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Abstract: Reduced graphene oxide (rGO)/Bi2Te3 nanocomposite powders with different contents of
rGO have been synthesized by a one-step in-situ reductive method. Then, rGO/Bi2Te3 nanocomposite
bulk materials were fabricated by a hot-pressing process. The effect of rGO contents on the composition,
microstructure, TE properties, and carrier transportation of the nanocomposite bulk materials has
been investigated. All the composite bulk materials show negative Seebeck coefficient, indicating
n-type conduction. The electrical conductivity for all the rGO/Bi2Te3 nanocomposite bulk materials
decreased with increasing measurement temperature from 25 ◦C to 300 ◦C, while the absolute value
of Seebeck coefficient first increased and then decreased. As a result, the power factor of the bulk
materials first increased and then decreased, and a power factor of 1340 µWm−1K−2 was achieved for
the nanocomposite bulk materials with 0.25 wt% rGO at 150 ◦C.

Keywords: reduced graphene oxide; Bi2Te3; composite; thermoelectric

1. Introduction

Thermoelectric (TE) materials directly convert waste heat into electrical energy [1]. The TE
properties of a TE material can be estimated by the figure of merit, ZT = S2σT/κ, where S is the Seebeck
coefficient, σ is the electrical conductivity, T is the absolute temperature, and κ is the total thermal
conductivity (the sum of electronic and lattice (or phonon) contributions) [2,3]. Decreasing the material
dimensionality is an effective method to enhance its ZT value by optimizing the S, σ, and κ, which has
been proven by both theoretical research and experimental research [4–8]. For example, the ZT value
of Bi2Te3-based alloys has been significantly enhanced by decreasing its dimensionality [6,7,9].

Carbon nanotubes and graphene have shown high electrical conductivity, high carrier mobility,
and high mechanical properties [10,11], and have been widely used in the research on inorganic TE
composite materials [12–19]. For example, Dong et al. [12] prepared PbTe/graphene nanocomposite
powders by a wet chemical method, and then sintered the as-prepared powders by a spark plasma
sintering (SPS) process at 580 ◦C, and a ZT value of 0.7 was obtained at 670 K for the composite with
5% mass ratio of graphene: PbTe. Ju et al. [13] fabricated Bi2Te3 nanowire (NW)/graphene composite
films by wet chemical synthesis combined with a sintering process, and a ZT value of 0.2 was obtained
for the composite film with 20 wt% Bi2Te3 NWs at 300 K. Liang et al. [14] prepared Bi2Te3/graphene
bulk materials by a hydrothermal process combining SPS method, and a ZT value of 0.21 was obtained
for the composite with 0.2 vol.% graphene at 475 K. Agarwal et al. [15] prepared Bi2Te3/graphene
bulk materials by a cold pressing method, and a ZT value of 0.92 was obtained for the composite
with 0.05 wt% graphene at 402 K. Kumar et al. [16] synthesized Bi2Te3/reduced graphene oxide (rGO)
nanocomposites by a refluxing method, and then pressed the as-prepared nanocomposites into pellets;
a ZT value of ~0.35 was obtained for the pellet at ~340 K. Zhang et al. [17] reported Bi0.4Sb1.6Te3 bulk
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materials by a high-pressure and high-temperature synthesis and high pressure sintering method,
and a ZT value of 1.26 at 423 K was obtained for the composite with 0.05 wt% graphene. Ju et al. [18]
fabricated Bi2Te3 NW/graphene bulk materials by a wet-chemical synthetic route and subsequent
sintering process, and a ZT value of 0.4 was obtained for the composite with 1 wt% graphene at 300 K.
Shin et al. [19] prepared rGO/Bi0.36Sb1.64Te3 composites by a melt spinning process combining SPS
method, and a ZT value of 1.16 was achieved for the composite with 0.4 vol.% rGO at 393 K.

