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Abstract: Recently, power companies apply optimal algorithms for short-term load forecasting,
especially the daily load. However, in Vietnam, the load forecasting of the power system has not
focused on this solution. Optimal algorithms and can help experts improve forecasting results
including accuracy and the time required for forecasting. To achieve both goals, the combinations of
different algorithms are still being studied. This article describes research using a new combination
of two optimal algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).
This combination limits the weakness of the convergence speed of GA as well as the weakness of
PSO that it easily falls into local optima (thereby reducing accuracy). This new hybrid algorithm
was applied to the Southern Power Corporation’s (SPC—a large Power company in Vietnam) daily
load forecasting. The results show the algorithm’s potential to provide a solution. The most accurate
result was for the forecasting of a normal working day with an average error of 1.15% while the
largest error was 3.74% and the smallest was 0.02%. For holidays and weekends, the average error
always approximated the allowable limit of 3%. On the other hand, some poor results also provide
an opportunity to re-check the real data provided by SPC.

Keywords: short-term load forecasting; GA; PSO; 24-h daily load

1. Introduction

Regulations on the accuracy of forecasts are almost always relative. In Vietnam, following
Decision No. 07/QĐ-ĐTĐL-2013 of Electricity Regulatory Authority of Vietnam (ERAV) [1], the errors
of short-term load forecasting (STLF) have to be within ±2%. However, most load forecasting research
does not reach this error value. The concept of STLF does not specify the forecast object (peak load or
energy consumption) but the forecast time. However, most published research considers implicitly
STLF as the forecasting of instantaneous power. Therefore, conflicts still exist between the regulations
and the forecast job.

The following are the main difficulties of STLF research in Vietnam:
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• Selecting and filtering valuable data to prepare materials for forecasting
• Selecting suitable models of each load characteristics corresponding local site
• Legal regulations

Recently, power companies apply optimal algorithms for short-term load forecasting, especially
the daily load. The Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are applied
separately to train artificial neural networks (ANNs). The integration of GA into STLF is published in
many papers (e.g., [2–8]). In these studies, the authors carefully used the most suitable parameters
of GA to improve the precision. While GA shows improved accuracy, PSO accelerates the training
process [9]. Recently, selecting among GA, PSO, back-propagation or other algorithms based on ANN
is becoming more and more enticing [10–13]. On the other hand, the precision is affected by many
criteria, one of which is the selected method or algorithm. Hybrid methods are described in [14,15].
H. Garg [14] used GA-PSO to solve a nonlinear optimal problem. The author used GA to improve
each particle. Correspondingly, GA needs to frequently carry out the dual operation: crossover
and mutation. This will extremely enlarge the total number of loops, thus affecting the run-time.
Considering this drawback, Sahoo et al. [16] also exploited a hybrid GA-PSO algorithm, in which GA
is executed repeatedly.

This paper describes an effective hybrid method where GA is executed only once. This paper
presents an outline of the STLF approach (Section 2), the input-target data and materials (Section 3)
and our effective hybrid GA-PSO algorithm for ANN training (Section 4). The conclusion is drawn
unambiguously in Section 5. This paper is an extended version of our paper published in 2018 IEEE
Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), 12–15 June 2018, Palermo,
Italy [17].

2. Methodology of Short-Term Load Forecasting

2.1. Selecting the Model of STLF

Many models are currently used for STLF in Vietnam. However, the three main models are:

• Model 1: Combining peak and valley load and daily load pattern.
• Model 2: Directly forecasting 24 h daily load at the same time.
• Model 3: Forecasting instantaneous power load step by step of 1 h.

This work selects the Model 1 illustrated in [18]. This model consists of three separate parts:
the maximum real load power (peak load) forecasting, the minimum real load power (valley load)
forecasting and the identified day types (load pattern). The overview of this model is demonstrated in
Figure 1.
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Figure 1. The selected model of STLF for Southern Power Corporation in Vietnam.

In this model, the forecast error depends on all three parts: peak and valley load and load pattern
forecasting. The peak and valley load errors are usually smaller than the load pattern. The partial
errors in this model are differentiated and optimized separately to gain suitable adjustments during
the grid operation for minimizing the errors in future forecasting.
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2.2. Determining the Daily Load Forecasting from Peak Load, Valley Load and Load Pattern

The peak load and the valley load are forecasted firstly as explained in Sections 3 and 4.
We use the following two equations to determine daily load:

Pni =
Pi − Ppmin

Ppmax − Ppmin
(1)

Pi = P f min +
(
P f max − P f min

)
× Pni (2)

where

• Pni is the normalized load for hour i (this normalization increases the execution speed of algorithm);
• Ppmax and Ppmin are the real average peak load and valley load of past days, which are in the same

group with the forecast day (the number of similar days used is five by experience when we tried
to change it in on forecasting);

• Pi is the forecasting load of ith hour of the forecasting day; and
• Pfmax and Pfmin are the peak load and valley load of the forecasting day.

