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Abstract: Considering the helicity of Archimedean spiral coils, this paper proposes accurate
expressions of mutual inductance and their numerical calculation methods, which can be applied
in the wireless power transmission field, etc. Accurate expressions of mutual inductance are
deduced respectively for two coils that are coaxial, laterally misaligned, or non-parallel, and
numerical calculations are performed using Gaussian integration as well. In the case of coaxial coils,
the calculation results are verified by the 3D finite element method (3D FEM) and compared with
the results gained by the traditional method that approximates two spiral coils to two clusters of
series-connected circular coils ignoring helicity. The comparison of the three methods shows that
results achieved by the proposed expression are close to that of 3D FEM, while there is increasing
error with the screw pitches of the coils when using the traditional circular coil approximation
method. The influence of relative position on the mutual inductance of the two coils is also studied
and it is further explained through magnetic field distribution. Finally, the validity of the proposed
expressions of mutual inductance is verified by experimental results.

Keywords: wireless power transmission; mutual inductance calculation; Archimedean spiral coil;
helicity; Gaussian integral

1. Introduction

Planar spiral coils have been widely used in high-frequency fields such as wireless power
transmission [1,2], printed circuit board-based magnetic components, and on-chip coils [2,3]. In the
design of the coils, mutual inductance is an important parameter [4,5]. Since Maxwell’s study, mutual
inductance calculation has been considered as a basic scientific problem for all coupling coils [6].
The mutual inductance between circular filaments was first studied by Maxwell from the perspective
of energy, and for the case of two coaxial coils, the mutual inductance expression containing a complete
elliptic integral [7] was given. Based on the definition of mutual inductance in circuit theory and the
concept of vector potential, Neumann’s formula of the mutual inductance between any two filaments
was presented, and the mutual inductance between two parallel circular coils was calculated in [8,9].
By means of reciprocal distance under cylindrical coordinates, the variables in the mutual inductance
expression of parallel circular coils was decoupled in [10]. The conclusion of [10] was applied in [3]
to calculate the mutual inductance between coaxial coils considering the current distribution of the
coils’ cross section. The mutual inductance of circular coils was studied in [11] and [12] under lateral
misalignment and non-parallel occasions, respectively.

In industrial application fields like wireless power transmission, air core planar spiral coils with
constant screw pitches, namely Archimedean spiral coils, are commonly used as the magnetic coupling
mechanism [13,14]. In the calculation of the mutual inductance of planar spiral coils, the circular coils
approximation method is commonly used in the existing literature. With this method, each of the two
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coils is approximately a cluster of concentric circular loops in series, and the total mutual inductance is
the superposition of the mutual inductance of these loops [2,15–17], where the helicity of the coils is
ignored. This approximation is reasonable when the coils’ screw pitches are far less than the radii,
due to the destruction of axial symmetry not being evident. However, with regard to high-frequency
magnetic coupling resonance wireless power transmission coils with a large transmission distance,
the screw pitches are often large, which reduces the distributed capacitor and improves the Q value [18].
For helical coils, or namely solenoids, [19] figured out that helicity cannot be ignored at large pitch
length, and mutual inductance between coaxial helical coils are presented analytically. Hence, the
helicity of Archimedean spiral coils with large screw pitches should also be taken into account.
However, unfortunately, there are few relevant studies on how helicity affects mutual inductance
calculation results.

On the basis of Neumann’s formula [8] and the equation of the Archimedean spiral [1,13], accurate
expressions of mutual inductance of Archimedean spiral coils applicable to arbitrary pitches are
derived in this paper, and the corresponding numerical calculation methods are chosen as well.
The double integral expressions of mutual inductance of a couple of Archimedean spiral coils at
different relative positions are achieved with helicity taken into consideration, and these expressions
are numerically solved by the Gaussian integral. When the two coils are coaxial, the calculation results
are verified by the finite element software ANSYS Maxwell 3D simulation and compared with the
traditional circular coils approximation method. The influence of the two coils’ relative position on
mutual inductance is studied, and this is explained by magnetic field distribution analysis of a single
current-carrying Archimedean spiral coil. Finally, a couple of Archimedean spiral coils are fabricated,
and the experimental result verify the correctness of the analysis.

