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Abstract: The modeling and control system design of high step-up DC/DC converters based on
voltage multipliers (VMs) are difficult, due to the various circuit topologies and the presence of
large number of capacitors in VMs. This paper proposes a generic approach to reduce the model
order of such converters by replacing the VM capacitors with voltage sources controlled by the
output voltage of the converter. Theoretical analysis and simulation results show that the derived
models can accurately represent the low frequency response of the converter which is valuable for
obtaining a small-signal AC model for control system design. The detailed modeling and controller
design process are demonstrated for the converter, and the obtained simulation results are verified
experimentally on a 400 W prototype.

Keywords: DC/DC converter; reduced order model; high step-up converter; voltage multiplier (VM);
control system design

1. Introduction

The desire for clean environment, low carbon emission and the fact that fossil fuel reserves are
depleting have led to the rapid development of renewable energy generation systems. Renewable
energy generating units, such as photovoltaic arrays and wind turbine generators, present lower output
voltage compared to the interconnected grid systems, and thus high voltage step-up methods are
required for grid integration. It is also important to provide active control to these energy conversion
devices in order to maximize the energy harvested, which calls for high-efficiency power electronic
converters. High step-up voltage conversion technology based on voltage multiplier (VM) is one of
the solutions [1] and has recently become increasingly popular in renewable applications such as solar
photovoltaic [2,3], wind power generation [4], and fuel cell power generation [5,6].

In recent years, various VM circuits have been proposed to achieve a family of high step-up
non-isolated DC/DC converter topologies for the applications in renewables [7–22]. A generalized
circuit structure of a family of non-isolated converters with VM is shown in Figure 1, where the
switch/inductor circuit is connected to the diode-capacitor VM to supply the load RL. The output
voltage uo of the converter can be stepped up to much higher level compared to the input voltage uin.
For the diode-capacitor VM circuit, voltage doubler circuit [7], voltage quadrupler circuit [8], Dickson
charge pump [9], Cockcroft–Walton VM [10], and amongst others [17] have been used, and based on
which various other different VM circuits have been proposed for two-input-phase interleaved booster
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converter [5,11–13] and multiple-input-phase booster converter [4,14–16,19]. Coupled-inductor has
been used to replace the inductors to provide further performance improvement [6,23,24].
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Figure 1. A general circuit for a family of non-isolated high step-up DC/DC converter with capacitor-
diode VM. 

However, most of the existing literature on this type of converter focus on derivation of the 
circuit topology and/or design optimization, while the determination of the control structure and the 
tuning of the control parameters are simply based on empirical methods, or even not discussed. The 
lack of systematic approach to modeling and control system design will lead to cumbersome 
parameter tuning process and/or poor performance of the converter, especially under highly-varying 
conditions of the renewable generations, which can offset the benefits of this type of promising 
converter. A large number of capacitors are used in VM circuits, which can effectively increase the 
voltage conversion gain and reduce the voltage stress of the switching devices, but this also leads to 
a high-order system and makes the classical model-based design of high-performance control system 
difficult, unless a suitable control-oriented model order reduction approach is developed for practical 
applications. 

Indeed, modeling and model order reduction approaches have been developed for many VM-
based converters, such as those with three-state switching cell [25], switch capacitor [26], coupled-
inductor [27]. However, the existing approaches are specifically designed for relatively low-order 
system and they cannot be readily applied to other topologies, especially when the number of VM 
cells increases. To reduce the effort of control system design for a family of high step-up DC/DC 
converters based on diode-capacitor VM, for the first time, this paper proposes a novel general 
method to acquire their averaged-value reduced-order models. The approach uses the concept to 
replace all the capacitors in the VM with voltage sources controlled by the output voltage of the 
converter, and the system order is greatly reduced without sacrificing much model accuracy. 

The rest of the paper is organized as follows: Detailed procedure of the proposed model-order 
reduction method is presented in Section 2. Using this proposed method, general small-signal AC 
models and relevant transfer functions for the converters based on VM are derived in Section 3. 
Controller design is included in Section 4, where the low frequency response of the proposed 
reduced-order small signal AC model is found to be in agreement with the simulation results from 
the circuit model with detailed switching dynamics. The proposed control design method based on 
the reduced-order model is verified through simulation and experiment in Section 5. The main 
findings of the work are concluded in Section 6. 