2.3. Determining the Load Pattern

Calculating the load pattern greatly affects the accuracy of the forecasting. There are several
published forecast methods but the most effective method is still based on the experience of predictors
to choose previous days with similar load patterns as the forecast day. In our method, all days may be
classified in terms of the daily load pattern into eight groups: five working day groups (from Monday
to Friday), two weekend groups (Saturday and Sunday), and one holiday (or special-event day) group.
The demonstration of load’s characteristics can be observed in the case of one week in Figure 2 (from
29 August to 3 September 2016). This week consists of a holiday (Friday, 2 September, is Vietnam
Nation day). The differences among the three groups is striking: working days, weekend and holidays.
However, caused by characteristics of SPC’s load, each day of the week has its own load pattern,
which is further distinguished if it coincides with a holiday.
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Figure 2. The daily load of one week in August 2016.

In this article, five similar days (holiday, day of week, and season of year) are used to reform
Equation (1). Then, the normalized load pattern is calculated by the average formula:

Pi =
1
5

5∑
j:1

Pi j (3)
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where Pij is the normalized hourly load of the selected similar days. During the normalization,
we eliminate some days if there are sudden differences on the load pattern graph by checking the
correlative coefficients with two steps:

- Calculate the correlative coefficients between the similar days by the CORREL function.
- Evaluate the value of correlative coefficients and eliminate the days corresponding to the value

out of range [0.9, 1].

2.4. Selecting the GA Algorithm

Currently, Genetic Algorithm (GA) is one of the most popular algorithms on research using
ANN. The basic knowledge of GA is described clearly in Vietnamese and international publications.
Therefore, we do not focus on describing GA in this paper but only using GA to apply the load
forecasting for a Vietnamese power company.

GA has shown to be a strong and fairly accurate algorithm in research about optimization
problems for a large power system. There are many GA-based studies in the field of STLF. In 1994,
Maifeld et al. [19] published STLF research based on ANN and GA. In this article, the authors called
the basic GA by the name of RGA. RGA also includes three operators: reproduction, crossover and
mutation. The diagram of RGA is shown in Figure 3; however, the order of steps is different from
other studies.
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Maifeld et al. [19] provided comparisons between back propagation (BP) and RGA on forecasting
of 12 h of a day. The errors are shown in Table 1.

Table 1. The comparison between BP and RGA.

Algorithm Average Error (%) Maximum Error (%)

RGA 1.8 4.0

BP 2.6 6.6

Although the error of RGA is smaller than the one of BP algorithm, the authors stated that the
execution time of RGA is much greater.

Several studies focus on optimizing the ANN operations instead of improving GA. One successful
approach was presented by Ling et al. [20]. They compared results using the traditional ANN and
an improved ANN integrating the same GA. The object of this publication is the household daily
load. On that, the GA affects only some hidden class neurons to create a well-trained neural network
with respect to the fitness value. Recently, studies on ANN using GA are mostly improved using
hybrid algorithms, where GA acts as one of the main partners. The hybrid algorithm usually exploits
basic GA with three key operators: reproduction, crossover and mutation. In each operator, it is
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absolutely necessary to select key parameters. In [21,22], the encryption is of two kinds, namely
encryption by binary string and encryption by real value; the crossover consists of three types, namely
the crossover-weights, the crossover-nodes and the crossover-features; and the mutation can be either
unbiased or biased. Finally, the key parameters were determined as below:

- Crossover method: Crossover-weights
- Mutation method: Biased (with fixed probability 0.1)

2.5. Selecting the PSO Algorithm

2.5.1. Overview of PSO Algorithms

The construction of PSO was first articulated by J. Kennedy and R.C. Eberhart (1995) [23] and
improved step-by-step in their later publications. The basic PSO is defined as: Vk+1

i = Vk
i + C1 ×R1 ×

(
Pk

i − xk
i

)
+ C2 ×R2 ×

(
Gk
− xk

i

)
xk+1

i = xk
i + Vk+1

i

(4)

where

Vk
i is the velocity of particle i at the loop k;

xk
i is the position of particle i at the loop k;

C1 and C2 are the learning fixed factors;
R1 and R2 are random values within (0,1);
Pk

i is the best position of particle i at the loop k; and

Gk is the best position of swarm at the loop k.

Note that choosing C1 > C2 shows the bias direction of the swarm’s movement according to
individual optimization (Pbest) or global optimization (Gbest) and thus affects the convergence rate
of PSO.

To avoid the separation of the swarm caused by the speed of movement, a proposed speed limit
is set at each iteration [24]. However, the speed limit also adversely affects to the swarm’s searching
space. By this conflict, a parameter w (a constant or even a function) called the “inertia weight” was
given by Y. Shi and R.C. Eberhart [25]. The inertia weight si brought into the basic PSO as shown in
Equation (5) (an advanced PSO): Vk+1

i = w×Vk
i + C1 ×R1 ×

(
Pk

i − xk
i

)
+ C2 ×R2 ×

(
Gk
− xk

i

)
xk+1

i = xk
i + Vk+1

i

(5)

