering high frequency ripple from input current

TRANS Z SOURCE [46,49,52,58] 1 diode 1 Integrated two windings

• Reduced component stress
• Increased voltage gain compared to ZSI and QZSI.
• Fewer reactive components compared to ZSI and QZSI
• Common ground with load

IMPROVED TRANS Z SOURCE [56] 1 diode 2 1 inductor and 1 transformer • Higher boost factor compared to LCCT-ZSIs, QZSI with input LC filter and trans ZSIs
• Resonant current suppression is achieved

HF TRANSFORMER ISOLATED Z
SOURCE [57]

1 diode
1 switch 4 Two integrated two windings • Input-output isolation

• Lower component stress
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In Tables 3 and 4, the following abbreviations were used

• NOS—Number of semiconductor devices
• NOC—Number of capacitors
• NOL—Number of inductors

3.3. Grid Integration Configurations, Synchronization& Standards

Grid-integrated PV systems could be of various power levels and sizes. They are designed for
specific applications and needs, with a scope ranging from one PV module to over 100 MW [69]. Hence,
a generic PV-inverter-grid structure, as shown in Figure 13, could vary for each plant.
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In order to make things seem less complex, PV-grid systems are divided based on power rating into

• Small scale (a few Ws a few tens of kWs)
• Medium scale (a few tens of kWs to a few hundreds of kWs) and
• Large scale (a few hundredkWs to several hundreds of MWs).

Table 5 gives a summary of PV-grid-inverter configurations along with pros and cons of each
configuration to provide a clear-cut guidance in choosing the type of system depending upon
the requirements.

Table 5. PV grid inverter configurations—An Overview.

Comparative index Small Scale Medium Scale Large Scale

Power range <350 W <10 kW <850 kW

Configuration AC module String Central

Power semiconductor
device(PSD) MOSFET MOSFET, IGBT IGBT

Inverter efficiency Lowest High Highest

Pros
• Flexible/modular
• Highest MPPT efficiency
• Easy installation

• Good MPPT efficiency
• Reduced dc wiring
• Transformerless

(most common)

• Simple structure
• Highest inverter efficiency
• Reliable

Cons
• Higher losses
• Higher cost per watt
• Two stage is mandatory

• High component count
• One string, one inverter

• Needs blocking diodes
(for array)

• Not flexible
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Synchronization of the inverter with the grid is a major challenge in grid integration. Typically,
inverters operate like current sources that inject the current in phase with grid voltage [71]. Therefore,
pf needs to be maintained at unity or near to unity while the grid is connected to an inverter system.
The most important thing is the synchronization of the inverter with the grid voltage. The rule of
thumb for synchronization is that the total real power of the grid must be equal to the voltage of
the grid and current of the inverter summed. Based on the synchronization rule, the Equation (3)
is derived.

P(grid) = V(grid) + I(inverter) (3)

Several methodologies can be studied from literature for synchronization of grid and PV inverter.
Figure 14 gives a brief of literature works surveyed in this regard.Grid integration and the injection of
current into the grid play a critical role in the operation of a grid connected PV system. Different works
have highlighted current injection into the grid in accordance with recommended standards [72–87].

Due to the increase in PV-grid applications, many standards and GCs are proposed in order
to have secure transmission of power into grid. Some of the well-known bodies that develop the
standards are Institute of Electrical and Electronic Engineers (IEEE) of USA, IEC of Switzerland and
Deutsche Kommission Elektrotechnik (DKE) of Germany. A summary of these standards and GCs is
given in Table 6.
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Table 6. A Summary of International codes for PV applications.

Category Codes Area of Implication

Grid connected

IEC 61727, IEC 60364-7-712 Installations of buildings.

IEC 61683, IEC 62093, IEC
62116

Utility interface
Measuring efficiency.

UL 1741, IEC 62446
Interconnected PV inverters, system
documentation & commissioning tests
Useful in independent power systems

EMI

EN61000
European Union EMC directive for residential,
private sectors, light industrial and
commercial facilities.

