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Abstract: Accurate forecasting of electric loads has a great impact on actual power generation, power
distribution, and tariff pricing. Therefore, in recent years, scholars all over the world have been
proposing more forecasting models aimed at improving forecasting performance; however, many of
them are conventional forecasting models which do not take the limitations of individual predicting
models or data preprocessing into account, leading to poor forecasting accuracy. In this study, to
overcome these drawbacks, a novel model combining a data preprocessing technique, forecasting
algorithms and an advanced optimization algorithm is developed. Thirty-minute electrical load data
from power stations in New South Wales and Queensland, Australia, are used as the testing data to
estimate our proposed model’s effectiveness. From experimental results, our proposed combined
model shows absolute superiority in both forecasting accuracy and forecasting stability compared
with other conventional forecasting models.

Keywords: electric load forecasting; data preprocessing technique; multiobjective optimization
algorithm; combined model

1. Introduction

It is known that the electric power industry plays a vital role in many aspects of people’s lives [1].
Effective forecasting enables adjustments to be made of power generation according to market demand,
and to the reduction of management and operational costs [2]. On this basis, accurate power load
forecasting is necessary in daily operations of power systems [3]. However, due to various uncertainties
and climate change, economic fluctuations, industrial structure, and national policy and other social
environment complexity, it is difficult to meet expectations in terms of the accuracy of power load
forecasting [4]. Inaccurate forecasting often results in considerable loss of power systems. For example,
overestimated forecasts often result in wasted energy, while underestimated forecasts will result in
economic loss [5]. With the development of society, the expansion of urbanization, and the continuous
improvement of industry, the demand for electricity is continuously increasing, which poses a challenge
to electric load prediction systems [6]. Accurate power load forecasting is indispensable to the whole
society, which not only reflects the economic rationality of power dispatching, but can also be reflected
in power construction planning and power supply reliability. Therefore, developing a novel and robust
model to improve forecasting performance is essential for power load forecasting [7]. In the past few
years, in order to achieve accurate short-term time series forecasting of power load, a lot of research
has been carried out. There are mainly four types of related algorithms: (i) physical arithmetic, (ii)
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spatial correlation arithmetic, (iii) conventional statistical arithmetic, (iv) and artificial intelligence
arithmetic [8].

2. Literature Review

“Physical algorithm” is a general term referring to models that primarily use physical data such as
temperature, velocity, density, and terrain information based on a numerical weather prediction (NWP)
model to predict wind speeds in subsequent periods [9]. The NWP model is a computer program
designed to solve atmospheric equations. Based on the NWP wind resource assessment method,
Cheng et al. [10] evaluated wind speed distribution by comparing three deterministic probabilities.
From their experiment results, they found that NWP could not only achieve reliable probability
assessment but also supply precise forecasting estimates. However, physical methods cannot handle
time series for short-term horizons [11]. Moreover, when using an NWP model, much calculation
time and many computing resources are required [12]. Spatial correlation models, which are applied
to solve time series forecasting to make up for the shortcomings of physical algorithms, take the
relationships of time series from different locations into consideration [13]. A classic case is a novel
model proposed by Tascikaraoglu et al. [14] utilizing a spatiotemporal method and a wavelet transform,
successfully improving the performance of forecasting compared to other benchmark models. However,
spatial correlation arithmetic is always difficult to use in practice because of its requirements of strict
measurements and a large amount of meticulous measuring in many spatially related sites [15].

Traditional prediction methods also include random time series models such as exponential
smoothing, autoregressive (AR) methods, filtering methods, autoregressive moving average (ARMA)
methods, and the well-known autoregressive integrated moving averages (ARIMA) and seasonal
ARIMA models, mainly focusing on regression analysis [16,17]. The regression model is aimed at
establishing a relationship between historical data, treated as dependent variables, and influencing
factors, treated as independent variables [18]. For example, Lee and Ko [19] adopted an ARIMA-based
model to forecast and simulate hourly electric load data of the Taipower system. Wang et al. [20]
improved the accuracy of seasonal ARIMA applied to electricity demand forecasting by the use of
residual modification models. They applied a seasonal ARIMA approach, an optimal Fourier model,
and a combined model including seasonal ARIMA and the PSO optimal Fourier method. They used
these three models to predict electric load time series data in northwestern China. After juxtaposing
the results, they found that the combined model was the most accurate one. Brożyna et al. [21] used
the TBATS model to overcome the seasonality in data, which may bring difficulties when doing time
series forecasting by using models such as ARIMA.

Modern forecasting methods include artificial neural networks (ANNs), support vector machines
(SVMs), fuzzy systems, expert system forecasting methods, chaotic time series methods, gray models,
adaptive models, optimization algorithms, etc. [22]. These modern methods are getting more popular
among researchers when dealing with time series forecasting [23]. These artificial intelligence models
can achieve good forecasting performance because of their unique characteristics, such as memory,
self-learning, and self-adaptability, since the neural networks are products of biological simulation
that follow the behavior of the human brain [24]. Park [25] showed good performance of this type of
model after first applying ANNs in power load forecasting in 1991. He concluded that ANNs were
highly effective in electrical load forecasting. After that, many time series forecasting studies were
performed using various artificial neural networks by a lot of researchers [26]. Lou and Dong [27]
proved that electric load forecasting with RFNN showed much higher variability with hourly data in
Macau. Okumus and Dinler [28] integrated ANNs and the adaptive neuro-fuzzy inference system to
predict wind power, and forecasting results proved that their proposed hybrid model was better than
the classical methods in forecasting accuracy. Hong [29] selected better parameters for SVR by using
the CPSO algorithm, while Che and Wang [30] established a hybrid model that was a combination
of ARIMA and SVM, called SVRARIMA. Liu et al. [31] built a model integrating EMD, extended
extreme learning machine (ELM), Kalman filter, and PSO algorithm. Although the hybrid model
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seemed better than individual classical models, the limitations of each model due to the nature of
the structure seemed inevitable [32]. In order to solve this problem, a combined forecasting model
is proposed. The combined forecasting theory has been developed through the joint efforts of three
generations of scientists. It was initiated by Bates and Granger [33] and developed by Diebold and
Pauly [34], then further extended by Pesaran and Timmermann [35] as a combination of several
individual models. Many kinds of ANNs have been combined into short-term forecasting models
in order to fully utilize the advantages of individual models and at the same time overcome their
shortcomings. There are some typical studies: Zhang et al. [36] successfully obtained promising results
of wind speed forecasting by developing a combined model that consisted of CEEMDAN, five neural
networks, CLSFPA, and no negative constraint theory (NNCT). In addition, Che et al. [37] developed a
kernel-based SVR combination model in a study on electric load prediction.