The authors of [26,27] utilized Equation (6) to give the inertia weight wk on each iteration of swarm:

wk = wmax −
k

kmax
(wmax −wmin) (6)

where k stands for the actual number of epochs and kmax is the maximum number of epochs.
The authors showed that the recommended range for [wmin, wmax] is [0.4, 0.9].
The participation of inertia weights w aims to avoid the swarm’s separation; however, the algorithm

may still fall into the local convergence in the case of the multidimensional searching space. This is
caused by information exchange mechanism among particles in the swarm. Thus, another modified
PSO was proposed for this mechanism. Instead of exchanging information with all particles in
the swarm, each one exchanges information of position and velocity in a group of similar particles.
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Therefore, Gk in the basic PSO is replaced by Lk, meaning the optimal local value. The general equations
of this advanced PSO is as follows: Vk+1

i = w×Vk
i + C1 ×R1 ×

(
Pk

i − xk
i

)
+ C2 ×R2 ×

(
Lk
− xk

i

)
xk+1

i = xk
i + Vk+1

i

(7)

One of the new PSO trends is Stand PSO (SPSO), which is currently presented in many studies on
PSO applications. The first was conducted by Ozcan and Mohan [28]. Their results show the movement
of particles in the searching space. A few years later, their research was updated with more details by
Clerc and Kennedy [29], who analyzed the convergence of the algorithm. The SPSO is defined as: Vk+1

i = X ×
[
Vk

i + C1 ×R1 ×
(
Pk

i − xk
i

)
+ C2 ×R2 ×

(
Gk
− xk

i

)]
xk+1

i = xk
i + Vk+1

i

(8)

This model may also be applied to the advanced PSO mentioned in Equation (7): Vk+1
i = X ×

[
Vk

i + C1 ×R1 ×
(
Pk

i − xk
i

)
+ C2 ×R2 ×

(
Lk
− xk

i

)]
xk+1

i = xk
i + Vk+1

i

(9)

where X is called by the constriction factor. This research experimentally demonstrated the optimal
value of X by the following formula:

X = 2∣∣∣∣2−ϕ−√ϕ2−4ϕ
∣∣∣∣

ϕ = C1 + C2, ϕ > 4
(10)

As mentioned above, SPSO focuses primarily on the convergence of the algorithm. The selected
coefficients also aim to accelerate the convergence speed while ensuring the accuracy of the optimization.
However, as we know, rapid convergence also means the possibility of falling into local convergence
traps. Therefore, we need to choose either PSO or SPSO to combine with GA in our hybrid algorithm
before applying to a specific subject. To select which PSO to combine with the hybrid algorithm,
we separately implemented both modified PSO algorithms (basic PSO and SPSO). After that, the load
forecasting was compared using the predictive errors. In addition, the rate of convergence was also
considered by comparing the graphs of the value of objective function (MSE-mean square error)
according to each iteration. Due to the data source collection, we utilized the available dataset of
Southern Power Corporation (SPC: https://evnspc.vn/) in 2014.

2.5.2. Comparison between PSO and SPSO

Both PSO algorithms were tested with the same algorithm shown in Figure 4.
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The PSO algorithms were configured with the following coefficients:
The Basic PSO: C1 = 2 and C2 = 1. The values of C1 and C2 represent the movement priority of

particles according to Pbest or Gbest. The value of C1 being more than C2 denotes the reduction of rate
of signal propagation to Gbest of the swarm. This also helps overcome the disadvantage relating to
the local convergence traps. R1 and R2 are random coefficients in the range of [0,1]. According to the
above-mentioned studies, the value of w decreases from wmax = 0.9 to wmin = 0.4. However, during
the simulating process, the decrease of w on the next iterations would reduce the movement speed of
the swarm, leading to fall into the local convergence traps. Thus, we propose a solution to overcome
this disadvantage. In the first 100 iterations, the value of w decreases from 0.9 to 0.4 according to
Equation (6). From Iteration 101, the value of w remains equal to 0.9. This solution will help the swarm
searching space be big enough to increase the likelihood of finding the optimal solution.

The SPSO: According to Clerc and Kennedy [29], the value of coefficients significantly affects
the error of an algorithm. By empirical simulations, the optimal values of coefficients were relatively
determined as follows: X = 0.729; C1 = 2.05; C2 = 2.05; and R1 and R2 randomly fixed in the range
of [0,1].

Table 2 shows the comparison between the basic PSO and the SPSO.

Table 2. The comparison between the basic PSO and SPSO.

Algorithm Average Error (%) Maximum Error (%) Minimum Error (%)

Basic PSO 0.85 4.225 0.002

SPSO 1.021 4.803 0.056

The basic PSO is slightly better than SPSO but the difference is still not clear. To be able to see
more clearly the process of both algorithm, the MSE value of each training process was analyzed and
represented as a graph. Figure 5 shows the MSE value through each iteration.

Observing Figure 5, it is clear that:

• MSE value with SPSO reduces very quickly during the first 100–200 iterations. Then, it almost
does not change. This is the main disadvantage of SPSO algorithm because SPSO is researched
and developed to increase the convergence speed of the swarm. We can see that, if the number of
iterations is bigger, the value of MSE almost insignificantly decreases. Thus, the accuracy of the
algorithm is not improved with more interations.

• MSE value with basic PSO has a slower reduction than SPSO but, after 200 iterations, the MSE value
continues to decrease steadily and is smaller than SPSO’s from about 400 iterations. This shows
the positive effect of adjusting the value of inertia weight w after 100 iterations (remaining equal
to 0.9).
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By comparing the two PSO algorithms, we conclude that applying SPSO algorithm to load
forecasting only increases the speed of implementation but does not improve the result and it may fall
into the local convergence traps. Meanwhile, we can still improve the error of result by increasing the
number of iterations with the basic PSO. Therefore, we chose the basic PSO to combine with GA in the
GA-PSO hybrid algorithm applied in the load forecasting of SPC.