2. Proposed Modeling Method and Reduced-Order Models 

2.1. Proposed Model Order Reduction Method 

For the type of converters as shown in Figure 1, it has been commonly found that by neglecting 
the effects of ripples, the voltage across each VM capacitor is in linear relationship to the output 
voltage uo of the converter [7–22]. Hence, each VM capacitor can be replaced by a controlled voltage 
source associated with uo. As the system order is determined by the number of the energy storage 

Figure 1. A general circuit for a family of non-isolated high step-up DC/DC converter with capacitor-
diode VM.

However, most of the existing literature on this type of converter focus on derivation of the circuit
topology and/or design optimization, while the determination of the control structure and the tuning
of the control parameters are simply based on empirical methods, or even not discussed. The lack
of systematic approach to modeling and control system design will lead to cumbersome parameter
tuning process and/or poor performance of the converter, especially under highly-varying conditions
of the renewable generations, which can offset the benefits of this type of promising converter. A large
number of capacitors are used in VM circuits, which can effectively increase the voltage conversion
gain and reduce the voltage stress of the switching devices, but this also leads to a high-order system
and makes the classical model-based design of high-performance control system difficult, unless a
suitable control-oriented model order reduction approach is developed for practical applications.

Indeed, modeling and model order reduction approaches have been developed for many VM-based
converters, such as those with three-state switching cell [25], switch capacitor [26], coupled-inductor [27].
However, the existing approaches are specifically designed for relatively low-order system and they
cannot be readily applied to other topologies, especially when the number of VM cells increases.
To reduce the effort of control system design for a family of high step-up DC/DC converters based on
diode-capacitor VM, for the first time, this paper proposes a novel general method to acquire their
averaged-value reduced-order models. The approach uses the concept to replace all the capacitors in
the VM with voltage sources controlled by the output voltage of the converter, and the system order is
greatly reduced without sacrificing much model accuracy.

The rest of the paper is organized as follows: Detailed procedure of the proposed model-order
reduction method is presented in Section 2. Using this proposed method, general small-signal AC
models and relevant transfer functions for the converters based on VM are derived in Section 3.
Controller design is included in Section 4, where the low frequency response of the proposed
reduced-order small signal AC model is found to be in agreement with the simulation results from the
circuit model with detailed switching dynamics. The proposed control design method based on the
reduced-order model is verified through simulation and experiment in Section 5. The main findings of
the work are concluded in Section 6.

2. Proposed Modeling Method and Reduced-Order Models

2.1. Proposed Model Order Reduction Method

For the type of converters as shown in Figure 1, it has been commonly found that by neglecting
the effects of ripples, the voltage across each VM capacitor is in linear relationship to the output
voltage uo of the converter [7–22]. Hence, each VM capacitor can be replaced by a controlled voltage
source associated with uo. As the system order is determined by the number of the energy storage
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components in the circuit, the corresponding model order can be greatly reduced. Detailed procedure
for the proposed model order reduction approach is described as follows:

Step 1: Obtain the steady-state relationship between all VM capacitor voltages and the output voltage
uo(t) according to the results from circuit analysis. The general relationship can be expressed as

ucn(t) = kn·uo(t) (1)

where ucn(t) is the voltage of n-th VM capacitor and kn is corresponding proportional gain.
Step 2: Replace all VM capacitors, except the ones at the output, with controlled voltage sources

according to (1). This step is shown graphically in Figure 2.
Step 3: Reformulate and simplify the resulting model to construct an equivalent reduced-order circuit

based on the state-space averaging method [28].
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Figure 2. Equivalent circuit of a capacitor where a controlled voltage source is used to replace the
VM capacitor.