It is obvious from the review of forecasting methods that there are shortcomings in both traditional
and modern techniques. The shortcomings of these models are summarized as follows:

For physical algorithms, the main problem is that physical methods cannot deal with short-term
horizons. Physical methods perform well when dealing with long-term forecasting problems [38].
Moreover, it costs a lot of computing time and resources when using NWP models because of
their complex calculation process and high cost. Spatial correlation arithmetic requires detailed
measurements from multiple spatially correlated sites, which increases the difficulty in searching for
electric load data. Moreover, because of the strict measuring requirements and time delays, the model
is always hard to implement [39].

For conventional statistical arithmetic, mainly known as the linear model, there are insurmountable
shortcomings. First and foremost, these models cannot deal with nonlinear features of electric load
time series [40]. Moreover, the regression method also fails to achieve the expected forecasting accuracy.
Linear regression relies too much on historical data to cope with nonlinear forecasting problems; as
time goes by, the forecasting effect of regression analysis models will become weaker and weaker [41].
In addition, when faced with complex objective data, it is hard to choose the appropriate influencing
factors. The exponential smoothing model also has shortcomings, in that it cannot recognize the turning
point of the data and does not perform well in long-term forecasting [42]. As for the autoregressive
moving average model, it only gets results through historical and current data, ignoring potential
influencing factors. In addition, strong random factors of the data may lead to instability of the model,
which affects the accuracy of the forecasting performance [43]. All in all, none of these models meet
the accuracy required by an electric load forecasting system.

For artificial intelligence arithmetic, although artificial intelligence neural network performance is
superior to traditional forecasting techniques, ANNs are impeccable; the defects and shortcomings
of their structure cannot be ignored. There are three major problems. First, it is hard to choose the
parameters of ANN models, as a slight change in parameters may cause huge differences in the
outcomes [44]. Second, ANNs are inclined to fall into local minima owing to their relatively slow
self-learning convergence rate [45]. Lastly, the number of layers and neurons in a neural network
structure has an effect on the forecasting result and computing time [46]. As to other models, SVM has
a high requirement for storage space and expert systems strongly rely on knowledge databases, while
gray forecasting models can produce decent results only under the condition of exponential growth
trends [47]. To solve these problems, evolutionary algorithms are applied. When the optimization
algorithms are combined with forecasting models, more reasonable parameters will be selected and
more accurate results will be obtained.

To overcome the abovementioned drawbacks, in our proposed model, we use a data preprocessing
method, no negative constraint theory (NNCT) [48], a multiobjective optimization algorithm, a linear
forecasting method, autoregressive integrated moving average (ARIMA) [49], and three artificial
intelligence forecasting algorithms, wavelet neural network (WNN) [50], extreme learning machine
(ELM) [51], and back propagation neural network (BPNN) [52]. The proposed model improves
forecasting performance by maximizing the benefits of both linear and nonlinear advantages by using
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each single model. It is worth mentioning that for the purpose of improving the forecasting effect
of our model, a mechanism based on decomposition and reconstruction is employed to ensure that
the main features of the original data are identified and extracted by removing high-frequency noise
signals. Then, four individual models are applied to the electrical load forecasting. Lastly, a new weight
decision technique based on the multiobjective grasshopper optimization algorithm and stay-one
strategy was successfully used to integrate the four models. The experimental results show that our
combined model has high forecasting accuracy and strong stability.

The main contributions and novelties of our proposed model are summarized as follows:

(1) Applying the decomposition and reconstruction strategy, data preprocessing methods are adopted to extract
main features of the original data by eliminating high-frequency signals, making predictions more accurate.
Decomposing the original power data and reconstructing it into a filtering sequence can eliminate
the irregularity and uncertainty of the data and achieve better power load forecasting performance.

(2) Applying the multiobjective optimization algorithm, the optimal weight coefficient of each single model can
be optimized. Our proposed combined model is not only robust, but also economical in power
load forecasting. Moreover, it has higher precision and greater stability.

(3) With the combination of the linear model (ARIMA) and nonlinear models (WNN, ELM, and BPNN), the
developed model can reflect both the linearity and nonlinearity of electrical load data. Our proposed
model can use each individual model thoroughly and it spontaneously overcomes limitations
such as low precision and instability to ensure the effectiveness of power load forecasting.

(4) The new combined model beats other single models and will provide effective technical support for power
system management. The developed model was simulated and examined based on the electric load
data of three different sites, which indicates its strong robustness and adaptability regardless of
location and forecasting steps.

The rest of the paper is arranged as follows. In Section 2, we introduce the methodology we applied
in the proposed model, including the data preprocessing technique, ARIMA, WNN, ELM, BPNN, the
theory of combined models, and multiobjective grasshopper optimization. Section 3 describes the
electric load time series we selected and three experiments aimed at verifying the effectiveness of our
forecasting model. In Section 4, we provide an in-depth discussion of the proposed model, including
a test of the performance of the proposed optimization algorithm, two tests of the effectiveness of
the model, and a test showing the improvement of the model and a comparative experiment of the
combination method.

3. Methods

In this section, we discuss the methods of the proposed combined model in detail, including the
singular spectrum analysis (SSA) technique, the individual models used in the combined model, and
the multiobjective grasshopper optimization algorithm (MOGOA). After that, a combined model that
can significantly improve the definition of electric load forecasting is presented.

3.1. SSA Technique

SSA is a nonparametric spectral estimation method usually used for filtering in the preprocessing
stage of time series forecasting. The advantage of SSA is that it always works well in both linear and
nonlinear time series. Moreover, it performs well whether the time series is stationary or not. In short,
the way SSA works is to identify the trend and noise parts of a time series, after which it reconstructs a
new series.

3.2. Wavelet Neural Network

Wavelet neural network (WNN) is a modern artificial intelligence model. It is essentially a
feed-forward neural network based on wavelet transform [53]. Its basic working principle is to use
wavelet space as the feature space of pattern recognition to realize the feature extraction of signals by
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weighting the inner product of the wavelet base and the signal vector and combining the time-frequency
localization of the wavelet transform and the self-learning function of the neural network. It has the
advantage of being able to effectively learn the input/output characteristics of the system without the
need for a priori information such as data structures and characteristics. In addition, compared with
traditional neural networks, wavelet neural networks can often achieve better prediction accuracy,
faster convergence, and better fault tolerance when forecasting in complex nonlinear, uncertain, and
unknown systems. So, we applied WNN as an individual nonlinear model in our proposed model.

3.3. Extreme Learning Machine

Extreme learning machine (ELM) is a kind of machine learning algorithm based on feed-forward
neuron network [54]. Its main feature is that the hidden layer node parameters can be given randomly
or artificially and do not need to be adjusted. The learning process only needs to calculate the output
weight. ELM has the advantages of high learning efficiency and strong generalization ability and is
widely used in time series forecasting. As a result, we applied ELM as an individual nonlinear model
in our proposed model.