2.6. Selecting the Hybrid GA-PSO Algorithm

As we known, an optimal algorithm also may apply to all studies of optimization. H. Garg [14]
conducted research using the GA-PSO hybrid algorithm to solve a nonlinear optimization problem.
The roles of GA and PSO are clearly described in Figure 6.
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In this combination method, the GA is used to optimize each individual in the swarm. Accordingly,
the GA algorithm must be executed continuously with both crossover and mutation operators.
This greatly increases the runtime of the simulation.

Using the same idea as Harish Garg (PSO algorithm is used to select better individuals of the
initial iteration before performing steps of evolution), Q. Zhang et al. [15] provided a simpler algorithm
to optimize the parameters of direct-injection diesel engine running with soy biodiesel. The PSO
algorithm is done on the n best individuals, thus producing n offspring for use in the next iteration
(generation). The remaining N-n individuals are eliminated to make room for the new better individuals
generated by GA step. This step aims to create a new generation with the same quantity of particles of
swarm. The flowchart of this combination method is presented in Figure 7.
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Following this research, the authors mentioned the optimal runtime of hybrid PSO-GA algorithm
in comparison to basic GA and basic PSO. However, demonstrating the comparison between PSO-GA
and single PSO is not shown. In another study using a parallel combination of GA-PSO, Sahoo et al. [16]
also presented similar comparisons and mentioned the inherent weakness of runtime if GA algorithm
executes iterations in more than one program loop. Therefore, in our hybrid algorithm, GA algorithm
is implemented first and does not repeat in any other loop to avoid this drawback. After that, PSO
loops perform its optimal work. This is a helpful, simple solution to apply to load forecasting in
Vietnam. The GA step is implemented independently of PSO.

2.6.1. Step by Step of the Selected Hybrid Algorithm

The steps of combining GA and PSO algorithms in the progress of optimizing the ANN’s
parameters for application to load forecasting are briefly described according to Figure 8. All detailed
steps are listed in order below.

Energies 2019, 12, x FOR PEER REVIEW 9 of 23 

 

Figure 7. The combination method of Q. Zhang repoduced from [15], Appl. Energy: 2016. 

Following this research, the authors mentioned the optimal runtime of hybrid PSO-GA 
algorithm in comparison to basic GA and basic PSO. However, demonstrating the comparison 
between PSO-GA and single PSO is not shown. In another study using a parallel combination of GA-
PSO, Sahoo et al. [16] also presented similar comparisons and mentioned the inherent weakness of 
runtime if GA algorithm executes iterations in more than one program loop. Therefore, in our hybrid 
algorithm, GA algorithm is implemented first and does not repeat in any other loop to avoid this 
drawback. After that, PSO loops perform its optimal work. This is a helpful, simple solution to apply 
to load forecasting in Vietnam. The GA step is implemented independently of PSO. 

2.6.1. Step by Step of the Selected Hybrid Algorithm 

The steps of combining GA and PSO algorithms in the progress of optimizing the ANN’s 
parameters for application to load forecasting are briefly described according to Figure 8. All detailed 
steps are listed in order below. 

 
Figure 8. The schema of the hybrid GA-PSO algorithm. 

Genetic Algorithm 

Step 1: Prepare the data for ANN. 
Step 2: Configure the ANN. 
Step 3: Initialize the first weights (particle in swarm) and the number of generations. 
Step 4: Train ANN with each generated particle using the same load data. Calculate the 

respective errors (MSE values). 
Step 5: After obtaining the MSE values, sort them in ascending order and then remove the large 

value errors from the swarm (natural selection). 
Step 6: With the remaining particles of the swarm, randomly implement the crossover together 

to generate the new particles, ensuring the initial population size remains unchanged. 
Step 7: Implement the mutation step with selected probability. 
Step 8: Assess the adaptability of new generation with MSE error and stop the loop. 
Step 9: Implement natural evolution until one of the stop requirements is attained. 

Particle Swarm Optimization 

Step 10: Initialize the velocity, the position, the constants and the number of iterations. Take the 
first generation of swarm from the GA loop. 

Step 11: Integrate particles on ANN and simulate to pick of the MSE errors. Calculate the Pbest of 
each particle and Gbest of the swarm. 

Step 12: Calculate the velocity of each particle and update for all. 
Step 13: Train the ANN with the new generation of the swarm. Calculate and save the MSE 

errors. End the iteration. 

Start

Evaluate, align the errors 
of each particle

Eliminate incompatible 
particles

Random crossover to 
generate k new particles

Mutation with a fixed 
probability to create a 

new generation

Evaluation 
of adaptation

Natural evolution of each 
particle

Check the 
number of 
loops and 

errors

Initiate velocity, initial 
constants, number of 

moves

Update the Pbest, Gbest
values of each particles

Update the velocity, 
position of each particles

Error calculation, 
updating the Pbest, Gbest

values

Evaluation 
of adaptation

Natural evolution of each 
particle

Check the 
number of 
loops and 

errors

Updating Gbest final value 

Stop

No
Yes

No

Yes

No

No

Yes

Yes

Figure 8. The schema of the hybrid GA-PSO algorithm.