The paper is arranged as follows: Section 2 proposes the accurate expression of mutual inductance
of a couple of coaxial Archimedean spiral coils, solves this expression numerically, and compares it with
the traditional method; Section 3 proposes the accurate expression of mutual inductance of a couple of
Archimedean spiral coils with lateral misalignment and studies the influence of distance and lateral
misalignment on mutual inductance; Section 4 proposes the accurate expression of mutual inductance
of a couple of Archimedean spiral coils with arbitrary relative position and studies the influence
of angular misalignment on mutual inductance; Section 5 depicts the magnetic field distribution of
an Archimedean spiral coil to explain the influence of relative position on mutual inductance; and
Section 6 is the experimental verification.

2. Mutual Inductance between a Couple of Coaxial Archimedean Spiral Coils

2.1. Accurate Expression of Mutual Inductance of Coaxial Archimedean Spiral Coil

The mutual inductance between any coils C1 and C2 can be expressed by Neumann’s formula [8,9]:

M =
µ0

4π

w

C1

w

C2

d
⇀
l 1 · d

⇀
l 2

r
, (1)

where dl1 and dl2 represent tangential elements at either point on C1 and C2, and r is the distance
between these two points.

Figure 1 shows an Archimedean spiral curve, whose polar coordinate equation is [13]:

ρ =
s

2π
ϕ, Φi ≤ ϕ ≤ Φo, (2)

where s is the screw pitch. Suppose Ri and Ro are the inner and outer radius of the spiral, respectively,
and s/(2π) = a, so Φi = Ri/a; Φo = Ro/a.
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Figure 1. An Archimedean spiral curve. 

Under the rectangular coordinate system, the equation of the spiral containing the parameter φ 
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Figure 2. Coaxial Archimedean spiral coils. 

Q is taken arbitrarily from C1, and P is taken arbitrarily from C2. Expressing the rectangular 
coordinates with the cylindrical coordinates, the distance between the two points Q (ρ1cosφ1, ρ1sinφ1, 
0) and P (ρ2cosφ2, ρ2sinφ2, h) is: 

.
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Figure 1. An Archimedean spiral curve.

Under the rectangular coordinate system, the equation of the spiral containing the parameter ϕ is:

x = aϕ cosϕ
y = aϕ sinϕ

(3)

Therefore, at a point Q on the spiral, the tangential vector is:

d
⇀
l = dx

⇀
i + dy

⇀
j =

a[(cosϕ−ϕ sinϕ)
⇀
i + (sinϕ+ ϕ cosϕ)

⇀
j
]
dϕ

(4)

where i and j are unit vectors in the x and y direction, respectively.
A couple of coaxial Archimedean spiral coils C1, C2 are shown in Figure 2. The screw pitches of the

spirals are s1 and s2, respectively, and the inner and outer radii are Ri1, Ro1, Ri2, and Ro2, respectively.
The equations of C1 and C2 are as follows:

ρ1 = a1ϕ1, Φi1 ≤ ϕ1 ≤ Φo1, z1 = 0;
ρ2 = a2ϕ2, Φi2 ≤ ϕ2 ≤ Φo2, z2 = h;

where a1 = s1/(2π), a2 = s2/(2π), Φi1 = Ri1/a1, Φo1 = Ro1/a1, Φi2 = Ri2/a2, and Φo2 = Ro2/a2.
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Q is taken arbitrarily from C1, and P is taken arbitrarily from C2. Expressing the rectangular 
coordinates with the cylindrical coordinates, the distance between the two points Q (ρ1cosφ1, ρ1sinφ1, 
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Figure 2. Coaxial Archimedean spiral coils.

Q is taken arbitrarily from C1, and P is taken arbitrarily from C2. Expressing the rectangular
coordinates with the cylindrical coordinates, the distance between the two points Q (ρ1cosϕ1, ρ1sinϕ1, 0)
and P (ρ2cosϕ2, ρ2sinϕ2, h) is:

r = [(ρ2 cosϕ2 − ρ1 cosϕ1)
2 + (ρ2 sinϕ2 − ρ1 sinϕ1)

2 + h2]
1/2

. (5)
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The tangential vector at points Q and P and their inner product are:

d
⇀
l 1 = a1[(cosϕ1 −ϕ1 sinϕ1)

⇀
i + (sinϕ1 + ϕ1 cosϕ1)

⇀
j
]
dϕ1

d
⇀
l 2 = a2[(cosϕ2 −ϕ2 sinϕ2)

⇀
i + (sinϕ2 + ϕ2 cosϕ2)