In this connection, the converter proposed in [12] will be used as an example to demonstrate
the proposed approach. Figure 3a shows the topology of this converter with n number of basic VM
cells. It consists of two switches S1 and S2, two inductors L1 and L2, and the VM circuits with n VMs.
Each VM consists of two diodes and two capacitors with the equal capacitance Cia = Cib = Cik (i = 1, 2,
. . . , n). The voltage conversion gain is 2n times of the traditional boost converter. The driving signals
of switches S1 and S2 are interleaved and both duty cycles d shall be larger than 0.5. The conversion
gain of this converter can be easily adjusted by changing the number of VMs at the design stage.
Voltage stress of all semiconductor devices are reduced significantly compared with conventional boost
converter, and the two inductor currents can be automatically self-balancing. All capacitors have the
same current stress, except the two which are connected with the load, that is, conducive to the thermal
design. We denote this converter as the VM converter hereafter in this paper.
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Figure 4. Three working state equivalent circuits of the VM converter: (a) S1, S2 are both on; (b) S1 is 
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S1 is in on-state and S2 is in off-state. When S2 is turned-on and S1 is turned-off, (5) can be obtained. 

Figure 3. The topology of the VM converter: (a) the original circuit; (b) the modified circuit by replacing
capacitors with controlled voltage sources.

The steady-state relationships between the capacitor voltage in VMs and the output voltage are
given in (2) based on the analytical results provided in Reference [12]. According to Step 2 of the
proposed model order reduction method, the equivalent circuit of this converter by replacing all
capacitors in VMs with corresponding controlled voltage sources is shown in Figure 3b.

uc1a(t) = uc1b(t) = 1
2n ·uo(t)

uc2a(t) = uc2b(t) = 2
2n ·uo(t)

. . . . . .
uc(n−1)a(t) = uc(n−1)b(t) =

n−1
2n ·uo(t)

ucna(t) = ucnb(t) = n
2n ·uo(t)

(2)

According to the working state of the switches, the operation mode of this converter can be
separated into three regions during one switching period TS and the equivalent circuits for each region
are shown in Figure 4.
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Equation (3) can be obtained while S1 and S2 are both in on-state. Similarly, (4) is obtained when
S1 is in on-state and S2 is in off-state. When S2 is turned-on and S1 is turned-off, (5) can be obtained.

uL1(t) = L1
diL1(t)

dt = uin(t)

uL2(t) = L2
diL2(t)

dt = uin(t)

iCna(t) = Cna
duCna(t)

dt = −
uo(t)

R

iCnb(t) = Cnb
duCnb(t)

dt = −
uo(t)

R
iin(t) = iL1(t) + iL2(t)

(3)



uL1(t) = L1
diL1(t)

dt = uin(t)

uL2(t) = L2
diL2(t)

dt = uin(t) − 1
2n uo(t)

iCna(t) = Cna
duCna(t)

dt = 1
n iL2(t) −

uo(t)
R

iCnb(t) = Cnb
duCnb(t)

dt = −
uo(t)

R
iin(t) = iL1(t) + iL2(t)

(4)



uL1(t) = L1
diL1(t)

dt = uin(t) − 1
2n uo(t)

uL2(t) = L2
diL2(t)

dt = uin(t)

iCna(t) = Cna
duCna(t)

dt = −
uo(t)

R

iCnb(t) = Cnb
duCnb(t)

dt = 1
n iL1(t) −

uo(t)
R

iin(t) = iL1(t) + iL2(t)

(5)

Furthermore, according to Reference [12], when the duty cycles of S1 and S2 are identical,
the average inductor currents of L1 and L2 over one switch period Ts shall be equal, i.e.,〈

iL1(t)
〉

TS
=

〈
iL2(t)

〉
TS

(6)

Next, by replacing the state variables with their low-frequency averaged values over one switch
period Ts, (3)–(6) can be simplified to

L1
d〈iL1(t)〉TS

dt =
〈
uin(t)

〉
TS
−

1
2n

〈
uo(t)

〉
TS
× d′(t)

L2
d〈iL2(t)〉TS

dt =
〈
uin(t)

〉
TS
−

1
2n

〈
uo(t)

〉
TS
× d′(t)

Cna
d〈uCna(t)〉TS

d(t) = 1
n
〈
iL2(t)

〉
TS
× d′(t) −

〈uo(t)〉TS
R

Cnb
d〈uCnb(t)〉TS

d(t) = 1
n
〈
iL1(t)

〉
TS
× d′(t) −

〈uo(t)〉TS
R〈

iin(t)
〉

TS
=

〈
iL1(t)

〉
TS

+
〈
iL2(t)

〉
TS〈

iL1(t)
〉

TS
=

〈
iL2(t)