FCC Part 15 U.S. EMC directive for residential, commercial,
light industrial, and industrial facilities

Low voltage ride through
(LVRT) IEC 61727 V< 50% at 0.1s

50% ≤ V < 85% at 2.0 s

Anti-islanding

IEEE 1547/UL 1741IEC
62116 Island detection

VDE 0126-1-1 Impedance measurement

Monitoring IEC 61850-7, IEC 60870,
IEC 61724,

Transmission grids and systems for power
service automation
Distributed energy resources and logical nodes
Measurement, data exchange, and analysis

Off grid

IEC 62509, IEC 61194,
IEC 61702 Battery charge controllers

IEEE Standard 1526,
IEC/PAS 62111 Stand-alone systems

IEC 62124
Rating of direct-coupled pumping systems
Specifications for rural decentralized
electrification.

Rural systems IEC/TS 62257

Medium-scale renewable energy and
hybrid systems.
Safeguard from electrical hazards.
Choice to select generator sets and batteries.
Micro power systems and microgrids.

4. A Summary of Intelligent Algorithms & Optimization Techniques in Grid-Tied Inverters

Due to a rapid increase in complexity, optimization has become necessary in the design of every
system. When PVs are involved, it means that there is going to be intermittency in the output power. In
order that the load is fed without any fluctuation, optimization techniques must be incorporated to get
smoother and better output. In order to understand modern intelligent algorithms and optimization
techniques, one must have an understanding on the computational intelligence, which is used along
with optimization techniques. Figure 15 lists the computational intelligence platforms that are discussed
briefly in the following section.

1. Artificial Neural Network (ANN):The ANN was originally introduced by Rosenblatt [85]; it is a
replica of human brain, and is useful for forecasting the availability of renewable energy [86].

2. Fuzzy Logic (FL): FLis used in decision making. The theory behind its application pertaining
to current area of study can be found in [87], and the methodology for practical application in
Renewable energy systems can be inferred from [88].

3. Multiagent system (MAS): Every component in the system is represented as an agent with unique
objectives. A detailed review on the subject can be studied in [89].
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Figure 15. Computational intelligence techniques.

Figure 16a shows the classification of exact optimization depending on treatment of uncertainties.
Figure 16b shows the classification of heuristic optimization. Table 7 lists the optimization techniques
used in transmission and distribution systems with Q as one of the control variables. Table 8 summarizes
various Q control techniques applied to the different sets of surveyed configurations.
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Table 7. A summary of literature works surveyed related to optimization.

Objective Function Optimization Tool Control Variables System Type

Minimize P loss [90] SO (SOCP) Q of PV, subject to stochastic P of PV Distribution

Minimize total cost of a
distribution system [91] PSO Q of PV, Q of EV Distribution

Minimize P loss [92] ES Generator bus voltages, tap positions of transformer,
Q of capacitor banks Transmission

Minimize P loss [93] Ant colony optimization
(ACO)

Generator bus voltages, tap positions of transformer,
Q of capacitor banks Transmission

Minimize P loss [94] PSO
Q of PV, P and Q of Battery Energy storage system
(BESS), CL,
tap positions of transformer

Distribution

Table 8. A summary of control techniques surveyed.

Configuration Features/Control Scheme Employed

AC stacked PV inverter architecture [87]

• No need for communications between inverters
• Combined Constant Peak Current Control and Constant Active

Power Control
• Grid inductor is very small (50 micro Henry)

8 bus radial test feeder used for sensitivity
analysis [95]

• cosφ(P,U) and Q(U) methods employed
• pf control in terms of injected active power and local

grid-voltage dependent reactive power is illustrated.

Distributed PV Generators [86]
• Decentralized method for Q flow control is adapted
• Inverter Q is produced as a function of P [Q(P)]
• German GC is followed

16 bus and 81 bus distribution systems [96]

• A Q planning model is proposed
• Provides extra VAR capacity
• Short-term planning and decision
• Uses APL and UC for control

1 main feeder and 6 laterals. 4 loads connected
to main feeder at different points. 10 loads are

derived from 6 laterals [76].

• Auto-adaptive controller is used.
• During daylight, PV generates P; Q injection is reduced.
• During the absence of sunlight, Q equal to rated power is

injected into the grid.
• Sensitivity theory and Lyapunov theorem are used.

Cigré 32 bus system [63,78]

• GAMS/MINOS5 solver is used for solving Non-linear
programming (NLP)

• Emphasis is laid on design of a competitive market for Q
ancillary service from generator.