⇀
j
]
dϕ2

d
⇀
l 1 · d

⇀
l 2 = a1a2[(1 + ϕ1ϕ2) cos(ϕ2 −ϕ1) − (ϕ2 −ϕ1) sin(ϕ2 −ϕ1)]dϕ1dϕ2. (6)

Substituting Equations (5) and (6) into Equation (1), the accurate expression of mutual inductance
between coaxial Archimedean spiral coils can be obtained by:

M =
µ0

4π
a1a2

w Φo2

Φi2

w Φo1

Φi1

(1 + ϕ1ϕ2) cos(ϕ2 −ϕ1) − (ϕ2 −ϕ1) sin(ϕ2 −ϕ1)√
h2 + a2

1ϕ
2
1 + a2

2ϕ
2
2 − 2a1a2ϕ1ϕ2 cos(ϕ2 −ϕ1)

dϕ1dϕ2. (7)

2.2. Numerical Calculation and Verification of the Accurate Expression of Mutual Inductance and Its
Comparison with the Traditional Mutual Inductance Calculation Method

2.2.1. Method Proposed in This Paper

Equation (7) in this paper is a double integral, so its integrand can not be represented by an
elementary function. Thus, the composite integral method combined with Gaussian quadrature
formula with four points [20] is adopted to solve the double integrals numerically in the whole paper.
As the integrand is a continuous function of the integral variables ϕ1 and ϕ2, the calculation precision
of (7) can be increased through reducing the step length of the integral variables ∆ϕ1 and ∆ϕ2. The step
length in this paper is set as π/16, to ensure that compared to the step size of π/32, the mutual inductance
calculated in the following examples has the same first five or more significant digits. Thus, mutual
inductance can be obtained for a couple of coaxial Archimedean spiral coils as shown in Figure 2 with
known screw pitches, inner radii, and outer radii at different distances.

2.2.2. Conventional Circular Coils Approximation Method

In the traditional method, each planar spiral coil is approximate to a cluster of series-connected
concentric circular coils. If the inner and outer radii of a spiral coil are Ri and Ro, respectively, there are
N turns in the approximate cluster of concentric circular coils, so the radius of the innermost turn is
Ri = Ro − (N − 1)s, and the radius of the jth turn is Ri + (j − 1)s, j = 1,2, . . . ,N [14]. In this way, a couple
of spiral coils as shown in Figure 2 is approximate to two clusters of concentric circular loops, and their
number of turns are N1 and N2, respectively. The mutual inductance between such a couple of coils
can be expressed as [2,14]:

M =

N1∑
i=1

N2∑
j=1

Mi j (8)

where i and j represent the ith and jth turn of the two coils, respectively. Mij is the mutual inductance
between the ith approximate circular loop of C1 (radius R1i) and the jth approximate circular loop of
C2 (radius R2j). Mij is calculated by Maxwell’s formula [6]:

Mi j = µ0

√
R1iR2 j[(

2
m
−m)K(m) −

2
m

E(m)], (9)

where m = 2
√

R1iR2 j

h2+(R1i+R2 j)
2 , K(m), and E(m) are complete elliptic integrals of the first and second

kind [7]. The complete elliptic integral in (9) is approximated by the series expansion method.
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2.2.3. Verification of the Method Proposed in This Paper and Its Comparison with the
Traditional Methods

Equation (7) is an exact expression expressed by a double integral, which is concise in form and
convenient to use. However, the traditional method is an approximation approach, which needs to
calculate the radius of each circle of these two clusters of concentric coils, then through series expansion
calculation and finally double summation, mutual inductance can be obtained.

The calculation results of Equation (7) are verified by the 3D finite element method (FEM).
Their differences with the traditional method can be compared through the specific examples below,
and the influences of coil parameters on mutual inductance can be studied. For a couple of coaxial
spiral coils with five turns each, the solution type of the 3D FEM model is chosen as “Magnetostatic”,
the current is uniformly distributed on the coil’s cross section, the mesh is assigned as “length based”,
and the maximum length of elements is set as the default value.

(a) Variation of the distance

Table 1 shows the mutual inductance calculation results at three different distances for a couple of
coaxial spiral coils with outer radii Ro1 = Ro2 = 0.1 m and screw pitches s1 = s2 = 0.01 m. M3D stands for
3D FEM results; MS represents the results of Equation (7) and ES represents their errors relative to M3D;
MT represents the results of the traditional circular coils approximation method and ET represents
their errors relative to M3D.