Genetic Algorithm
Step 1: Prepare the data for ANN.
Step 2: Configure the ANN.
Step 3: Initialize the first weights (particle in swarm) and the number of generations.
Step 4: Train ANN with each generated particle using the same load data. Calculate the respective

errors (MSE values).
Step 5: After obtaining the MSE values, sort them in ascending order and then remove the large

value errors from the swarm (natural selection).
Step 6: With the remaining particles of the swarm, randomly implement the crossover together to

generate the new particles, ensuring the initial population size remains unchanged.
Step 7: Implement the mutation step with selected probability.
Step 8: Assess the adaptability of new generation with MSE error and stop the loop.
Step 9: Implement natural evolution until one of the stop requirements is attained.
Particle Swarm Optimization
Step 10: Initialize the velocity, the position, the constants and the number of iterations. Take the

first generation of swarm from the GA loop.
Step 11: Integrate particles on ANN and simulate to pick of the MSE errors. Calculate the Pbest of

each particle and Gbest of the swarm.
Step 12: Calculate the velocity of each particle and update for all.
Step 13: Train the ANN with the new generation of the swarm. Calculate and save the MSE errors.

End the iteration.
Step 14: Continue the swarm’s natural evolution until the maximum iteration.
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Step 15: Take the final Gbest to train the ANN for load forecasting.
This hybrid algorithm is implanted in the ANN structure as demonstrated:

- Structure type: feedforward network
- Neuron quantity of input layer: 13
- Neuron quantity of output layer: 1
- Quantity of hidden layers: 1
- Neuron quantity of hidden layer: 5
- Fitness function in GA-PSO: MSE

2.6.2. GA-PSO vs. Basic PSO

Usually the accuracy of load forecasting using the GA-PSO hybrid algorithm would be
demonstrated by comparison with basic GA and basic PSO. However, in discussing the results
from simulation, we decided not to compare with simulation using basic GA due to its big errors.
Therefore, in this section, we only show simulation results using GA-PSO hybrid algorithm and the
basic PSO algorithm. To ensure the total of iterations corresponding to the simulation using basic PSO
(700 iterations), we performed 100 iterations with GA and 600 iterations with PSO algorithm. This is an
imperfect comparison because one iteration of GA is not the same as one of PSO. However, we could
compare the two simulation results. The comparison of MSE errors according to each iteration between
these two algorithms is demonstrated by Figure 9.
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It is easy to see that, in the first iterations, the MSE value with GA decreased more slowly than
the PSO algorithm, but, after that, the MSE value dropped very quickly and gradually surpassed the
one using the basic PSO algorithm. Meanwhile, after 100 iterations, the MSE value using the basic
PSO algorithm began to decrease more slowly. This shows that GA algorithm make the MSE value to
achieve relatively good accuracy to continue the evolution with PSO algorithm, ensuring the large
search space of the swarm.

There are two issues to keep in mind when using hybrid GA-PSO algorithm:

• Accuracy of GA algorithm decreased more slowly than PSO algorithm. Therefore, if the total of
iterations with GA were too large, it would reduce the overall performance of hybrid algorithm.

• One of the operators in GA algorithm is crossover, meaning that more iterations being implemented
will lead to more individuals of future generations having more characteristics of their parent
individuals, thus they will gradually become more similar. Thus, if the total iterations with GA
were too large, the initial weights would be nearly the same or, in other words, the search space
of the swarm would be smaller. This would lead to the reduction of performance of the hybrid
algorithm. Accordingly, we infer that the selected total iterations with GA needs to be balanced
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(depending much on the experience of the forecaster) to bring the most efficiency to the whole
ANN training process.

3. Prepare Input Data and Materials

This research exploited the huge input data supplied by one of Vietnam’s big local power
companies (SPC). In this experiment, the datasheet stopped on 18 November 2016 and it was required
to forecast daily power load of 19 November and 20 November Further, the forecast was implemented
for one week (14–20 November) to improve the accuracy of forecasting algorithm. All obtained results
were assessed and discussed. As the same implementation, we comprehensively present the input data
for 19 November 2016 (only for comparison purposes). The daily highest temperature were used as
the weather criterion for peak load and the daily lowest temperature for valley load. The temperature
variables of all past days and forecast day were collected from the data source on “weather.com”. Note
that the SPC’s load consists of 21 provinces with large area, so the temperature also varies. Thus,
we only used the average temperature of the whole region in selected hybrid algorithm.

3.1. The Datasheet of Input Data

The input data of 19 November 2016 was prepared in an Excel datasheet (see Table 3 (for peak
load) and Table 4 (for valley load)). These tables show 28 days from 28 October 2016 to 18 November
2016 on 28 rows and 15 columns that describe 13 parameters (or 13 neurons on output layout):

- Neuron 1 (Column 3): Day’s temperature of one day from current day (the current day is noted
in the Columns 1 and 2).

- Neuron 2 (Column 4): Temperature of this day last week.
- Neuron 3 (Column 5): Temperature of current day.
- Neuron 4 (Column 6): Day’s peak load of one day from current day.
- Neuron 5 (Column 7): Peak load of this day last week.
- Neurons 6–13: Encoding all days of week (considering holidays).