3.4. Back Propagation Neural Network

The back propagation neural network (BPNN), composed of an input layer, a hidden layer, and
an output layer, is a concept that was proposed by scientists led by Rumelhart and McClelland in
1986 [55]. It is a multilayer feed-forward neural network trained according to the error back propagation
algorithm. Learning and working stages are the whole process of BPNN. It is the most widely used
neural network. It has arbitrary complex pattern classification ability and excellent multidimensional
function mapping ability, which solves the exclusive OR (XOR) and other problems that cannot be
solved by simple perception. In essence, the BP algorithm uses the network error squared as the
objective function and the gradient descent method to calculate the minimum value of the objective
function. Moreover, because of its flexible structure and strong nonlinear mapping capability, BPNN is
widely applied in the engineering field. So, we applied it as an individual nonlinear model in our
proposed model.

3.5. Autoregressive Integrated Moving Average Model

The ARIMA model, also known as the autoregressive moving average model, is a model used for
time series forecasting with relatively high prediction accuracy. The ARIMA model mainly consists of
3 forms, a moving average MA model, an autoregressive AR model, and a mixture of autoregressive
moving average ARMA models. Before using this model, it is necessary to first analyze whether the
time series is stable. If the sequence is a nonstationary time series, the first step is to differentiate the
time series, and the difference must be smoothed before the model is established, otherwise it cannot
be used.

The difference between the ARIMA model and the ARMA model is that the ARMA model is
built for stationary time series and the ARIMA model is used for nonstationary time series. In other
words, to establish an ARMA model for a nonstationary time series, you first need to transform into a
stationary time series and then build an ARMA model. We applied ARIMA as an individual linear
model in our proposed model.

3.6. Basic concepts of Multiobjective Optimization Problems

Conventional relational operators such as >, <, and =, which are always found in single-objective
optimization problems, cannot be applied in multiobjective optimization. To address this problem, a
new concept of dominates was proposed and then extended by Edgeworth in 1881 and Pareto in 1964.
Details of Pareto dominance are as follows:

Definition 1 (Pareto dominance):
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The definition of Pareto dominance is: vector y = (y1, y2,...yz) is dominated by vector x =

(x1, x2,...xz) (i.e., x > y) when

∀ t ∈ [1, z], [ f (xt) ≥ f (yt)] ∧ [∃t ∈ [1, z] : f (xt) > f (yt)] (1)

where z represents the length of vectors.

3.7. Multiobjective Grasshopper Optimization Algorithm

MOGOA is the latest nature-inspired method, proposed by Mirjalili [56]. Essentially, MOGOA is
a multiobjective version of GOA. GOA is a nature-inspired algorithm that simulates the swarming
behavior of grasshoppers. The position of a grasshopper in the swarm representing a possible solution
of a given single-objective optimization problem is the main principal of GOA. The details of MOGOA,
and the main steps of building it, are as follows:

In order to replicate the real living conditions of grasshoppers in nature, MOGOA takes 3
factors—gravity force, social interaction, and wind advection—into the model. Xi means the position
of the ith grasshopper and is represented by:

Xi = Si + Gi + Ai (2)

where Si, Gi, and Ai mean social interaction, gravity force, and wind advection, respectively.
Social interaction is the most important factor, calculated by the following equation:

Si =
N∑

j = 1
j , i

s(di j)d̂i j (3)

di j =
∣∣∣x j − xi

∣∣∣ (4)

d̂i j =
(
x j − xi

)
/di j (5)

s(r) = f e−r/l
− e−r (6)

where di j means the distance between the ith and jth grasshoppers, and d̂i j is a unit vector of di j.
Function s defines that the values of parameters f and l are changed, so the social forces can be changed
too. The distance between grasshoppers is limited to the interval of [1,4], because, according to common
sense, when 2 grasshoppers are far apart, they will not have a strong social influence on each other.
Gravity force is defined as:

Gi = −gêg (7)

where g is the gravitational constant and êg represents the unity vector toward the center of the earth.
Wind advection is defined as:

Ai = uêw (8)

where u means constant drift and êw represents the unity vector in the wind direction. After replacing
Equation (2) with the above 3 equations, we can get:

Xi =
N∑

j = 1
j , i

s(
∣∣∣x j − xi

∣∣∣)x j − xi

di j
− gêg + uêw (9)

Considering that the influence of gravity force on grasshoppers is too weak and assuming that the
wind direction is always toward the best solution T̂d, some parameters are added to the mathematical
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model to enhance the ability to explore and exploit for the purpose of solving the optimization problem
more effectively. After that, the mathematical model turns to:

Xi
d = c(

N∑
j = 1
j , i

c
ubd − lbd

2
s(

∣∣∣x j
d
− xi

d
∣∣∣)x j − xi

di j
) + T̂d (10)

where ubd and lbd are the upper and lower bound of the dth dimension, respectively, and T̂d is the
best solution’s dth dimension value so far. For the purpose of reducing exploration and increasing
exploitation proportional to cmax at the same time, the parameter c is updated with the following
equation:

c = cmax − l
cmax − cmin

L
(11)

Compared with finding solutions from a series of Pareto optimal solutions obtained by MOGOA,
it is easier to find the best solution calculated so far in a single-objective search. Because the archive
has all the Pareto optimal solutions, the position of the target is determined. Finding the target that
can improve the solution’s distribution becomes the biggest problem. The possibility of choosing the
target from the archive is calculated by:

Pi =
1

Ni
(12)

where Ni represents the neighborhood of the ith solution’s total number. With this probability, there
are 2 advantages to using the roulette method when selecting a target from a file: first, the roulette
method can improve the distribution of less distributed areas of the search space, and second, when
premature convergence occurs, a solution with a crowded neighborhood can be selected as a target to
solve the problem.

When updating the content of the archive regularly in MOGOA, 2 criteria are implemented: (1)
give up an external solution as long as this external solution is dominated by one archive solution; and
(2) add an external solution to the archive when the external solution does not dominate all solutions
inside the archive. Moreover, as long as an external solution dominates a solution inside the archive,
the inside one should be replaced by the external one. All in all, MOGOA can not only find Pareto
optimal solutions, but also store them in an archive.