Table 1. Mutual inductance at different distances.

Distance h (m) M3D (µH) MS (µH) ES (%) MT (µH) ET (%)

0.01 3.5665 3.6051 1.07 3.2244 10.6
0.03 2.1676 2.2125 2.03 1.9388 11.8
0.05 1.3932 1.4397 3.23 1.2373 12.6

(b) Variation of the screw pitches

Table 2 shows the mutual inductance calculation results at three different screw pitches for a
couple of coaxial spiral coils with Ro1 = Ro2 = 0.1 m and distances h = 0.02 m.

Table 2. Mutual inductance at different screw pitches.

Screw Pitches s (m) M3D (µH) MS (µH) ES (%) MT (µH) ET (%)

0.005 4.0277 4.0983 1.72 3.9093 3.03
0.010 2.7551 2.7974 1.51 2.4764 11.3
0.015 1.7232 1.7652 2.38 1.3824 24.7

(c) Variation of the external radius

Table 3 shows mutual inductance calculation results at three different outer radii for a couple of
coaxial spiral coils with h = 0.02 m and s1 = s2 = 0.01 m.

Table 3. Mutual inductance at different external radii.

External Radii Ro (m) M3D (µH) MS (µH) ES (%) MT (µH) ET (%)

0.1 2.7551 2.7974 1.51 2.4764 11.3
0.2 10.776 10.912 1.25 10.452 3.10
0.3 20.625 20.984 1.71 20.453 0.843

It can be seen from Tables 1–3 that:
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(a) The calculation results of Equation (7) in this paper are close to that from Maxwell 3D with
little difference. The test shows that the larger the 3D region of the simulation setting is, the smaller the
differences are, but the simulation time will be longer.

(b) The relative errors between the traditional circular coils approximation method and the 3D
FEM results are obvious. For the traditional method, the error increases with distances when outer
radii and screw pitches are fixed; the error increases with screw pitches when outer radii and distances
are fixed; the error decreases with outer radii when distances and screw pitches are fixed.

(c) The mutual inductance decreases with distances at fixed outer radii and screw pitches, decreases
with screw pitches at fixed outer radii and distances, and increases with outer radii at fixed distances
and screw pitches.

In terms of computational efficiency, for the above example, the calculation time of the proposed
method is in the level of 10−1 s, while the traditional method is in the level of 10−2 s. However, it takes
more than 10 h to simulate a 3D model established by ANSYS Maxwell considering the helicity.

3. Mutual Inductance between a Couple of Archimedean Spiral Coils with Lateral Misalignment

3.1. Accurate Expression of Mutual Inductance between Archimedean Spiral Coils with Lateral Misalignment

The relative position relationship of a couple of Archimedean spiral coils with lateral misalignment
and with a distance h is shown in Figure 3.
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C1 is in the plane xoy and its axis passes through the origin; C2 is in the plane z = h; d is the lateral
misalignment, i.e., the distance between the axes of C1 and C2; O′′ is the projection of O′ on the xoy
plane; and the angle between OO′′ and the x axis is α.

In this case, by adding the bases of the three terms in Equation (5) to the axial lateral shifting
coordinate of C2 (dcosα, dsinα, 0) and replacing the denominator of the integrand in Equation (7),
exact expression of mutual inductance between Archimedean spiral coils C1 and C2 with lateral
misalignment can be obtained by:

M =
µ0

4π
a1a2

w Φo2

Φi2

w Φo1

Φi1

(1 + ϕ1ϕ2) cos(ϕ2 −ϕ1) − (ϕ2 −ϕ1) sin(ϕ2 −ϕ1)√
h2 + (d cosα+ a2ϕ2 cosϕ2 − a1ϕ1 cosϕ1)

2 + (d sinα+ a2ϕ2 sinϕ2 − a1ϕ1 sinϕ1)
2

dϕ1dϕ2. (10)

If setting d = 0, Equation (10) will be simplified to Equation (7), i.e., Equation (7) is a special case
of Equation (10).

3.2. The Influence of Distance and Lateral Misalignment on Mutual Inductance

The parameters of two parallel spiral coils C1 and C2 are given in Table 4. Equation (10) is solved
numerically under different conditions.
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Table 4. Parameter of the spiral coils.