However, systematic research about the influence of rGO content on the morphologies,
TE properties, especially on the carrier transportation of rGO/Bi2Te3 bulk materials, are very limited.
In this work, rGO/Bi2Te3 nanocomposite powders with different contents of rGO were synthesized by a
one-step in-situ reductive method, and then rGO/Bi2Te3 nanocomposite bulk materials were fabricated
by a hot-pressing method. The effect of rGO content on the composition, microstructure, TE properties,
and carrier transportation of the nanocomposite bulk materials have been investigated.

2. Materials and Methods

2.1. Materials

Sodium tartrate (C4H4Na2O6·2H2O, ACS reagent) was purchased from Sigma-Aldrich. Tellurium
dioxide (TeO2, guaranteed reagent) and potassium borohydride (KBH4, analytical reagent) were
purchased from Adamas Reagent Co., Ltd. Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, analytical
reagent) and absolute ethanol (C2H5OH, reagent grade) were purchased from Sinopharm Chemical
Reagent Co., Ltd. Potassium hydroxide (KOH, analytical reagent) was purchased from General Reagent
Co., Ltd. Graphene oxide (thickness: 0.8–1.2 nm) was purchased from Nanjing XFNANO Materials
Tech Co., Ltd. All the materials were used without further treatment or purification.

2.2. Preparation of rGO/Bi2Te3 Nanocomposite Powders

Typical synthetic process of rGO/Bi2Te3 nanocomposite powders is as follows: a designed mount
of graphene oxide (GO) was dispersed in 80 mL deionized water and then ultrasonicated for 1 h
to form the transparent GO dispersion solution (Solution A). 2 g C4H4Na2O6·2H2O, 0.48 g TeO2,
and 4.5 g KOH were added successively to the Solution A and stirred for 30 min to form Solution
B. 0.97 g Bi(NO3)3·5H2O was added into the Solution B and stirred for 2 h to form Solution C. 1.2 g
KBH4 as reducing agent was added into the Solution C and stirred for 30 min (Solution D). After that,
Solution D was transferred to the sealed Teflon-lined autoclave and heated at 180 ◦C for 24 h, and then
naturally cooled to the room temperature. Finally, the product was dried in vacuum at 60 ◦C for 6 h
after washing by deionized water and absolute ethyl alcohol for several times. The weight percent
(nominal composition) of rGO in the rGO/Bi2Te3 nanocomposite powders was 0.25 wt%, 0.5 wt%,
and 1 wt%, respectively. The pure Bi2Te3 nanoparticles were prepared by the same procedure without
adding GO. The rGO was prepared by the same procedure without adding C4H4Na2O6·2H2O, TeO2,
KOH, or Bi(NO3)3·5H2O. The rGO/Bi2Te3 nanocomposite powders with different content of rGO were
hot-pressed into pellets in a graphite die (12.7 mm in diameter) at 648 K and 80 MPa for 2 h under
vacuum. The thickness of the as-prepared rGO/Bi2Te3 nanocomposite bulk materials is ~1.5 mm.
Figure 1 illustrates the procedure for preparation of rGO/Bi2Te3 nanocomposite bulk materials.
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2.3. Sample Characterization

The compositions of samples were characterized by X-ray powder diffraction (XRD, Bruker D8
Advance, Karlsruhe, Germany) and Raman spectroscopy with 532 nm laser excitation (Thermo Fisher
DXR, USA). The morphologies of samples were characterized using scanning electron microscopy
(SEM, Philips XL 30 FEG, Philips, Eindhoven, The Netherlands) and transmission electron microscopy
(TEM, Technai G2 F20, FEI, USA). The Seebeck coefficient was determined from the slope of the
voltage vs temperature gradients of 0–5 K. The resistivity and Hall coefficient were measured by
the van der Pauw technique. The Hall coefficient measurement was carried out under a reversible
magnetic field of 1.5 T [20]. The total thermal conductivity (κ) of the composites was estimated with the
relationship κ = α·ρ·Cp, where α is thermal diffusivity, ρ is bulk density, and Cp is the specific heat of the
material [21,22]. Note that the thermal conductivity will be use for the total thermal conductivity in the
rest of the paper unless otherwise specified. The α and Cp were measured using LFA 467 (NETZSCH)
from RT to 300 ◦C in Ar. The ρ was measured by the Archimedes method [23,24]. The relative density
of the rGO/Bi2Te3 nanocomposite bulk materials with different content of rGO was calculated by the
ratio of the corresponding measured density: theoretical density. The density of Bi2Te3 and rGO
used for calculated the theoretical density of the rGO/Bi2Te3 bulk material was 7.86 g/cm3 [14] and
2.28 g/cm3 [25], respectively.