The pseudocode of MOGOA is as follows:
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Algorithm 1: MOGOA

Objective functions:

min
{

O1 =
∣∣∣Bias(ŷ)

∣∣∣
O2 = std(y− ŷ)

Input:

ŷB = (ŷB(1), ŷB(2), · · · , ŷB(q))- BPNN
ŷE = (ŷE(1), ŷE(2), · · · , ŷE(q))- ELM
ŷW = (ŷW(1), ŷW(2), · · · , ŷW(q))-WNN
ŷA = (ŷA(1), ŷA(2), · · · , ŷA(q))-ARIMA

Output:

ŷ f =
(
ŷ f (1), ŷ f (2), · · · , ŷ f (l)

)
- forecasting results

Parameters:

L—the maximum number of iterations
n—the number of grasshoppers
lbi,ubi—boundaries of the i-th variable
xi—i-th grasshopper’s position
l—current iteration number
d—dimension amount.
cmax—c’s maximum value
cmin— c’s minimum value
T̂d—best solution’s d-th dimension value so far
dij—the distance between the i-th and the j-th grasshopper

s—social forces function
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3.8. SSA-MOGOA Combined Model

In our study, a new combined model applying a data preprocessing technique, a new parameter
determination method, and several individual prediction algorithms, including both linear and
nonlinear models, is successfully developed. The main steps are listed below. The flowcharts of the
proposed model are depicted in Figure 1.

3.8.1. Stage 1: Data Preprocessing

SSA is a nonparametric spectral estimation method usually used for filtering in the preprocessing
stage of time series forecasting [57]. The advantage of SSA is that it always works well in both linear
and nonlinear time series. In addition, the processed data will be used in subsequent forecasting. The
main steps of SSA are depicted in Figure 1.

3.8.2. Stage 2: Individual Models used for Forecasting

Three nonlinear models, BPNN, ELM, and WNN, and a linear model, ARIMA, are chosen as the
individual models that together form the combined model. It is worth mentioning that all 4 models
can achieve good prediction results in our electric load forecasting.

3.8.3. Stage 3: Optimization of Weight Parameters of Combined Model

Determining the parameter coefficients of each individual model is very important for construction
of the combined model. In past combined models, a simple average coefficient allocation strategy was
often used. In our research, we adopted a multiobjective optimization algorithm called MOGOA for
the deciding parameters and made the combined model achieve good prediction results in electric
load forecasting.
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Figure 1. Structure of proposed singular spectrum analysis–multiobjective grasshopper optimization algorithm (SSA-MOGOA) combined model.
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4. Experiments and Analysis

In this section, we introduce the electric load time series we selected and the performance metric
and testing methods. We also present three experiments aimed at verifying the effectiveness of our
forecasting model. The main steps and flowchart of the developed model are described in Figure 1,
which includes a data preprocessing technique, application of several individual models, optimization
of the combined model’s weight coefficients, and forecasting results.

4.1. Datasets

In this paper, original electric load time series data were collected from two areas in Australia,
New South Wales (NSW) and Queensland (QLD), on a half-hourly basis (48 data points per day). Two
datasets were collected in New South Wales and Queensland, which were sampled from 13 to 31 July
2011, 19 days in all. The third dataset was sampled from 13 to 31 July 2010 in Queensland. Figure 2
presents a simple map of the study area, some descriptive statistical indicators of the datasets, and three
general trends of testing samples. Specifically, in each dataset, the training set included 768 data points
and the testing set consisted of 144 data points. There were 48 data points in a single day according
to the data, therefore we selected the period T = 48 for the combined model. Statistical indicators
including minimum, maximum, mean, and standard deviation are listed in Table 1. From one-step
to three-step prediction, forecasting outcomes are all based on the historical data, which means this
experimental outcome is not used as input data to forecast the subsequent values in this study, while
in artificial intelligence models, based on plenty of experimental results, five historical data points are
chosen as input so as to obtain the best forecasting performance in the multistep forecasting mechanism.
The detailed data structure is presented in Figure 2.

Table 1. Statistical indicators of experimental samples for three sites.

Dataset. Samples Numbers
Statistical Indicator(kw)

Max Min Mean Std.

QLD(2010)
All samples 912 7033.21 4316.89 5788.65 741.36

Training 768 7033.21 4316.89 5803.04 746.40
Testing 144 6476.49 4361.6 5711.87 708.99

QLD(2011)
All samples 912 7234.04 4399.42 5782.99 724.57

Training 768 7234.04 4412.33 5834.35 729.96
Testing 144 6718.05 4399.42 5509.06 627.75

NSW(2011)
All samples 912 12883.81 6821.4 9707.66 1337.86

Training 768 12883.81 6821.4 9819.03 1346.71
Testing 144 11314.46 6939.18 9113.68 1115.41

4.2. Performance Metrics

In our study, to evaluate the predictive power of the proposed model, we needed performance
metrics in our time forecasting experiments. Because there is no general standard for evaluating a
time forecasting model, we decided to apply three performance metrics: mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percent error (MAPE), as presented in Table 2 [58].
Next, we introduce these three performance metrics in detail.

From the definitions of MAE and RMSE, it is obvious that the advantage of these two performance
metrics is that they can avoid canceling between positive and negative forecasting errors due to the
use of absolute value symbols. They can evaluate the average dimension of the forecasted time series
with actual data. MAPE, which is regarded as the most widely used performance metric in time series
forecasting, is obtained by calculating the average of absolute error. The advantage of MAPE is that it
can reflect the reliability and validity of the time series forecasting method. When observing the values
of all three of these metrics, the smaller the value, the more accurate the prediction. Table 2 shows
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the formulas of the three error metrics. Here Ai means actual values of the time series and Fi means
predicted values, and N means sample size.

Figure 2. Location of electric load and data structure.

Table 2. Three error metrics.

Metric Definition Equation

MAE The mean absolute error of N forecasting results MAE = 1
N

N∑
i=1
|Fi −Ai|

RMSE The square root of the average of error squares RMSE =

√
1
N ×

N∑
i=1

(Fi −Ai)
2

MAPE The average of N absolute percentage error MAPE = 1
N

N∑
i=1

∣∣∣∣Ai−Fi
Ai

∣∣∣∣× 100%

4.3. Testing Method

In this section, we introduce the Diebold–Mariano (DM) test and the forecasting effectiveness that
were applied to statistically test the accuracy of our proposed model in time series forecasting.

4.3.1. Diebold–Mariano Test

Diebold and Mariano [59] developed a test to compare a model’s prediction efficiency with that of
other models. The main steps of the DM test are as follows:

Since the DM test is essentially a hypothesis test, the first things to introduce are the null hypothesis
H0 and alternative hypothesis H1:

H0 : E
[
F
(
e1

t

)]
= E

[
F
(
e2

t

)]
(13)

H1 : E
[
F
(
e1

t

)]
, E

[
F
(
e2

t

)]
(14)

where e1
t and e2

t are subtracted from actual time series data and the different models’ predicted time
series values, also called forecasting errors, and F is the loss function of e1

t and e2
t .

d =
1
L

L∑
t=1

[
F
(
e1

t

)
− F

(
e2

t

)]
(15)
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d is obtained by calculating the average of the sum of differences between the two models’ loss
function, and L is the length of predicted values.