Turns N Screw Pitches s (mm) Outer Radii Ro (mm) Inner Radii Ri (mm)

C1 34 2.3529 105 25
C2 22 3.6364 105 25

At a fixed distance h = 20 mm, the influence of lateral misalignment d and the azimuth angle α on
mutual inductance M between the two spiral coils is shown in Figure 4.
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It can be seen that M decreases obviously with d, while α has little influence on M.
At a fixed azimuth angle α = 0◦, the influence of h and d on M is shown in Figure 5.
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Figure 5. Influence of distance and lateral misalignment on mutual inductance.

It can be seen that with the increase of h, M decreases, while the influence of d on M declines.
Similarly, with the increase of d, M decreases, while the influence of h on M declines.

4. Mutual Inductance of Archimedean Spiral Coils with Arbitrary Relative Position

4.1. Mutual Inductance Expression of a Couple of Non-Parallel Archimedean Spiral Coils

The spatial position of a rigid body can be described by three translational degrees of freedom and
three rotational degrees of freedom, and rotational degrees of freedom can be expressed by the Euler
angle [21]. The Euler angle includes the precession angle, nutation angle, and spin angle. As can be
seen from Figure 4, the precession angle and spin angle have little influence on the mutual inductance
between spiral coils. Hence, only the case shown in Figure 6 needs to be studied: C1 is in the plane xoy
and its axis passes through the origin, O′(x0,y0,z0) is the center of C2, the axis of C2 maintains parallel
position to the plane xoz, and the nutation angle between its axis and the z axis is θ.
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Figure 6. A couple of non-parallel Archimedean spiral coils.

Under the rectangular coordinate system, the equation of C1 containing the parameter ϕ1 is:

x1 = a1ϕ1cosϕ1, y1 = a1ϕ1sinϕ1, z1 = 0;

the equation of C2 containing the parameter ϕ2 is:

x2 = x0 + a2ϕ2cosϕ2cosθ, y2 = y0 + a2ϕ2sinϕ2, z2 = z0 − a2ϕ2cosϕ2sinθ,

thus:

d
⇀
l 1 = a1[(cosϕ1 −ϕ1 sinϕ1)

⇀
i + (sinϕ1 + ϕ1 cosϕ1)

⇀
j
]
dϕ1

d
⇀
l 2 = a2[cosθ(cosϕ2 −ϕ2 sinϕ2)

⇀
i + (sinϕ2 + ϕ2 cosϕ2)

⇀
j − sinθ(cosϕ2 −ϕ2 sinϕ2)

⇀
k
]
dϕ2

. (11)

Combining Equation (1), the exact expression of mutual inductance in the case of Figure 6 can be
obtained by:

M =
µ0

4π
a1a2

w Φo2

Φi2

w Φo1

Φi1

cosθ(cosϕ1 −ϕ1 sinϕ1)(cosϕ2 −ϕ2 sinϕ2) + (sinϕ1 + ϕ1 cosϕ1)(sinϕ2 + ϕ2 cosϕ2)√
(x0 + a2ϕ2 cosϕ2 cosθ− a1ϕ1 cosϕ1)

2 + (y0 + a2ϕ2 sinϕ2 − a1ϕ1 sinϕ1)
2 + (z0 − a2ϕ2 cosϕ2 sinθ)2

dϕ1dϕ2 (12)

If θ = 0, and (x0,y0,z0) in rectangular coordinates are expressed as (dcosα, dsinα, h) in cylindrical
coordinates, Equation (12) will be simplified to Equation (10), i.e., Equations (7) and (10) are two special
cases of Equation (12).

4.2. The Influence of Relative Rotational Angle on the Mutual Inductance of the Coils

The parameters of the two spiral coils C1 and C2 are given in Table 4. The values of x0, y0, z0,
and θ are selected properly to ensure that the two spiral coils do not cross. Equation (12) is solved
numerically under different conditions.

Taking x0 = y0 = 0, the trend of M changing with θ at different values of z0 is shown in Figure 7.
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Figure 7. Relationship between M and θ under different values of z0.
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Taking x0 = 0 and z0 = 40 mm, the trend of M changing with θ at different values of y0 is shown in
Figure 8.Energies 2019, 12, x FOR PEER REVIEW 9 of 14 
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Figure 8. Relationship between M and θ under different values of y0.