Table 3. The input data for peak load training.

Day of
Week Date Tpmax-1

◦C Tpmax-7
◦C Tpmax

◦C Ppmax-1
MW

Ppmax-7
MW Encryption

Saturday 22 October 2016 32 33 32 8020 7874 0 0 0 0 0 0 1 0
Sunday 23 October 2016 32 33 33 7569 6248 0 0 0 0 0 0 0 1
Monday 24 October 2016 33 32 31 6113 8007 0 1 0 0 0 0 0 0
Tuesday 25 October 2016 31 31 30 7961 8115 0 0 1 0 0 0 0 0

Wednesday 26 October 2016 30 32 33 7873 7873 0 0 0 1 0 0 0 0
Thursday 27 October 2016 33 30 34 8014 7935 0 0 0 0 1 0 0 0

Friday 28 October 2016 34 32 33 8184 8020 0 0 0 0 0 1 0 0
Saturday 29 October 2016 33 32 33 8031 7569 0 0 0 0 0 0 1 0
Sunday 30 October 2016 33 33 31 7505 6113 0 0 0 0 0 0 0 1
Monday 31 October 2016 31 31 32 6164 7961 0 1 0 0 0 0 0 0
Tuesday 1 November 2016 32 30 32 7775 7873 0 0 1 0 0 0 0 0

Wednesday 2 November 2016 32 33 32 7926 8014 0 0 0 1 0 0 0 0
Thursday 3 November 2016 32 34 30 7950 8184 0 0 0 0 1 0 0 0

Friday 4 November 2016 30 33 29 7320 8031 0 0 0 0 0 1 0 0
Saturday 5 November 2016 29 33 27 7725 7505 0 0 0 0 0 0 1 0
Sunday 6 November 2016 27 31 28 7311 6164 0 0 0 0 0 0 0 1
Monday 7 November 2016 28 32 34 5953 7775 0 1 0 0 0 0 0 0
Tuesday 8 November 2016 34 32 32 7725 7926 0 0 1 0 0 0 0 0

Wednesday 9 November 2016 32 32 33 7774 7950 0 0 0 1 0 0 0 0
Thursday 10 November 2016 33 30 34 8264 7320 0 0 0 0 1 0 0 0

Friday 11 November 2016 34 29 34 8109 7725 0 0 0 0 0 1 0 0
Saturday 12 November 2016 34 27 34 7976 7311 0 0 0 0 0 0 1 0
Sunday 13 November 2016 34 28 34 7828 5953 0 0 0 0 0 0 0 1
Monday 14 November 2016 34 34 35 7725 7725 0 1 0 0 0 0 0 0
Tuesday 15 November 2016 35 32 34 8052 7774 0 0 1 0 0 0 0 0

Wednesday 16 November 2016 34 33 35 8382 8264 0 0 0 1 0 0 0 0
Thursday 17 November 2016 35 34 33 8290 8109 0 0 0 0 1 0 0 0

Friday 18 November 2016 33 34 33 8197 7976 0 0 0 0 0 1 0 0
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Table 4. The input data for valley load training.

Day of
Week Date Tpmin-1

◦C Tpmin-7
◦C Tpmin

◦C Ppmin-1
MW

Ppmin-7
MW Encryption

Saturday 22 October 2016 24 25 25 6052 6043 0 0 0 0 0 0 1 0
Sunday 23 October 2016 25 24 24 5775 5268 0 0 0 0 0 0 0 1
Monday 24 October 2016 24 24 24 5135 5205 0 1 0 0 0 0 0 0
Tuesday 25 October 2016 24 25 24 5299 6006 0 0 1 0 0 0 0 0

Wednesday 26 October 2016 24 25 25 5961 6079 0 0 0 1 0 0 0 0
Thursday 27 October 2016 25 24 25 5989 5914 0 0 0 0 1 0 0 0

Friday 28 October 2016 25 24 24 6088 6052 0 0 0 0 0 1 0 0
Saturday 29 October 2016 24 25 24 6031 5775 0 0 0 0 0 0 1 0
Sunday 30 October 2016 24 24 24 5256 5135 0 0 0 0 0 0 0 1
Monday 31 October 2016 24 24 24 4966 5299 0 1 0 0 0 0 0 0
Tuesday 1 November 2016 24 24 23 5210 5961 0 0 1 0 0 0 0 0

Wednesday 2 November 2016 23 25 24 5919 5989 0 0 0 1 0 0 0 0
Thursday 3 November 2016 24 25 25 5980 6088 0 0 0 0 1 0 0 0

Friday 4 November 2016 25 24 24 5830 6031 0 0 0 0 0 1 0 0
Saturday 5 November 2016 24 24 24 5984 5256 0 0 0 0 0 0 1 0
Sunday 6 November 2016 24 24 24 5734 4966 0 0 0 0 0 0 0 1
Monday 7 November 2016 24 24 25 5005 5210 0 1 0 0 0 0 0 0
Tuesday 8 November 2016 25 23 25 5984 5919 0 0 1 0 0 0 0 0

Wednesday 9 November 2016 25 24 24 5812 5980 0 0 0 1 0 0 0 0
Thursday 10 November 2016 24 25 25 6006 5830 0 0 0 0 1 0 0 0