DM =
d√

2π
∼

fd(0)/L

→ N(0, 1) (16)

As shown in the above formula, the test statistic DM is convergent in the standard normal
distribution N (0, 1). The null hypothesis will be rejected if |DM| is bigger than

∣∣∣Zα/2
∣∣∣, where zα/2

stands for the critical z-value of the standard normal distribution and α denotes the significance level.

4.3.2. Forecasting Effectiveness

Forecasting effectiveness can be calculated by the accuracy of the mean squared deviation, which
the DM test cannot do [60]. Forecasting effectiveness is also employed in our study. The principal
ideas of forecasting effectiveness are as follows:

mk =
n∑

i=1
QiAk

i is used to calculate the kth order forecasting effectiveness unit, where Ai means

forecasting accuracy time i; Qi object to
n∑

i=1
Qi = 1, Qi > 0, called discrete possibility distribution. Qi

will be defined as Qi = 1/n, i = 1, 2, . . . , n when there is no prior information of Qi. The kth order
forecasting effectiveness is calculated by H

(
m1, m2, · · · , mk

)
, where H is a continuous function with

k units. The first-order forecasting effectiveness will be defined as H
(
m1

)
= m1 when H(x) = x is a

continuous constant function. H
(
m1, m2

)
= m1

(
1−

√
m2 − (m1)2

)
will be called as the second-order

forecasting effectiveness when H(x, y) = x
(
1−

√
y− x2

)
is a continuous function with two variables.

4.4. Experiments and Analysis

In this part, to examine our proposed model’s performance in electric load time series forecasting,
we did three experiments from corresponding power station sites.

4.4.1. Experiment I: Compare with Other Models Based on SSA

In order to determine the necessity of combining the models, we made this experiment comparing
the electric load time series forecasting results of our new model with the four SSA-based models. The
experimental results are shown in Table 3. Detailed descriptions are as follows:

• By observing the experimental results using the 2010 Queensland power data, the following
results were found: First of all, the most obvious was that our proposed combined model had the
best prediction performance whether the statistical indicator was MAE, RMSE, or MAPE; in other
words, the smallest error metrics values. Second, if we look closely at the forecasting steps, we
can find that the forecasting accuracy gets worse. In one-step forecasting, our proposed model’s
MAPE value is 0.37%, and it increases to 0.68% in three-step forecasting.

• For the 2011 Queensland power data, we found the following: First, our proposed model was still
the most accurate one. It is worth mentioning that in one-step forecasting, the forecasting gap
between our model and the SSA-ELM model was big. Specifically, the MAE values of our model
and SSA-ELM were 20.79 and 23.90, respectively, while they were 21.26 and 22.35 with the 2011
Queensland power station data. The superiority of the proposed model can be more intuitively
reflected in the Figure 3.

• Regarding the results using the 2011 New South Wales power data, compared to the first two
experiments, which used electric load data from Queensland, the error metric values were
significantly larger in the third experiment. This reflects the differences among different power
plants. The great thing was that our proposed combined model still outperformed other SSA-based
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models in one-step to three-step forecasting. This is powerful proof that our model is indeed
superior. At the same time, we can also determine the necessity of combining models through this
experiment by the fact that it really can improve forecast accuracy.

N.B. By comparing the forecasting results of our proposed combined model with other SSA-based
models, there were many useful findings from Experiment I. Our model’s overall performance in
predicting accuracy demonstrates the need to combine models. Moreover, our proposed model greatly
improves electric load forecasting accuracy with an average MAPE of 0.52% in all experiments.

Table 3. Comparison of proposed model with other SSA-based models.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

SSA-BP 24.78 32.79 62.15 30.87 39.70 80.51 0.44 0.58 1.10
SSA-ELM 22.35 36.58 68.08 28.35 44.18 86.52 0.40 0.66 1.20
SSA-WNN 26.23 52.69 95.45 36.09 68.78 126.16 0.47 0.93 1.71

SSA-ARIMA 39.18 40.71 43.54 52.83 54.84 57.59 0.70 0.72 0.78
Proposed

Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

SSA-BP 26.21 35.21 71.09 34.48 45.07 86.81 0.50 0.65 1.31
SSA-ELM 23.90 34.98 90.62 30.43 45.20 118.89 0.44 0.65 1.69
SSA-WNN 35.30 80.94 169.98 45.58 100.84 216.67 0.68 1.53 3.16

SSA-ARIMA 42.82 44.60 48.70 58.27 58.10 61.19 0.77 0.81 0.90
Proposed

Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

SSA-BP 47.49 77.03 130.75 62.67 97.79 159.54 0.53 0.86 1.49
SSA-ELM 46.43 73.69 153.61 59.45 90.02 197.51 0.51 0.82 1.74
SSA-WNN 58.74 125.89 258.21 75.26 163.72 324.61 0.66 1.43 2.94

SSA-ARIMA 90.62 95.95 105.31 127.67 128.47 130.37 0.99 1.04 1.16
Proposed

Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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Figure 3. Comparison of multistep forecasting performance of Experiment I in Queensland (QLD; 2010).
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4.4.2. Experiment II: Comparing Models using Other Data Preprocessing Methods

In order to verify whether singular spectrum analysis (SSA) is the best choice for data processing,
we conducted an experiment comparing the electric load time series forecasting results of our proposed
model with other data processing method–based models. The experimental results are shown in
Table 4. Detailed descriptions are as follows:

• Observing the experimental results using the 2010 Queensland power data, the proposed combined
model achieved the highest forecasting accuracy. In contrast, the CEEMD preprocessed model
was the most effective among the other three data processing methods, with MAPE values of
0.54%, 0.64%, and 0.90% from one-step to three-step forecasting, respectively. For the proposed
model, MAPE values were 0.37%, 0.45%, and 0.68% from one to three steps, respectively.

• For the experiment using the 2011 Queensland power data, according to the evaluation criteria,
the proposed model outperformed the other models. The MAPE values of the models using
EMD, EEMD, and CEEMD were, respectively, 0.33%, 0.21%, and 0.18% higher than those of the
proposed model in one-step forecasting. Figure 4 shows a comparison of the one- to three-step
forecasting performance of Experiment II. It can be concluded that the proposed combined model
achieved the highest accuracy compared to the models using other data preprocessing methods in
three-step forecasting.

• When using the 2011 New South Wales power data, similar to Experiment I, compared to the first
two experiments using data from Queensland, the error metric values of the third experiment
were significantly larger. This reflects the difference between different power plants. In addition,
there were also some interesting conclusions. For example, in the first two sets of power plant
data, the CEEMD model performed better than the EMD model, but in the third group, the EMD
and CEEMD models performed almost the same. However, our model still the performed the
best. We can also determine the necessity of applying singular spectrum analysis (SSA) in our
model so that it performs better than the other three classic data processing methods.