Taking y0 = 0 and z0 = 40 mm, the trend of M changing with θ at different values of x0 is shown in
Figure 9.
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Figure 9. Relationship between M and θ under different values of x0.

It can be seen that under smaller θ, in Figures 7–9 with smaller x0, M increases with θ, yet in
Figure 9 with larger x0, M decreases with θ.

5. Interpretation of the Relationship between Mutual Inductance and Relative Position of
Archimedean Spiral Coils from the Perspective of Magnetic Field Distribution

In order to further explain the relationship between the relative position of a couple of Archimedean
spiral coils and their mutual inductance, it is necessary to analyze the magnetic field spatial distribution
of a single current-carrying Archimedean spiral coil. Let us assume that a spiral coil C1 carrying current
I is located in the plane xoy and its axis is the z axis. The coordinate of the detecting point P is (x,y,z).
According to the Biot–Savart law, the magnetic induction intensity at point P can be expressed as:

⇀
B =

µ0I
4π

w d
⇀
l ×

⇀
r

r3 , (13)

where:
⇀
r = (x− aϕ cosϕ)

⇀
i + (y− aϕ sinϕ)

⇀
j + z

⇀
k

r2 = (x− aϕ cosϕ)2 + (y− aϕ sinϕ)2 + z2

d
⇀
l = a[(cosϕ−ϕ sinϕ)

⇀
i + (sinϕ+ ϕ cosϕ)

⇀
j
]
dϕ

.
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Each component of
⇀
B can be expressed as:

Bx =
µ0I
4π

az
w Φo

Φi

(sinϕ+ ϕ cosϕ)
r3 dϕ (14)

By =
µ0I
4π

az
w Φo

Φi

(ϕ sinϕ− cosϕ)
r3 dϕ (15)

Bz =
µ0I
4π

a
w Φo

Φi

(y− xϕ) cosϕ− (x + yϕ) sinϕ+ aϕ2

r3 dϕ (16)

It can be seen from Equations (14)–(16) that Bx(–z) = –Bx(z), By(–z) = –By(z), Bz(–z) = Bz(z), and
Bx = By = 0 on the plane xoy where the spiral coil is located. This indicates that the magnetic field
distribution has symmetry with respect to the plane xoy.

The parameters of C1 are given in Table 4, which carries the current of 6A. The contour map of
Bz on the plane y = 0 is drawn according to the numerical calculation of Equation (16), as shown in
Figure 10.
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Figure 10. Bz distribution on the y = 0 plane.

The contour map of Bz on the plane z = 2 cm is drawn as shown in Figure 11.
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Figure 11. Bz distribution on the z = 2 plane.

The influence of relative position on the mutual inductance of a couple of parallel Archimedean
spiral coils in Figures 4 and 5 can be explained by Figures 10 and 11. The farther away the two coils are,
the weaker the magnetic field is, and thus the smaller the mutual inductance will be. The distribution
of Bz in Figure 11 is almost axial symmetric, hence α has little influence on M in Figure 4.

The distribution of the tangential magnetic field Bx
⇀
i + Bz

⇀
k module (contour map) and direction

(arrow) on the plane y = 0 is shown in Figure 12.
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Figure 12. Module and direction distribution of the tangential magnetic field on the y = 0 plane.

Supposing that above the coil C1, there is another coil C2 with a fixed center O′ and tilted axis
as shown in Figure 6, when the axis of C2 is parallel to the plane xoz and its tilt angle θ is small,
Figures 7–9 can be explained as follows:

When O′ is on the z axis (as shown in Figure 7) or directly above the y axis (as shown in Figure 8),
it can be seen by combining Figure 6 with Figure 12 that the magnetic flux of the lower part of C2

increases with θ due to the normal magnetic field increases, yet the flux of the upper part decreases
with θ. As the lower part of C2 is closer to C1, it has a greater contribution to the flux than the upper
part, i.e., the mutual inductance between C1 and C2 increases with θ.

For the case that O′ is directly above the x axis as shown in Figure 9, while x0 is smaller, similar to
the case in Figure 7 when O′ is on the z axis, M increases with θ; however, while x0 is larger, as the
upper part of C2 is closer to C1, its contribution to the flux is greater than the lower part, and M
decreases with θ.