Friday 11 November 2016 25 24 25 6104 5984 0 0 0 0 0 1 0 0
Saturday 12 November 2016 25 24 25 6125 5734 0 0 0 0 0 0 1 0
Sunday 13 November 2016 25 24 25 6109 5005 0 0 0 0 0 0 0 1
Monday 14 November 2016 25 25 25 5984 5984 0 1 0 0 0 0 0 0
Tuesday 15 November 2016 25 25 26 5270 5812 0 0 1 0 0 0 0 0

Wednesday 16 November 2016 26 24 25 6358 6006 0 0 0 1 0 0 0 0
Thursday 17 November 2016 25 25 26 6387 6104 0 0 0 0 1 0 0 0

Friday 18 November 2016 26 25 26 6283 6125 0 0 0 0 0 1 0 0

The mean is shown in Table 5.

Table 5. The encryption of days.

Date Holiday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Code 11000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

Notes that 11000000 is a Monday’s encryption on Holiday.

3.2. The Datasheet of Target Data

The target data were used in the training process, as shown in Tables 6 and 7.

Table 6. The target data for peak load training.

Day of Week Date Pmaxcurrent day (MW)

Saturday 22 October 2016 7569
Sunday 23 October 2016 6113
Monday 24 October 2016 7961
Tuesday 25 October 2016 7873

Wednesday 26 October 2016 8014
Thursday 27 October 2016 8184

Friday 28 October 2016 8031
Saturday 29 October 2016 7505
Sunday 30 October 2016 6164
Monday 31 October 2016 7775
Tuesday 1 November 2016 7926

Wednesday 2 November 2016 7950
Thursday 3 November 2016 7320

Friday 4 November 2016 7725
Saturday 5 November 2016 7311
Sunday 6 November 2016 5953
Monday 7 November 2016 7725
Tuesday 8 November 2016 7774

Wednesday 9 November 2016 8264
Thursday 10 November 2016 8109

Friday 11 November 2016 7976
Saturday 12 November 2016 7828
Sunday 13 November 2016 7725
Monday 14 November 2016 8052
Tuesday 15 November 2016 8382

Wednesday 16 November 2016 8290
Thursday 17 November 2016 8197

Friday 18 November 2016 8173
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Table 7. The target data for valley load training.

Day of Week Date Pmincurrent day (MW)

Saturday 22 October 2016 5775
Sunday 23 October 2016 5135
Monday 24 October 2016 5299
Tuesday 25 October 2016 5961

Wednesday 26 October 2016 5989
Thursday 27 October 2016 6088

Friday 28 October 2016 6031
Saturday 29 October 2016 5256
Sunday 30 October 2016 4966
Monday 31 October 2016 5198
Tuesday 1 November 2016 5919

Wednesday 2 November 2016 5980
Thursday 3 November 2016 5830

Friday 4 November 2016 5984
Saturday 5 November 2016 5734
Sunday 6 November 2016 5005
Monday 7 November 2016 5984
Tuesday 8 November 2016 5812

Wednesday 9 November 2016 6006
Thursday 10 November 2016 6104

Friday 11 November 2016 6125
Saturday 12 November 2016 6109
Sunday 13 November 2016 5984
Monday 14 November 2016 5270
Tuesday 15 November 2016 6358

Wednesday 16 November 2016 6387
Thursday 17 November 2016 6283

Friday 18 November 2016 5830

3.3. The Datasheet of Predicted Data

After ANN training process, the optimal weights of ANN were used to predict the peak and
valley load. Tables 8 and 9 show the datasheets prepared for the forecasting of 19 November 2016.

Table 8. The predicted data for valley load of 19 November 2016.

Day of
Week Date Tpmin-1

◦C Tpmin-7
◦C Tpmin

◦C Ppmin-1
MW

Ppmin-7
MW Encryption

Saturday 19 November 2016 26 25 26 5830 6109 0 0 0 0 0 0 1 0

Table 9. The predicted data for peak load of 19 November 2016.

Day of
Week Date Tpmax-1

◦C Tpmax-7
◦C Tpmax

◦C Ppmax-1
MW

Ppmax-7
MW Encryption

Saturday 19 November 2016 33 34 34 8173 7828 0 0 0 0 0 0 1 0

Note that the past temperatures are always real values but the current day is a predicted value.

3.4. Materials for Forecasting

We used MATLAB version R2015b, The MathWorks, Inc. with ANN toolbox to implement the
STLF. One MacBook Pro version 2015 with processor Intel Core i7 2 GHz, 8 GB memory 1600 MHz
DDR3 was exploited.
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4. Using Effective Hybrid Algorithm GA-PSO for STLF

4.1. Forecasting for 19 November

After training ANN and executing the hybrid algorithm, values of peak load and valley
load forecasting on 19 November 2016 were, respectively, 7769.8 MW and 6134.1 MW. Using
Equations (1) and (2), the results are shown in Figure 10.
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As shown in Figure 11, the largest error was 3.736% at 12:00, the smallest was 0.018% at 04:00
and the average error was 1.153%. With this distribution, we found that no large errors (more than
2%) were during the rush-hour load. Considering the provisions in Decision No. 7 of the Electricity
Regulatory Authority of Vietnam allow the error of 2% for the daily load forecasting, the results exceed
the allowable error at three times (12:00, 14:00 and 22:00). However, the average error was still within
the allowable range. Thus, we suggest these results for the grid operation.
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4.2. Forecasting for 14–18 November