3. Results and Discussion

Figure 2 shows the XRD patterns of rGO/Bi2Te3 nanocomposite powders with different contents
of rGO from 0 to 1 wt%. All the peaks of the as-prepared Bi2Te3 nanoparticles and rGO/Bi2Te3

nanocomposite powders can be indexed to the single phase Bi2Te3 (JCPDF, No. 15-0863). The peaks at
2θ = 17.4◦, 23.6◦, 27.6◦, 37.8◦, 41.1◦, 45.2◦, 50.2◦, 57.1◦, 62.2◦, and 66.8◦ are attributed to the (006), (101),
(015), (1010), (110), (0015), (205), (0210), (1115), and (125) planes of Bi2Te3, respectively. It can be seen
that as the content of rGO is increased from 0 to 1 wt%, no other peaks appear, which agrees with the
results reported in Ref. [16].
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Figure 2. XRD patterns of the rGO/Bi2Te3 nanocomposite powders with different contents of rGO from
0 to 1 wt%.

Figure 3 shows the Raman spectra of GO, rGO, Bi2Te3 powders, and rGO/Bi2Te3 nanocomposite
powders with 0.25 wt% rGO. The peaks at 1352 cm−1 and 1595 cm−1, 1341 cm−1 and 1583 cm−1,
1341 cm−1 and 1587 cm−1 are contributed to the D-band and G-band of GO, rGO, and rGO/Bi2Te3

nanocomposite powders with 0.25 wt% rGO, respectively, which agrees with the results reported in
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Refs. [26,27]. The intensity of ID/IG increased after GO was transferred to rGO, which agrees with the
results reported in the Ref. [28].
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Figure 3. Raman spectra of GO, rGO, Bi2Te3 powders, and rGO/Bi2Te3 nanocomposite powders with
0.25 wt% rGO.

Figure 4a–f shows SEM images of the rGO/Bi2Te3 nanocomposite powders with different contents
of rGO. Figure 4g,h shows TEM images of the rGO/Bi2Te3 nanocomposite powders with 1 wt% rGO.
It can be seen that the particle size of the as-prepared Bi2Te3 is ~50–100 nm, and Bi2Te3 nanoparticles
are uniformly decorated on rGO layers in the nanocomposites.
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Figure 4. SEM images of rGO/Bi2Te3 nanopowders with (a,b) 0.25 wt%; (c,d) 0.5 wt%; and (e,f) 1 wt%
rGO; (g,h) TEM images of rGO/Bi2Te3 nanopowders with 1 wt% rGO.