6. Experimental Verification

In order to verify the correctness of the mutual inductance calculation method proposed in this
paper, a couple of Archimedean spiral coils C1 and C2 (their parameters are shown in Table 4) were
fabricated with Litz wire (the diameter of each strand of wire was 0.1 mm, so the skin effect could be
ignored under the testing frequency of 100 kHz), as shown in Figure 13.
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Figure 13. Archimedean spiral coils sample.

These two spiral coils were fixed on the square insulating hardboard, and the lateral misalignment
d, i.e., the distance between the axes of the two parallel coils could be adjusted conveniently by the scales
on the insulating board. The distance h between two parallel coils could also be conveniently adjusted by
placing a hard insulating block of known thickness between the two insulating hardboards (considering
the thickness of the coils, h started from the horizontal cross-section of each coil). The method for
measuring mutual inductance was as follows: First measure the inductance values when the two
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coils are in the same directional series and in reverse directional series, respectively, then subtract the
two values and divide them by 4 [22]. The measuring instrument was a type 3250 transformer tester
produced by Chroma, and the testing frequency was selected as 100 kHz.

First, the mutual inductance of the two spiral coils in Figure 13 was measured in parallel state,
under conditions of different d and h, and compared with the mutual inductance calculated by
Equation (10), the results were sorted out as shown in Figure 14.
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Figure 14. Comparison of mutual inductance measurement results and calculation results of a couple
of spiral coils with lateral misalignment.

The calculation results in Figure 14 are equivalent to that in Figure 7 (observing some special
points with the same h and d). As can be seen from Figure 14, similar to the simulation results in
Table 1, the relative error between the measurement result and the calculation result increased with h.

Then, a wedge with a 20◦ angle of gradient was machined using easy cutting insulation materials
such as hard foam, C1 and θ = 20◦ were fixed according to Figure 6, and x0, y0, z0 were adjusted.

Taking x0 = y0 = 0, the mutual inductance measurement results and calculation results according
to Equation (12) at different values of z0 are listed in Table 5.

Table 5. Mutual inductance when θ = 20◦ and x0 = y0 = 0.

z0 (mm) M (µH) Measured M (µH) Calculated Relative Error (%)

40 37.33 37.35 0.05
50 30.50 30.08 1.40
60 23.84 24.46 2.53

The calculation results in Table 5 are three special points taken from Figure 7.
Taking y0 = 0, z0 = 40 mm, the mutual inductance measurement results and calculation results

according to Equation (12) at different values of x0 are listed in Table 6.

Table 6. Mutual inductance when θ = 20◦, y0 = 0, and z0 = 40 mm.

x0 (mm) M (µH) Measured M (µH) Calculated Relative Error (%)

20 34.02 34.08 0.18
40 27.70 27.80 0.36
60 20.32 20.54 1.07

The calculation results in Table 6 are three special points taken from Figure 9.
Taking x0 = 0, z0 = 40 mm, the mutual inductance measurement results and calculation results

according to Equation (12) at different values of y0 are listed in Table 7.



Energies 2019, 12, 2017 13 of 14

Table 7. Mutual inductance when θ = 20◦, x0 = 0, and z0 = 40 mm.

y0 (mm) M (µH) Measured M (µH) Calculated Relative Error (%)

20 35.23 35.45 0.64
40 30.16 30.06 0.33
60 22.45 22.59 0.62

The calculation results in Table 7 are three special points taken from Figure 8.
As can be seen from Figure 14 and Tables 5–7, the calculation results by the accurate expressions

were in good agreement with the experimental results. Their relative error was within 3 %, and it
increases obviously with h, d and z0.

7. Conclusions

Aiming at improving the calculation accuracy of the mutual inductance of Archimedean spiral
coils, this paper proposed accurate expressions of mutual inductance that considered the helicity of the
coils and corresponding numerical calculation methods. The expressions of mutual inductance when
the two coils are in different relative positions were given in the form of a double integral, and Gaussian
integral method was used to solve these expressions numerically. For the coaxial case, 3D FEM results
were taken as reference values, and the proposed method was compared with the traditional method.
The simulation results showed that the traditional method without considering the helicity of the coils
had a larger error, especially when the pitches were wider. The influence of the relative position of the
two coils on mutual inductance was also studied and explained by magnetic field distribution. Finally,
a couple of Archimedean spiral coils were fabricated to verify the theoretical formula. The experimental
results showed that the relative error of the mutual inductance calculation method proposed in this
paper was within 3 %, which confirms the correctness of the theoretical formula.
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