N.B. In experiment II, by comparing the forecasting results of our proposed combined model with
other models using different data processing methods, there are many useful findings. Our model’s
overall lead in predicting accuracy demonstrates that SSA is the best choice of data processing method.

Table 4. Comparison of forecasting performance of combined model and models using different data
preprocessing methods.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

EMD 39.86 47.91 56.38 45.93 56.44 67.71 0.72 0.88 1.05
EEMD 33.72 42.97 55.97 50.84 56.95 70.47 0.60 0.78 0.99

CEEMD 30.04 35.90 51.47 36.74 44.14 64.19 0.54 0.64 0.90
Proposed

Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

EMD 38.37 46.63 60.59 50.13 57.51 72.93 0.71 0.86 1.12
EEMD 31.56 55.11 84.83 38.57 73.23 107.65 0.59 1.00 1.56

CEEMD 30.48 32.89 53.04 43.11 44.62 66.12 0.56 0.61 0.97
Proposed

Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

EMD 60.95 74.46 110.60 83.78 95.41 135.10 0.66 0.82 1.24
EEMD 65.29 112.21 166.16 80.19 140.71 213.64 0.73 1.25 1.81

CEEMD 62.29 82.48 100.39 82.51 100.77 125.26 0.67 0.92 1.12
Proposed

Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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Figure 4. Comparison of multistep forecasting performance of Experiment II for QLD (2011).
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4.4.3. Experiment III: Comparing with Classic Models

In Experiment III we took the forecasting results of our proposed model and the artificial
intelligence model to compare the BP, WNN, ELM, and ARIMA. In order to make the experiment
more complete and persuasive, we also compared it with some classic conventional models. The
experimental results are shown in Table 5. Figure 5 shows a comparison of the one- to three-step
forecasting performance of Experiment III. Detailed descriptions are as follows:

• With the experiments using the 2010 Queensland power data, we found that, first, our proposed
combined model had the best prediction performance whether the statistical indicator was MAE,
RMSE, or MAPE. For instance, taking the one-step forecasting MAE values for comparison, the
values were 46.12, 47.54, 51.24, 45.76, 46.24, 64.08, 38.971, and 21.26. The proposed model’s MAE
value was only about half of other methods’ values. Second, in two- and three-step forecasting,
the combined model was more effective than the other methods. The prediction performance
of all other models was significantly worse than that of our model and there was still a big gap,
which was sufficient to reflect the excellence of our model.

• With the 2011 Queensland power data, the results were as follows: First, our proposed model
was still the most accurate. Second, although the data were from a different year, it is clear that
forecasting results of the first two experiments are fairly similar, which reflects the stability of our
method. The RMSE values of the proposed model were 27.75, 30.73, and 44.80 for one to three
steps, respectively.

• For the 2011 New South Wales power data, the RMSE values of the proposed model were 57.63,
73.87, and 97.92 for one to three steps, respectively. The great thing is that our proposed combined
model still outperformed the other data processing methods in one- to three-step forecasting. This
is powerful proof that our model is indeed the best of all eight models. Although not as accurate
as the predictions in the first two experiments, the degree of improvement in the prediction results
did not change much at around 50%. This will be discussed in the next section.

Table 5. Comparison of forecasting performance of combined model and some classic individual models.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

BP 46.12 80.44 119.79 59.34 102.45 150.21 0.81 1.40 2.10
BP-MODA 47.54 86.23 121.67 59.98 108.89 162.77 0.84 1.52 2.13

WNN 51.24 99.72 145.12 64.72 136.56 189.77 0.90 1.75 2.58
ENN 45.76 82.88 126.34 60.95 104.71 168.20 0.80 1.46 2.24
ELM 46.24 85.19 130.82 59.28 110.41 171.58 0.81 1.50 2.34
RBF 64.08 134.02 185.37 86.13 185.85 275.07 1.12 2.33 3.22

ARIMA 38.97 73.96 88.00 49.44 91.95 105.91 0.70 1.32 1.58
Proposed Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

BP 45.61 93.75 147.05 64.12 127.47 217.66 0.82 1.71 2.66
BP-MODA 44.23 85.21 124.31 61.31 116.22 163.60 0.79 1.56 2.28

WNN 62.72 138.62 200.49 80.68 181.26 268.88 1.16 2.55 3.75
ENN 50.62 98.11 152.69 70.11 135.34 207.65 0.92 1.80 2.79
ELM 48.77 96.45 158.82 66.91 133.68 216.32 0.89 1.76 2.91
RBF 85.22 170.73 308.71 198.05 524.76 971.50 1.53 3.10 5.64

ARIMA 37.50 68.01 87.55 46.94 87.81 107.32 0.71 1.28 1.64
Proposed Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

BP 89.72 163.56 276.83 124.34 215.84 349.76 0.96 1.79 3.05
BP-MODA 85.23 180.48 268.43 110.79 251.79 360.47 0.92 1.98 2.94

WNN 92.97 243.25 400.39 118.54 323.58 538.95 1.02 2.71 4.52
ENN 101.07 191.08 282.89 133.22 265.73 362.33 1.09 2.08 3.13
ELM 98.76 205.09 317.34 130.92 274.27 410.74 1.06 2.24 3.53
RBF 149.92 216.50 351.10 280.01 318.79 449.90 1.60 2.36 3.84

ARIMA 78.00 130.15 159.76 95.68 161.82 203.99 0.88 1.46 1.80
Proposed Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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Figure 5. Comparison of one-step forecasting performance of Experiment III for New South Wales (NSW; 2011).
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N.B. In experiment III, by observing the results including our proposed method, models that we
applied in our model, and traditional models we did not use, we found that our model had an overall
lead in predicting accuracy. This demonstrates that our proposed combined model will save a lot of
energy for power systems and should be applied in actual electric load forecasting practice.

5. Discussion

This section provides an in-depth discussion of the proposed model, including a proposed
optimization algorithm performance test, two proposed model effectiveness tests, and an experiment
showing the improvements of the proposed model and a comparative experiment.

5.1. Multiobjective Grasshopper Algorithm Experiments

Four typical test functions (shown in Table 6) were applied to examine the excellence of the
proposed algorithm. We chose multiobjective ant lion optimization (MOALO) and the multiobjective
dragonfly algorithm (MODA) to compare with MOGOA to examine its optimization performance. To
control variables, we set the maximum iterations and search agents as 100 and the size of archive as
150. We applied inverted generational distance (IGD), which is a metric showing the evaluation degree
of multiobjective optimization algorithms. Table 7 shows the test results of IGD, for which we did
60 experiments for every test function [61]. Moreover, Figure 6 shows the obtained Pareto optimal
solutions by these three algorithms.