〉
TS

(7)

where d′ = 1 − d. Combining (2) and (7) yields the new governing equation of state of the capacitors, i.e.,

Cia
d
〈
uCia(t)

〉
TS

d(t)
= Cib

d
〈
uCib(t)

〉
TS

d(t)
=

i
n
·

 1
2n

〈
iin(t)

〉
TS
× d′(t) −

〈
uo(t)

〉
TS

R

 (8)

where 1≤ i ≤ n − 1.
Hence, the reduced-order model for the VM converter is obtained as (7) and (8). Based on (7)

and (8), its equivalent circuit can be obtained as shown in Figure 5a. It can be clearly seen that the
voltage is stepped up through n stages by using n ideal transformers. In the first stage the voltage
increases by a factor of 2/d′(t), and later the voltage increases linearly. Indeed, by combining the
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inductors, the capacitors and the ideal transformers respectively, Figure 5a can be readily simplified to
Figure 5b, where the equivalent parameters A and Leq can be readily obtained as

A = 2n (9)

Leq =
L1·L2

L1 + L2
(10)

Considering that Cia = Cib = Cik, the equivalent capacitance Ceq,i of the i-th stage in Figure 5a
referring to the final (n-th) stage is

Ceq,i =
( i

i + 1
·
i + 1
i + 2

· · ·
n− 1

n

)2
·

Cia·Cib

Cia + Cib
=

( i
n

)2
·
Cik
2

Hence, the equivalent Ceqo in Figure 5b can be calculated by

Ceqo =
n∑

i=1

Ceq,i =
n∑

i=1

[( i
n

)2
·
Cik
2

]
(11)

If C1k = C2k = . . . Cnk = Ck, and considering, Equation (11) can be further reduced to

Ceqo =
1
n2 ·

(n + 1)(2n + 1)
6

·
Ck
2

=
(n + 1)(2n + 1)

12n
Ck
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2.2. A General Reduced-Order Model of the Converters Based on VM

Using the similar method presented in Section 2.1, the reduced-order averaged models of the
existing VM-based converters proposed in References, [9–11,14,16], are investigated and derived.
It was found that all the reduced-order models share an identical equivalent circuit structure, as shown
in Figure 5b, while the corresponding expressions for parameters Leq, Ceqo and A are different; they are
summarized in Table 1.
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Table 1. Parameters of the reduced-order average model for different converter circuits based on VM.

Ref. Topology Expressions of Equivalent Parameters

[9]
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3.1. Small-Signal AC Models 

Based on the state-space averaging method and the proposed reduced-order averaged model as 
shown in Figure 5, the small-signal AC model of the VM converter can be obtained as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

in
eq in o o

o o
eqo in in

ˆ 1 1ˆˆ ˆ
2 2

ˆ ˆ1 1 ˆˆ
2 2

di t
L u t U d t D u t

dt n n
du t u t

C D i t I d t
dt n n R


′= + ⋅ − ⋅


 ′= ⋅ − ⋅ −

 (12) 
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Using the same method, a general AC small-signal model of the converters based on VM can be 
obtained, as shown in Figure 6. The expressions of the model parameters including A, B and C, for 
different topologies, are given in Table 2. 
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3. Small Signal AC Models and Transfer Functions

3.1. Small-Signal AC Models

Based on the state-space averaging method and the proposed reduced-order averaged model as
shown in Figure 5, the small-signal AC model of the VM converter can be obtained as Leq

dîin(t)
dt = ûin(t) + 1

2n Uo·d̂(t) − 1
2n D′·ûo(t)

Ceqo
dûo(t)

dt = 1
2n D′·îin(t) − 1

2n Iin·d̂(t) −
ûo(t)

R

(12)

where Iin, Uo and D′ are the quiescent values of the input current iin(t), output voltage uo(t), and d′(t),
respectively. îin(t), ûo(t), ûin(t) and d̂(t) are the small AC values of the input current iin(t), output
voltage uo(t), input voltage uin(t), and d′(t), respectively.