Figure 5 shows the XRD patterns of the rGO/Bi2Te3 nanocomposite bulk material with 0.25 wt%
rGO. All the peaks except the weak peaks marked by asterisks can be indexed to the single phase
Bi2Te3 (JCPDF, No. 15-0863). The marked peaks can be indexed to Bi2TeO5 (JCPDF, No. 70-5000),
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which is mainly due to that the powders were slightly oxidized during the hot-pressing sintering [23].
The rGO/Bi2Te3 composite powders were of nanosize and would adsorb oxygen on their surfaces,
and the adsorbed oxygen could not be fully eliminated even the hot-pressing was carried out under
vacuum [23]. The intensities of the (006) and (0015) planes for the rGO/Bi2Te3 nanocomposite bulk
materials are significantly enhanced when compared to the powders (see Figure 2), which indicates the
preferred orientation for the bulk materials after the hot-pressing sintering [29].
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The transport properties of the rGO/Bi2Te3 nanocomposite bulk materials with different contents
of rGO are plotted in Figure 7a–e. The electrical conductivities for all the rGO/Bi2Te3 nanocomposite
bulk materials are lower than that of pure Bi2Te3 bulk materials. As the content of rGO is increased from
0 to 1 wt%, the electrical conductivity of the rGO/Bi2Te3 nanocomposite bulk materials decreases from
1403 S/cm to 1025 S/cm at room temperature. These values are higher than those of typical values for
Bi2Te3/graphene bulk material (~950 S/cm with 0.2 vol.% graphene at 300 K) [14] or Bi2Te3 NW/graphene
bulk material (~230 S/cm with 1 wt% graphene at 300 K) [18], but very close to Bi2Te3/rGO bulk material
(1440 S/cm at 300 K) [16]. The electrical conductivity for all the samples decreased as the measurement
temperature was increased from 25 ◦C to 300 ◦C, indicative of degenerate semiconductor behavior [30].Energies 2019, 12, x FOR PEER REVIEW 7 of 10 
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All the bulk materials have negative Seebeck coefficient, indicating n-type conduction (Figure 7b).
As the measurement temperature increased, the absolute value of Seebeck coefficient for all the samples
first increased and then decreased, e.g., the absolute value of the (negative) Seebeck coefficient of the
composite with 1 wt% rGO increased from 96 µV/K at 25 ◦C to 120 µV/K at 200 ◦C, and then decreased
to 105 µV/K at 300 ◦C. The absolute value of the (negative) Seebeck coefficient of the composite with
1 wt% rGO (96 µV/K at 25 ◦C) is higher than that of a Bi2Te3/rGO bulk material (83 µV/K at 300 K) [16];
however, it is lower than that of a Bi2Te3/graphene bulk material (~113 µV/K with 0.2 vol.% graphene
at 475 K) [14] and a Bi2Te3 NW/graphene bulk material (~170 µV/K with 1 wt% graphene at 300 K) [18].

The power factor of the samples first increased and then decreased as the measurement temperature
was increased from 25 ◦C to 300 ◦C (Figure 7c), mainly due to the same trend of the absolute value of
Seebeck coefficient and the decreased electrical conductivity. A power factor of 1340 µWm−1K−2 was
achieved for the composites with 0.25 wt% rGO at 150 ◦C. This value is much higher than that of a
Bi2Te3/graphene film with 80 wt% graphene (~480 µWm−1K−2 at 300 K) [13], a Bi2Te3/graphene bulk
material with 0.2 vol.% graphene (~1000 µWm−1K−2 at 475 K) [14], and a Bi2Te3 NW/graphene bulk
material with 1 wt% graphene (~650 µWm−1K−2 at 300 K) [18].

To explain the effect of rGO content and temperature on the electrical conductivity and Seebeck
coefficient of the bulk composites, the carrier mobility and carrier concentration of the bulk composites
were determined, and are shown in Figure 7d–e. The electrical conductivity of materials can be
calculated by the following equation [31].

σ = neµ, (1)

where σ is the electrical conductivity, n is the carrier concentration, e is the charge of electron, and µ is
the carrier mobility. It can be seen that as the content of rGO is increased from 0 to 1 wt%, both the
carrier mobility and the carrier concentration of the bulk composites decreased somewhat. As the
measurement temperature was increased from 25 ◦C to 300 ◦C, the carrier mobility decreased, while the
carrier concentration increased. The decrease in carrier mobility is much larger than the increase in
carrier concentration, which leads to a significant decrease of the electrical conductivity.

The Seebeck coefficient for metals and degenerate semiconductors can be expressed by the
following equation [32].

