IEC 61850 RESPONSE TIME ANALYSIS

where

$$
\begin{gather*}
R_{i}(q)=J_{i}+w_{i}(q)-q T_{i}+C_{i} \tag{1a}\\
Q_{i}=\left\lceil\frac{t_{i}+J_{i}}{T_{i}}\right\rceil \tag{1b}\\
t_{i}^{n+1}=B_{i}+\sum_{\forall j \in h p(i) \cup e p(i)}\left\lceil\frac{t_{i}^{n}+J_{j}}{T_{j}}\right\rceil C_{j} \tag{1c}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{i}^{n+1}(q)=B_{i}+q C_{i}+\sum_{\forall j \in h p(i)}\left\lceil\frac{w_{i}^{n}+J_{j}+\tau_{b i t}}{T_{j}}\right\rceil C_{j} \tag{1d}
\end{equation*}
$$

SOLUTION OF SECTION 3.4

Message stream \mathcal{T}_{7} (SV messages sent by SB1)

Calculation of Q_{7} : starting with C_{7} as the initial value of t_{7} and assuming $B_{7}=13.76 \mu s$, whose value corresponds to the computation time of \mathcal{T}_{4}, we have:

$$
t_{7}^{1}=B_{7}+\left\lceil\frac{t_{7}^{0}+J_{7}}{T_{7}}\right\rceil C_{7} \therefore t_{7}^{1}=13.76+\left\lceil\frac{12.16+1}{208.33}\right\rceil 12.16=25.92
$$

Iterating again:

$$
t_{7}^{2}=13.76+\left\lceil\frac{25.92+1}{208.33}\right\rceil 12.16=25.92
$$

Therefore, 7-busy-period value converged in $25.92 \mu s$. By applying Eq. 1b:

$$
Q_{7}=\left\lceil\frac{t_{7}+J_{7}}{T_{7}}\right\rceil \therefore Q_{7}=\left\lceil\frac{25.92+1}{208.33}\right\rceil=1
$$

The value of $Q_{7}=1$ indicates that the q value in Eq. 1 is equal to 0 . Therefore, in order to obtain the worst-case response time for \mathcal{T}_{7}, it is enough to examine its first instance within the 7 busy period.
Calculation of R_{7} : Since \mathcal{T}_{7} is the highest priority message stream, in Eq. 1d there is no element in $h p(i)$. Because $q=0$, this equation can be simplified to $w_{7}^{n+1}(0)=B_{7}$. Therefore, $w_{7}(0)$ converges to $13.76 \mu \mathrm{~s}$. Through Eq. 1a, $R_{7}(0)=1+$ $13.76+12.16=26.92 \mu \mathrm{~s}$. We conclude that this worst-case response time is smaller than the deadline $D_{7}(208.33 \mu s)$.

Message stream \mathcal{T}_{6} (GOOSE messages sent by BP2)
Calculation of Q_{6} : starting with C_{6} as the initial value of t_{6} :

$$
\begin{gathered}
t_{6}^{1}=B_{6}+\left\lceil\frac{t_{6}^{0}+J_{7}}{T_{7}}\right\rceil C_{7}+\left\lceil\frac{t_{6}^{0}+J_{6}}{T_{6}}\right\rceil C_{6} \quad \therefore \\
t_{6}^{1}=13.76+\left\lceil\frac{13.76+1}{208.33}\right\rceil 12.16+\left\lceil\frac{13.76+1}{31000}\right\rceil 13.76=39.68 \mu \mathrm{~s}
\end{gathered}
$$

Iterating again:

$$
t_{6}^{2}=13.76+\left\lceil\frac{39.68+1}{208.33}\right\rceil 12.16+\left\lceil\frac{39.68+1}{31000}\right\rceil 13.76=39.68 \mu s
$$

This iteration converges with the value of 6-busy-period equal to $39.68 \mu s$, then:

$$
Q_{6}=\left\lceil\frac{t_{6}+J_{6}}{T_{6}}\right\rceil \therefore Q_{6}=\left\lceil\frac{39.68+1}{31000}\right\rceil=1
$$

As with \mathcal{T}_{7}, this value of Q indicates that the q value in Eq. 1 is equal to 0 and it is enough to examine the first instance of \mathcal{T}_{6} within the 6 -busy period.
Calculation of R_{6} : starting with B_{6} as the initial value of

$$
w_{6}^{1}(0)=13.76+\left\lceil\frac{13.76+1+0.01}{208.33}\right\rceil 12.16=25.92 \mu s
$$

)

$$
w_{6}^{2}(0)=13.76+\left\lceil\frac{25.92+1+0.01}{208.33}\right\rceil 12.16=25.92 \mu s
$$