Table 6. Test functions of algorithms.

ZDT1 ZDT2

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−

√
f1(x)
g(x)

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−
(

f1(x)
g(x)

)2

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

ZDT3 ZDT1 with linear front

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−

√
f1(x)
g(x)

−

(
f1(x)
g(x)

)
sin(10π f1(x))

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1− f1(x)
g(x)

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

From the experimental results we can see the following:

(a) MOGOA gets the best IGD values among the optimization algorithms in all four test functions,
which proves that its optimizing ability is superior to that of MODA and MOALO.

(b) By observing the contrast of the number of the Pareto optimal solutions calculated by MOGOA,
MODA, and MOALO shown in Figure 6, we find that MOGOA had the most Pareto optimal
solutions among all three algorithms.

N.B. The optimization ability of MOGOA is proven to be good through the experiment
and discussion above. Therefore, MOGOA can be widely applied to deal with multiobjective
optimization problems.
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Table 7. Results of multiobjective algorithms using inverted generational distance (IGD) on four
test functions.

Algorithm Ave. Std. Median Min Max

ZDT1
MOALO 0.006213 0.007038 0.005901 0.004272 0.024323
MODA 0.005826 0.005798 0.005082 0.002613 0.025404

MOGOA 0.004275 0.003089 0.004669 0.002573 0.024234
ZDT2

MOALO 0.009454 0.007343 0.008998 0.004738 0.022138
MODA 0.008173 0.005193 0.008532 0.003643 0.023234

MOGOA 0.008015 0.003140 0.005395 0.002157 0.023118
ZDT3

MOALO 0.027063 0.000867 0.026627 0.028135 0.026727
MODA 0.025089 0.000521 0.024982 0.028182 0.027322

MOGOA 0.024270 0.000469 0.024246 0.024186 0.023801
ZDT1 with linear front

MOALO 0.006821 0.005623 0.006532 0.005431 0.026626
MODA 0.006101 0.005541 0.005926 0.003863 0.024777

MOGOA 0.005569 0.004986 0.003985 0.002211 0.024461

Figure 6. Pareto optimal solutions obtained by optimization algorithm for test functions.

5.2. Proposed Model’s Effectiveness

The Diebold–Mariano test was used to verify the validity of the developed model, which means
every model mentioned above was compared to the SSA-MOGOA combined model. The DM test
is a kind of hypothetical test. The null hypothesis is that there is no significant difference in the
models’ forecasting performance. The opposite hypothesis is that there is a significant different in the
models’ forecasting performance. Table 8 shows average DM test values of all experiments for one- to
three-step forecasting.
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Table 8. DM test of different models.

Model 1-step 2-step 3-step

SSA-BP 2.7503 * 3.8971 * 6.1244 *
SSA-ELM 1.6379 ** 3.9104 * 6.3244 *
SSA-WNN 4.0126 * 6.8486 * 7.3544 *

SSA-ARIMA 4.9261 * 5.0164 * 4.0033 *

EMD 5.4365 * 5.5545 * 5.7057 *
EEMD 4.3034 * 5.0669 * 5.21 *

CEEMD 3.7225 * 3.8063 * 4.3806 *

BP 4.7348 * 5.9805 * 6.3855 *
BP-MODA 5.2960 * 5.8782 * 6.2118 *

WNN 6.3481 * 6.2092 * 7.1581 *
ENN 5.3966 * 6.1685 * 6.3538 *
ELM 5.4820 * 5.7369 * 6.3290 *
RBF 3.3792 * 3.7372 * 3.5957 *

ARIMA 5.6641 * 7.0336 * 7.5187 *

* 1% significance level; ** 5% significance level.

Table 8 shows that except for the one-step SSA-ELM experiment, the DM value in all the other
experiments is big enough to be rejected at the 1% significance level, while the null hypothesis of
one-step SSA-ELM is rejected at 5%. Moreover, for the DM test of individual models, the value is
3.3792, which shows that the accuracy of the proposed model is fairly high.

To further evaluate our model, as introduced in Section 3.3, we also applied the forecasting
effectiveness method in our testing experiments. Forecasting effectiveness can effectively reflect the
accuracy of the forecasting performance of various models, making it easy to comparing their pros
and cons. In Table 9, we record the detailed forecasting effectiveness values of all models in one- to
three-step forecasting.

Table 9. Forecasting effectiveness of different models.

Model
1-step 2-step 3-step

1-order 2-order 1-order 2-order 1-order 2-order

Proposed Model 0.9959 0.9962 0.9949 0.9957 0.9927 0.9935

SSA-BP 0.9951 0.9950 0.9931 0.9935 0.9870 0.9869
SSA-ELM 0.9955 0.9956 0.9929 0.9935 0.9846 0.9831
SSA-WNN 0.9940 0.9932 0.9870 0.9847 0.9740 0.9684

SSA-ARIMA 0.9918 0.9923 0.9914 0.9919 0.9905 0.9910

EMD 0.9930 0.9929 0.9915 0.9914 0.9887 0.9888
EEMD 0.9936 0.9941 0.9899 0.9900 0.9855 0.9844

CEEMD 0.9941 0.9944 0.9928 0.9939 0.9900 0.9903

BP 0.9914 0.9918 0.9837 0.9829 0.9740 0.9734
BP-MODA 0.9915 0.9921 0.9831 0.9844 0.9755 0.9772

WNN 0.9897 0.9884 0.9766 0.9745 0.9638 0.9625
ENN 0.9906 0.9908 0.9822 0.9820 0.9728 0.9721
ELM 0.9908 0.9911 0.9817 0.9824 0.9707 0.9709
RBF 0.9858 0.9847 0.9740 0.9690 0.9589 0.9473

ARIMA 0.9924 0.9929 0.9865 0.9872 0.9833 0.9836

The forecasting effectiveness results in Table 9 show the following results: First, the most obvious
is that our proposed combined model has the best prediction performance with the highest forecasting
effectiveness values in all forecasting. Second, the prediction performance of other individual models
is significantly worse than that of our model and there is still a big gap between them and our proposed
model, which is sufficient to reflect the excellence of our model.
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5.3. Proposed Combined Model’s Improvements

In order to make the traditional MAPE criteria more clear in comparing the pros and cons of the
models, in this paper we propose a new form of MAPE, defined as:

PMAPE =

∣∣∣∣∣MAPE1 −MAPE2

MAPE1

∣∣∣∣∣ (17)

This new MAPE criterion is used to compare the proposed model with the other models in
the above experiments, including three data denoising algorithms, seven classic models, and four
individual models with singular spectrum analysis. Table 10 shows the experimental results, and some
interesting conclusions can be summarized as follows:

• Comparing the proposed model with other SSA-based models, it is obvious that the novel
proposed model has lower MAPE values. For example, the average improvement of the proposed
model’s MAPE is 7.71%, 29.18%, and 51.88% compared with the SSA-ELM model, which is the
least improved of the four models.