7 level QZSI with TSC and TSR [97,98]
• A unique master-slave controller is proposed
• This topological advancement saves 42 percent of

inverter rating.

5. Conclusions and Future Scope

Grid-tied inverter topologies are important components for the interface between the RER and
the utility grid. Now, single-phase, transformerless configurations of range 1–10 kW are gaining
interest. When compared to transformer-based configurations, the main advantages of transformerless
configurations are:

• Less complexity
• Lower cost
• Higher efficiency
• Lighter weight
• Smaller volume
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Thanks to the technological advancements in the area of power electronics, numerous
transformerless inverters derived from conventional H-bridge topology have been developed. These
inverters offer high efficiency and reliability. They also have lower electromagnetic interference, since
transformers or coupled inductors are not involved in the design. In recent times, low-efficiency
PV arrays have been widely used. In order to achieve maximal efficiency, the materials involved in
fabrication of PV panels need to be carefully investigated and used. In this paper, a critical review of
grid connected PV systems was performed. The definition of ancillary services and the reactive power
market with reactive power as an ancillary service was examined. A review of the different topologies
of inverters with special reference to state of art topologies such as y source inverter derivatives was
presented. Unique aspects of each topology in terms of structure and functional merits/demerits
were presented in detail. In the coming era, a basic understanding of power converters becomes
necessary for the successful integration of PVs with grid. Fulfilling the GC requirements also becomes
a major challenge. Hence, in this paper, the synchronization between the inverter and the grid was
examined, with the aim of outlining important concepts in grid synchronization and standards. Finally,
intelligent algorithms and optimization techniques surveyed from different literature works were
listed. A summary of different works available in the literature has been presented with the aim of
providing researchers with an overview ofgrid-connected architectures. With the advent of Perovskite
material used in solar cells, solar technology has seen tremendous advances. Future work may focus
on the manufacturing side of solar cells, since this is currently an area of great discussion.
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Nomenclature

Acronyms
AC Alternating current
ACO Ant colony optimization
ANN Artificial neural network
BESS Battery Energy storage system
CSI Current source inverter
DC Direct Current
DO Deterministic Optimization
DVR Dynamic voltagerestorer
DKE Deutsche Kommission Elektrotechnik
EA Evolutionary algorithm
EMF Electromotive force
EMI Electromagnetic interference
ESS Energy storage system
FACTS Flexible AC transmission system
FERC Federal Energy Regulatory Commission
FL Fuzzy logic
FRT Fault ride-through
GA Genetic algorithm
GC Grid code
GW Giga Watt
HF High frequency
HVRT High voltage ride-through
IEC International Electro technical Commission
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IEEE Institute of Electrical and Electronic Engineers
IGBT Insulated gate bipolar transistor
ISO International Organization for Standardization
KVA Kilo volt ampere
Kw Kilo watt
LCCT inductor–capacitor–capacitor–transformer
LVRT Low voltage ride-through
MAS Multiagent System
MFAPSO Multi-function agent based particle swarm optimization
MLI Multilevel inverter
MOSFET Metal oxide semiconductor field effect transistor
MPC Model predictive control
MPPT Maximum power point tracking
NER National electricity rules
NLP Non-linear programming
NSGA Non-dominated sorting GA
OLTC On-load tap changer
OPF Optimal power-flow
PCC Point of common coupling
PEC Power electronic converter
PLL Phase Locked loop
PSD Power semiconductor device
PSO Particle swarm optimization
PV Photovoltaic
PWM Pulse-width modulation
RO Robust Optimization
SA Simulated annealing
SO Stochastic Optimization
THD Total Harmonic Distortion
TS Tabu search
TSC Thyristor switched capacitor
QZSI Quasi impedance Source Inverter
VSI Voltage source inverter
YSI Admittance source inverter
ZSI Impedance source inverter
Variables
X Reactance
δ Angle between stator voltage and internal emf
φ Angle between voltage and current
S Apparent power
P Real power
Q Reactive power
V Voltage
I Current
E Electromotive force
D Duty cycle
T Time period
m Modulation index
W Watt
kW Kilowatt
MW Megawatt
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