As $J_{6}=J_{5}, T_{6}=T_{5}$ and $C_{6}=C_{5}$, iterating:
$t_{5}^{1}=13.76+\left\lceil\frac{13.76+1}{208.33}\right\rceil 12.16+2 \times\left\lceil\frac{13.76+1}{31000}\right\rceil 13.76=53.44 \mu \mathrm{~s}$
$t_{5}^{2}=13.76+\left\lceil\frac{53.44+1}{208.33}\right\rceil 12.16+2 \times\left\lceil\frac{53,44+1}{31000}\right\rceil 13.76=53.44 \mu \mathrm{~s}$
The 5-busy-period converged with the value $53.44 \mu s$ and with this result we have:

$$
Q_{5}=\left\lceil\frac{t_{5}+J_{5}}{T_{5}}\right\rceil \therefore Q_{5}=\left\lceil\frac{53.44+1}{31000}\right\rceil=1
$$

Consequently, it is enough to analyze the first instance of \mathcal{T}_{5}. Calculation of R_{5} : Starting with $w_{5}^{0}(0)=13.76 \mu s$:
$w_{5}^{1}(0)=13.76+\left\lceil\frac{13.76+1+0.01}{208.33}\right\rceil 12.16+\left\lceil\frac{13.76+1+0.01}{31000}\right\rceil 13.76$ As $w_{5}^{1}(0)=39.68 \mu$, a second iteration is required:
$w_{5}^{2}(0)=13.76+\left\lceil\frac{39.68+1+0.01}{208.33}\right\rceil 12.16+\left\lceil\frac{39.68+1+0.01}{31000}\right\rceil 13.76$
As $w_{5}^{2}(0)=39.68 \mu, w_{5}(0)$ converged to this value, therefore $R_{5}(0)=1+39.68+13.76=54.44 \mu s$, which is lower than the D_{5}.

Message stream \mathcal{T}_{4} (GOOSE messages sent by SB2)

Calculation of Q_{4} : Starting with $t_{4}^{0}=13.76 \mu s$ and noting that the \mathcal{T}_{4} is not blocked because it is the message stream of lower priority:

$$
\begin{aligned}
& t_{4}^{1}=\left\lceil\frac{t_{4}^{0}+J_{7}}{T_{7}}\right\rceil C_{7}+\left\lceil\frac{t_{4}^{0}+J_{6}}{T_{6}}\right\rceil C_{6}+ \\
& \quad\left\lceil\frac{t_{4}^{0}+J_{5}}{T_{5}}\right\rceil C_{5}+\left\lceil\frac{t_{4}^{0}+J_{4}}{T_{4}}\right\rceil C_{4}
\end{aligned}
$$

Since $J_{6}=J_{5}=J_{4}, \quad T_{6}=T_{5}=T_{4} \quad$ and $\quad C_{6}=C_{5}=C_{4}$:

$$
\begin{aligned}
& t_{4}^{1}=\left\lceil\frac{13.76+1}{208.33}\right\rceil 12.16+3 \times\left\lceil\frac{13.76+1}{31000}\right\rceil 13.76=53.44 \mu \mathrm{~s} \\
& t_{4}^{2}=\left\lceil\frac{53.44+1}{208.33}\right\rceil 12.16+3 \times\left\lceil\frac{53.44+1}{31000}\right\rceil 13.76=53.44 \mu \mathrm{~s}
\end{aligned}
$$

The 4-busy-period converged with $53.44 \mu s$:

$$
Q_{4}=\left\lceil\frac{t_{4}+J_{4}}{T_{4}}\right\rceil \therefore Q_{4}=\left\lceil\frac{53.44+1}{31000}\right\rceil=1
$$

That is, it is enough to analyze just the first instance of \mathcal{T}_{4}. Calculation of R_{4} : Assuming $B_{4}=0$ and $w_{4}^{0}(0)=13.76 \mu s$:

$$
w_{4}^{1}(0)=\left\lceil\frac{13.76+1+0.01}{208.33}\right\rceil 12.16+2 \times\left\lceil\frac{13.76+1+0.01}{31000}\right\rceil 13.76
$$

As $w_{4}^{1}(0)=39.68 \mu$, a second iteration is required:

$$
w_{4}^{2}(0)=\left\lceil\frac{39.68+1+0.01}{208.33}\right\rceil 12.16+2 \times\left\lceil\frac{39.68+1+0.01}{31000}\right\rceil 13.76
$$

As $w_{4}^{2}(0)=39.68 \mu, w_{4}(0)$ converge to this value, therefore $R_{4}(0)=1+39.68+13.76=54.44 \mu s$, which is less than D_{4}.