Using the same method, a general AC small-signal model of the converters based on VM can
be obtained, as shown in Figure 6. The expressions of the model parameters including A, B and C,
for different topologies, are given in Table 2.Energies 2019, 12, x FOR PEER REVIEW 9 of 18 
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3.2. Transfer Functions 

Based on Figure 6, the general transfer functions related to the controller or filter design of the 
converters based on VM are derived and given in (13)‒(17), where A, B and C for different converter 
circuits are listed in Table 2. 
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Table 2. Key Parameters of the small-signal AC models for different converter circuits based on VM.

Reference A B C

[12] 2n Uo
2n

Iin
2n

[9,11,14] n + 1 Uo
n+1

Iin
n+1

[10] 2n + 1 Uo
2n+1

Iin
2n+1

[16] n·(m− 1) + 1 Uo
n·(m−1)+1

Iin
n·(m−1)+1

3.2. Transfer Functions

Based on Figure 6, the general transfer functions related to the controller or filter design of the
converters based on VM are derived and given in (13)–(17), where A, B and C for different converter
circuits are listed in Table 2.

(1) Control-output voltage transfer function

Gud(s) =
ûo(s)

d̂(s)
=

A·B·D′·R− s·A2
·C·Leq·R

s2·A2·Leq·Ceq·R + s·A2·Leq + D′2·R
(13)

(2) Line-to-output voltage transfer function

Gug(s) =
ûo(s)
ûin(s)

=
A·D′·R

s2·A2·Leq·Ceq·R + s·A2·Leq + D′2·R
(14)

(3) Control-input current transfer function

Gid(s) =
îin(s)

d̂(s)
=

s·A2
·B·Ceq·R + A·C·D′·R + A2

·B

s2·A2·Leq·Ceq·R + s·A2·Leq + D′2·R
(15)
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(4) Output impedance

Zout(s) =
s·Leq·A2

·R

s2·A2·Leq·Ceq·R + s·A2·Leq + D′2·R
(16)

(5) Input impedance

Zin(s) =
s2
·A2
·Leq·Ceq·R + s·A2

·Leq + D′2·R

s·A2·Ceq·R + A2 (17)

3.3. Accuracy of the Small Signal AC Model

To verify the accuracy and examine the performance of the proposed general small signal AC
models and relevant transfer functions of the converters based on VM, a comparison between the
proposed models and practical circuits, and controller design of the VM converter, will be presented in
this section. The specifications for the simulation are listed in Tables 3 and 4.

The simulation results are shown in Figures 7–9, where the VM numbers are 2, 3, and 5, respectively.
The blue line is the actual circuit simulation result using PSIM software, and the red line is the proposed
model simulation result obtained from MATLAB R2016a/Simulink 8.7 (The MathWorks, Inc., Natick,
MA, USA). When the VM number is 2, Figure 7a,c,e show the output voltage waveforms when the
duty cycle changes around 0.6 with different voltage ripple on capacitors in VM due to different
Cna and Cnb. Figure 7b,d,f show the output voltage waveforms when the input voltage changes
around 40 V with different voltage ripple on capacitors in VM due to different Cna and Cnb. It can be
seen from Figure 7 that the increase of voltage ripple on capacitor in VM will make the steady-state
accuracy of the proposed model worse, but the dynamic response of the proposed model is not affected
significantly. When the voltage ripple on capacitors in VM is 10%, Figures 7c, 8a and 9a show the
output voltage waveforms when the duty cycle changes around 0.6 with different VM number at
Cna = Cnb = 2 µF, while Figures 7d, 8b and 9b show the output voltage waveforms when the input
voltage changes around 40 V with different VM number at the same capacitance. Clearly, as the VM
number increases, the steady-state error between the proposed model and the actual circuit increases
too. This steady-state error is causes by the ripple in the capacitor voltage which affects the converter
voltage gain [12].
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VM number 2 3/5
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Output filter capacitor (µF) 10 10
L1, L2 (µH) 320 320

Load resistance (Ω) 400 400
Switch frequency (kHz) 50 50

Duty cycle 0.6 0.6
Input voltage (V) 40 40

Output voltage (kV) 0.4 0.6/1
Output power (kW) 0.4 0.9/2.5
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The voltage loop gain is affected by the current loop gain, so the design of the current loop 
compensator needs to be completed first. The current loop gain without the current loop compensator 
Gi(s) can be obtained by (18) as Ti-e(s). 