• Comparing the proposed model with the other three data preprocessing methods, its superiority
is obvious. The lowest MAPE improvement is 22.09%, while the largest comes to 56.84%, which
fully reflects the excellent prediction accuracy of our proposed model.

• Comparing the proposed model with the classic models, forecasting accuracy is greatly improved
in every experiment. Compared with the ARIMA model, the proposed model improves by 45.75%,
62.68%, and 56.47% while the ARIMA model was the single model with the best prediction
accuracy in the experiment.

Table 10. Percentage improvement of the proposed model.

Model
Site 1 Site 2 Site 3 Average

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

SSA-BP 22.64% 33.80% 50.34% 8.66% 25.58% 42.01% 14.66% 21.23% 38.48% 15.32% 26.87% 43.61%
SSA-ELM 12.61% 33.77% 61.43% 4.96% 22.46% 50.35% 5.55% 31.32% 43.85% 7.71% 29.18% 51.88%
SSA-WNN 43.95% 71.78% 79.41% 27.19% 55.24% 70.63% 19.65% 51.45% 60.49% 30.26% 59.49% 70.18%

SSA-ARIMA 50.37% 46.41% 27.33% 51.26% 38.70% 25.26% 46.33% 37.50% 13.76% 49.32% 40.87% 22.12%
EMD 45.58% 49.99% 41.74% 27.16% 22.09% 30.29% 48.34% 48.42% 35.46% 40.36% 40.17% 35.83%

EEMD 35.39% 56.84% 58.19% 34.38% 48.75% 52.29% 37.92% 41.76% 32.02% 35.90% 49.12% 47.50%
CEEMD 31.79% 28.77% 32.63% 28.47% 30.30% 23.02% 30.47% 29.66% 25.22% 30.24% 29.58% 26.96%

BP 53.29% 74.77% 75.57% 49.74% 64.28% 71.63% 53.78% 67.55% 67.77% 52.27% 68.87% 71.66%
BP-MODA 51.66% 72.40% 71.48% 47.87% 67.72% 70.57% 55.26% 70.17% 68.35% 51.60% 70.10% 70.13%

WNN 66.78% 83.08% 82.65% 52.83% 76.47% 80.86% 58.62% 74.15% 73.79% 59.41% 77.90% 79.10%
ENN 58.38% 76.02% 76.67% 55.70% 69.29% 72.41% 53.43% 68.92% 69.90% 55.84% 71.41% 72.99%
ELM 56.65% 75.48% 77.67% 54.65% 71.56% 75.49% 53.92% 69.74% 71.14% 55.07% 72.26% 74.77%
RBF 74.90% 86.07% 88.46% 69.96% 72.97% 77.51% 66.48% 80.54% 79.01% 70.45% 79.86% 81.66%

ARIMA 45.65% 66.20% 60.38% 45.25% 56.24% 51.93% 46.34% 65.59% 57.11% 45.75% 62.68% 56.47%

5.4. Combined Strategy

We selected and applied a simple averaging strategy to calculate the prediction results of all
individual models to compare with the results of MOGOA optimization to test the effectiveness of the
proposed combination strategy. The results of the comparison between the two methods are shown in
Table 11.

From Table 11, we can easily find from the prediction results that the proposed combined model
using MOGOA always outperformed the model applying a simple average strategy, no matter which
sites and forecasting steps were used in all three error metrics. For instance, in the three-step forecasting
of NSW (2011), the MAPE of the proposed model is 0.8648% while the corresponding MAPE is 1.8336%,
which shows the excellence of the model’s combined strategy.
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Table 11. Comparison between proposed model and simple average strategy.

Dateset Multi-Step Model MAE RMSE MAPE (%)

QLD(2010)

1-step Simple average strategy 28.13 37.04 0.50
Proposed model 21.26 26.98 0.37

2-step Simple average strategy 40.69 51.88 0.72
Proposed model 25.94 32.83 0.45

3-step Simple average strategy 67.30 87.69 1.20
Proposed model 37.97 46.51 0.68

QLD(2011)

1-step Simple average strategy 32.06 42.19 0.60
Proposed model 20.79 27.75 0.38

2-step Simple average strategy 48.93 62.31 0.91
Proposed model 23.43 30.73 0.43

3-step Simple average strategy 95.10 120.89 1.76
Proposed model 34.84 44.80 0.65

NSW(2011)

1-step Simple average strategy 60.82 81.26 0.67
Proposed model 44.29 57.63 0.48

2-step Simple average strategy 93.14 120.00 1.04
Proposed model 57.83 73.87 0.64

3-step Simple average strategy 161.97 203.01 1.83
Proposed model 77.74 97.92 0.86

6. Conclusions

As an indispensable part of the economic operation of power systems, electric load prediction has
developed a lot in the past few years. Many studies have been developed and have contributed to
improving forecasting accuracy. Establishing a model with perfect forecasting performance and strong
stability can provide huge economic and social benefits. At the same time, it can help managers to
develop blueprints for future power system construction to ensure the reliability and efficiency of the
power supply. As a result, developing a new, robust model with high forecasting accuracy means a
lot to the whole world. However, classic and individual models do not always produce satisfactory
results. A combined model using data preprocessing technology, a combination of four individual
models optimized by an intelligence algorithm called the multiobjective grasshopper optimization
algorithm, and the multistep forecasting strategy was used for electric load forecasting in our study.
Specifically, the technique of singular spectrum analysis, based on decomposition and reconstruction,
was employed to get basic features of the time series by removing high-frequency signals. Moreover,
the weight coefficients of individual models in the combined model were optimized by the latest
advanced optimization algorithms to obtain both high precision and strong stability. With regard to
the individual models in the combined model, the ARIMA model was selected to reflect the linearity
of the sequence and artificial intelligence models were selected to reflect the nonlinearity. Furthermore,
the combined model was employed in multistep forecasting to validate its forecasting performance.
The experimental results show that the new combined model performed significantly better than
the other benchmark models on the basis of multiple comparisons and analysis. Additionally, by
comparing the outcomes of DM and forecasting effectiveness tests, we found that our model performed
best among all the models applied in the experiments. The proposed combined model, with its
brilliant prediction performance, can yield tremendous economic benefits and lead to a dramatic
reduction in the consumption of environmental resources. Apart from that, it is certain that wide
application of this model will contribute to the management of power systems, rational electric
dispatching, and electric power scheduling. In conclusion, our proposed combined model can improve
the performance of electric load time series forecasting and provide a new feasible choice for smart
power distribution planning.
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