S = m∗T
8π2k2

β

3eh2

(
π
3n

) 2
3
, (2)

where m* is the effective mass of the carrier, h is the Planck constant, and kβ is the Boltzmann constant.
The carrier scattering and the carrier concentration are significantly affect the Seebeck coefficient of the
composites. As the measurement temperature was increased, the absolute value of Seebeck coefficient
for all the samples first increased and then decreased, which agrees with the results reported in the
Ref. [14]. This phenomenon is mainly due to the combined effects by the increased amount of interfaces
between the rGO and Bi2Te3 nanoparticles, correlated decreased carrier mobility and increased carrier
concentration as the temperature increased from 25 ◦C to 300 ◦C.

Normally, the thermal conductivities of Bi2Te3 bulk materials and rGO/Bi2Te3 bulk materials are in
the range of 0.55–3.0 Wm−1K−1 and 0.45–3.9 Wm−1K−1 at room temperature, respectively [13,14,16,18].
As 1340 µWm−1K−2 was the highest power factor achieved for the nanocomposite bulk materials with
0.25 wt% rGO at 150 ◦C in this work, the thermal conductivity of rGO/Bi2Te3 bulk material with 0.25
wt% rGO was measured, and the thermal conductivity of Bi2Te3 bulk material was also measured for a
comparison (see Figure 8). The thermal conductivity of the samples agrees with the results reported in
Refs. [13,14,16,18]. The thermal conductivity of Bi2Te3 bulk materials decreased after the addition of
rGO, e.g., from 1.46 Wm−1K−1 for Bi2Te3 bulk materials to 1.34 Wm−1K−1 for rGO/Bi2Te3 bulk materials
with 0.25 wt% rGO at room temperature. The decrease in the thermal conductivity mainly due to the
interfaces between the rGO and Bi2Te3 existed in the composites (see Figure 6), which affected the
carrier scattering, and then decreased the thermal conductivity.
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Figure 8. The thermal conductivity (κ) of Bi2Te3 bulk materials and rGO/Bi2Te3 nanocomposite bulk
materials with 0.25 wt% rGO (parallel to the hot-pressing sintering direction).

As the electrical conductivity and thermal conductivity were measured in different directions,
the ZT value curves of the samples were not presented. According to the ratio of 1.5 for the thermal
conductivity (perpendicular to the hot-pressing sintering direction: parallel to the hot-pressing sintering
direction) of the Bi2Te2.7Se0.3 bulk material [33], a ZT value of ~0.3 at 150 ◦C for rGO/Bi2Te3 composite
bulk material with 0.25 wt% was estimated.

Both the as-prepared rGO/Bi2Te3 nanocomposite powders and bulk materials have great potential
to be used for TE devices. The rGO/Bi2Te3 bulk materials can be cut into suitable size and then
assembled to flexible TE devices on flexible substrates (e.g., polyimide or polyethylene terephthalate
substrates) [34] or traditional TE devices on rigid inorganic substrates (e.g., ceramic substrate) [35],
respectively. The rGO/Bi2Te3 nanocomposite powders can be dispersed in suitable solvents and then
to prepare composite films by a vacuum filtration method [36] or used as active materials to prepare
slurry and then to fabricate composite film by a dispenser printing technique [37]. The as-prepared
composites films can be used for fabrication of flexible TE devices [2]. Therefore, this work lays a
foundation and is essential for fabrication of TE devices. The applications of rGO/Bi2Te3 composite
powders and bulk materials on TE devices are under investigation.

4. Conclusions

Reduced graphene oxide (rGO)/Bi2Te3 nanocomposite bulk materials were prepared by
hot-pressing of rGO/Bi2Te3 nanocomposite powders, which were fabricated by a one-step in-situ
reductive method. As the measured temperature increased from 25 ◦C to 300 ◦C, the power factor of
the samples first increased and then decreased, mainly due to the similar trend of the absolute value
of Seebeck coefficient and decreased electrical conductivity. A power factor of 1340 µWm−1K−2 was
achieved for the composites with 0.25 wt% rGO at 150 ◦C.

Author Contributions: Y.D. designed the experiments, performed data analysis, and wrote and revised the
manuscript; J.L. performed the experiments, data analysis, and wrote the manuscript; J.X. and P.E. revised the
manuscript and provided additional intellectual insight; Y.D. conceived the overall project.
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