( ) ( ) ( )i-e id 2
M

1T s G s H s
V

= ⋅ ⋅  (18) 
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The current loop compensator Gi(s) with crossover frequency at 4.7 kHz, are designed as in (21). 
The Bode diagram for current loop gains with and without compensation are shown in Figure 11. 
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From the above observation, it can be seen that the proposed model will become less accurate in
steady-state as the capacitor voltage ripple in VM or the number of VM cells increases. Nevertheless,
these negative effects are very limited and negligible for control system design, which can be observed
from Figures 7–9. On the other hand, the proposed reduced-order model is capable of capturing the
major dynamic characteristics of the detailed circuit model. This can be seen from Figures 7–9, as the
dynamic responses are very close. Above characteristics of the proposed reduced order model make it
valuable in the controller design of the converter.

4. Controller Design

A voltage and current double-loop control scheme is designed and shown in Figure 10, where Gv(s)
and Gi(s) are the transfer functions of the voltage and current regulators respectively. One/VM is the
equivalent gain of the PWM modulator and it is equal to 1.33 V based on the control chip (ISL6558)
specifications. Furthermore, H1(s) and H2(s) are the voltage and current measurement gain respectively.
The system output voltage is 400 V, and its reference voltage uref is set to 4.0 V, so the voltage sampling
factor H1(s) is kept at 0.01. The current measurement gain H2(s) is kept at 0.1.
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The voltage loop gain is affected by the current loop gain, so the design of the current loop
compensator needs to be completed first. The current loop gain without the current loop compensator
Gi(s) can be obtained by (18) as Ti-e(s).

Ti-e(s) = Gid(s)·
1

VM
·H2(s) (18)

Based on Table 3 and (18) and the above parameters of VM and H2(s), Gid(s) and Ti-e(s) can be
obtained as follows.

Gid(s) =
s·4 + 3200

s2·6.4× 10−6 + s·2.56× 10−3 + 64
(19)
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Ti-e(s) =
s·0.4 + 320

s2·8.512× 10−6 + s·3.405× 10−3 + 85.12
(20)

The current loop compensator Gi(s) with crossover frequency at 4.7 kHz, are designed as in (21).
The Bode diagram for current loop gains with and without compensation are shown in Figure 11.

Gi(s)= 0.6·
s + 2500π

s
(21)

The voltage loop gain without the voltage loop compensator Gv(s) can be obtained by (22)
as Tv-e(s).

Tv-e(s) =
Gi(s)· 1

VM
·Gud(s)·H1(s)

1 + Gid(s)· 1
VM
·H2(s)·Gi(s)

(22)

Based on Table 3, (9)–(11), (13), and VM, H1(s) and H2(s), transfer functions Gud(s) and Tv-e(s) can
be derived as follows.

Gud(s) =
−s·2.56 + 64000

s2·6.4× 10−6 + s·2.56× 10−3 + 64
(23)

Tv-e(s) = −s4
·1.307×10−7+s3

·2.189×10−3+s2
·25.26+s·3.269×104+2.567×108

s5·7.245×10−11+s4·2.101×10−6+s3·1.996×10−2+s2·40.92+s·1.892×105+1.284×108 (24)

The voltage loop compensator Gv(s) with crossover frequency at 513 Hz, are designed as in (25).
The Bode diagrams for voltage loop gains with and without compensation are shown in Figure 12.

Gv(s)= 2·
s + 250π

s
(25)
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Figure 12. Frequency characteristic of the voltage loop gain (a) without compensation; (b) with
compensation.

Furthermore, in order to validate the derived transfer functions (13) and (15) in frequency domain,
Bode diagrams for Gid(s) and Gud(s) are obtained using both the derived small-signal AC model
transfer functions using MATLAB/Simulink, and the computer simulations based on PSIM circuit,
as shown in Figure 13. Apparently, the frequency response of the transfer functions from the proposed
reduced-order model are in close agreement with the PSIM simulation results within the frequency
range below 3 kHz, which means the proposed reduced-order model and the transfer functions can be
used in the controller design.
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5. Simulation and Experimental Verification