Turning now to the experimental evidence on 16 November 2016, where the result was not good.
This day returned the worst result (the worst average error). Figures 12 and 13 show that weak points
of the hybrid algorithm exist.
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The biggest error was 6.57% at 21:00, the smallest was 1.47% at 07:00 and the avcerage was 3.87%.
This result is not allowable for load forecasting. This excess error can be explained by two reasons.
The first is due to the load’s variation of similar days in processing of hourly load pattern forecasting.
The second is due ti the difference between local temperatures of 21 provinces on this day.

However, the results were not too poor on 14, 15, 17 and 18 November. The obtained results for
peak load, valley load and forecasting are summarized in Table 10

Table 10. The Summary of the forecasts for 14, 15, 17 and 18 November.

Date
Peak load Valley Load Daily Load Forecasting

Forecast Real Error
(%) Forecast Real Error

(%)
Max Error

(%)
Min Error

(%)
Average
Error (%)

14 November 7840 8052 2.63 5157.9 5270 2.13 5.99 0.15 2.53
15 November 7960.2 8382 5.03 6008.5 6358 5.50 6.24 0.11 3.00
17 November 8016 8197 2.21 6008.1 6283 4.37 5.72 1.24 3.36
18 November 8137.3 8173 0.44 5996.5 5830 2.85 25.97 0.07 2.44

It is easy to see the average errors of these forecasts were always approximately 3% (satisfying the
requirement of load forecasting regulation in Vietnam). The forecast errors in Table 9 include peak,
valley and daily load error. As mentioned above, these error types were released by three forecast
parts: peak, valley and hourly load forecasting respectively. We realize that the peaks and valleys are
not synonymous with poor daily errors. Specifically, the 14, 15 and 17 November results have peak
and valley load errors of approximately 5% corresponding to the maximum of daily load error of 6%
and the minimum of 1%. Meanwhile, on 18 November, although the peak and valley load errors were
good (0.44% and 2.85%), the maximum of daily load error reached 25.97%. Although the minimum
of error remained as stable as the other days, even better (0.07%), such a maximum daily load error
is unacceptable. This evokes doubts about the real load data provided by SPC. Indeed, we tried to
compare similar days (all Fridays in the last two months, i.e., October and November) on the hourly
load pattern. Figure 14 shows this comparison.
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Figure 14 shows that a valley load appears at 11:00 on 18 November. This is very unusual when
looking at the load pattern on Fridays of the SPC’s electrical load. We suggest there is a certain error
from the SPC data collection equipment, thus warning the system to be checked.

4.3. Forecasting for 20 November

After executing the valley and peak load forecasting, we encountered the difficulty of the load
pattern forecasting. For two days (16 and 19 November), load patterns of the selected similar days have
no big differences. However, the difference is very clear in the case of 20 November (when comparing
the five previous Sundays). Thus, we eliminated the date which has the least correlated pattern with
others to continue to the next step. Figure 15 shows the pattern’s correlation.
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Following Figure 15, we excluded 13 November from the similar days to avoid errors due to the
standardization of the load pattern. After that, we obtained the result shown in Figure 16 and the
distribution of forecast errors in Figure 17.
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Figure 17. Distribution of forecast errors of 20 November 2016 forecasting.

Unlike other normal tested days, 20 November 2016 gave unfavorable results. With the largest
error of 26.18% and the average error of 12.46%, this result is unacceptable to apply to STLF practice.
The cause of this unfavorable point is not only due to the temperature or the load pattern of the similar
days but also due to unusual events during the holidays. It may be coincidental that some households
or load groups consumed electricity on 20 November 2016 due to events taking place differently from
the ANN training (this point is due to not enough data for training). We also tried 20 November of the
previous years (from 2011 to 2015) to standardize load pattern of this date but these results are also not
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positive. Finally, we decided that the hybrid algorithm needs to be improved or the ANN structure
needs to be re-selected in the case of holidays overlapping with the weekend.

5. Conclusions

The key goal of this research was to create an effective STLF tool and confirm the GA-PSO
combination’s prospect. The results of this investigation show that our hybrid algorithm is effective,
with small error for 19 November 2016. However, the generalizability of these results is subject to
certain limitations (for instance, 16 November 2016) or even unacceptable on 20 November 2016.

This hybrid algorithm can also suggest a collection equipment check to correct the real obtained
data from SPC throughout the unusual error periods.

The SPSO operators will need improve to use the basic PSO in the hybrid algorithm. The GA-PSO
hybrid algorithm is always better than the basic PSO when comparing errors. Holidays are harder to
forecast than the normal days, especially if they coincide with the weekend (20 November 2016 was a
Sunday).

There are still many unanswered questions about these high errors and the effectiveness of our
hybrid algorithm. This is an important issue for future research. In future investigations, it might
be possible to use more neurons in the input layer to represent more local temperatures. Moreover,
a further study with more focus on determining hourly load pattern is suggested.
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