This section examines the performance of the controller designed using the method presented
in Section 4. The simulation circuit shown in Figure 10a is implemented in PSIM and the simulation
results are shown in Figure 14. The specifications of the simulation is given in Table 3 as the rated
parameters. Figure 14a shows the response of the output voltage uo to step changes in the input voltage
uin. The input voltage uin increases from 30 V to 40 V, and then drops back to 30 V in 50 ms. Figure 14b
shows the simulation waveforms of the output voltage uo and the output current io for step changes in
load resistance. The load resistance increases from 400 Ω to 800 Ω first, and then reduces to 400 Ω in
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50 ms. Clearly, when uin changes suddenly, uo is capable of tracking its reference at a constant value,
although a small overshoot about 18 V is observed during the transient. When the load resistance
suddenly changes, uo can also follow its reference with a small overshoot of 28 V. It is worth noting
that the output voltage will be rapidly re-stabilized to 400 V.

Energies 2019, 12, x FOR PEER REVIEW 15 of 18 

 

at a constant value, although a small overshoot about 18 V is observed during the transient. When 
the load resistance suddenly changes, uo can also follow its reference with a small overshoot of 28V. 
It is worth noting that the output voltage will be rapidly re-stabilized to 400V. 

uo[V]

uin[V]

100V/div

20V/div

10ms/div
 

uo[V]

io[A]

100V/div

0.5A/div 10ms/div

 
(a) (b) 

Figure 14. Simulation waveforms for (a) step changes of input voltage; (b) step changes of load 
resistance. 

In order to further verify the efficacy of the proposed model, experimental prototype was set up 
as shown in Figure 15. The specifications of the experimental prototype are consistent with the rated 
parameters of the simulation model, as shown in Table 3.  

 
Figure 15. Hardware experimental prototype. 

Two scenarios are tested and the experimental results are compared with the simulated results.  
First, the input voltage uin increases from 30 V to 40 V and then drops back to 30 V, and the voltage 
changes are limited by a maximum ramp rate of ±1 V/ms. The second scenario is similar to that for 
Figure 14b: the load increases suddenly from 400 Ω to 800 Ω and then drops back to 400 Ω. The 
experimental waveforms of the circuit variables are shown in Figure 16. It can be clearly observed 
that in both scenarios, the output voltages are well-regulated at the set-point. The overshoot of the 
output voltage is much smaller than that which is obtained from the simulation shown in Figure 14; 
such differences are caused by the limitation of the maximum change rate of the of the DC source 
and the load. 

Figure 14. Simulation waveforms for (a) step changes of input voltage; (b) step changes of load resistance.

In order to further verify the efficacy of the proposed model, experimental prototype was set up
as shown in Figure 15. The specifications of the experimental prototype are consistent with the rated
parameters of the simulation model, as shown in Table 3.
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Two scenarios are tested and the experimental results are compared with the simulated results.
First, the input voltage uin increases from 30 V to 40 V and then drops back to 30 V, and the

voltage changes are limited by a maximum ramp rate of ±1 V/ms. The second scenario is similar to
that for Figure 14b: the load increases suddenly from 400 Ω to 800 Ω and then drops back to 400 Ω.
The experimental waveforms of the circuit variables are shown in Figure 16. It can be clearly observed
that in both scenarios, the output voltages are well-regulated at the set-point. The overshoot of the
output voltage is much smaller than that which is obtained from the simulation shown in Figure 14;
such differences are caused by the limitation of the maximum change rate of the of the DC source and
the load.
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6. Conclusions

This paper proposes a method to develop control-oriented reduced-order models for a family
of high step-up DC/DC converters based on VM with diode-capacitor network. It was found
that a general reduced-order averaged model can be derived by replacing the VM capacitors with
output-voltage-controlled sources and performing state-space averaging, and that the simplified
model is the same as that of the traditional booster converter with an ideal step-up transformer.
The corresponding small-signal AC models and transfer functions have been derived. The proposed
approach can be readily applied to other high-gain DC/DC converters circuit using VM, and the model
difference only lies in the expressions of circuit parameters of the generic model. Theoretical analysis,
simulation and experimental results are given, showing that: (1) the complexity of modeling the
high step-up DC/DC converter based on VM can be greatly reduced; (2) the reduced-order model
can represent the low-frequency performance of the converter well and it is suitable for control
system design.
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