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Abstract: The present paper introduces an iterative methodology to progressively reduce building
simulation model complexity with the aim of identifying potential trade-offs between computational
requirements (i.e., model complexity) and energy estimation accuracy. Different levels of model
complexity are analysed, from commercial building energy simulation tools to low order calibrated
thermal networks models. Experimental data from a residential building in Germany were collected
and used to validate two detailed white-box models and a simplified white-box model. The validation
process was performed in terms of internal temperature profiles and building thermal energy demand
predictions. Synthetic profiles were generated from the validated models and used for calibrating
high order models. A reduction (trimming) procedure was applied to reduce the model complexity
using an energy performance criterion prior to model trimming. The proposed methodology has
the advantage of keeping the physical structure of the original RC model, thus enabling the use of
the trimmed lumped parameter building model for other applications. The analysis showed that it
is possible to reduce the model complexity by half, while keeping the accuracy above 90% for the
targeted building.

Keywords: building simulation; model calibration; reduced models; smart grids; energy
performance forecasting

1. Introduction

Buildings account for about 36% of the total primary energy consumption and nearly 40% of
total carbon emissions worldwide, with an increase trend of 1% per year [1]. Consequently, various
legislation initiatives have been put in place at national and international levels to pursue a low-carbon
economy by fostering energy efficiency measures and the deployment of renewable energy systems in
buildings [2,3].

The efforts towards the so-called net zero energy buildings (NZEB) require buildings to be prosumer,
a neologism built by the portmanteau of producer and consumer, which highlights the duality of
both producing and consuming energy. Such local and widespread generation, which includes the
deployment of renewable energy systems, result in an increase of the variability at the demand side
level [4,5]. This aspect represents a challenge for the power grid, since it may lead to grid congestion
and atypical power flows, which would stress the stability of the transmission and distribution grids.
Increasing the grid flexibility is therefore paramount in order to pursue the NZEB goal [6].
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Generally, grid flexibility is provided by the supply side, by using dedicated conventional power
plants or storage to balance mis-matches in electricity production and demand [7]. On the other
hand, Smart Energy Networks (or Smart Grids) require demand, and local and central production
to be controlled to achieve the grid stabilisation [8]. The so-called Demand Side Management (DSM)
is defined as the capability of the demand side to change its energy usage by reducing, increasing
or rescheduling its consumption [7]. Among others, Demand Response (DR) is a particular DSM
strategy which consists of a change in the user electrical energy profile following a request from the
system operator, or in response to market price signal [9]. Unlocking the DSM/DR technical potential,
determined by the energy flexibility available at the user level, can be a complex and multidisciplinary
task which involves technological, modelling, market and policy aspects [7,10,11].

Therefore, being able to forecast building electrical and thermal loads is of vital importance
to grid operators, aggregators and building energy management systems. These forecasts could
offer comprehensive knowledge on the DR potential in different building types and may be able
to offer useful insights to the power system, as highlighted by the IEA [4]. In this context,
physically-based (i.e., white box) building energy models (PB/BEM) [12] are paramount to provide
urban planners, local administrations and energy providers with tools capable to analyse building
energy consumption at aggregated levels. However, the direct use of aggregated PB/BEMS can prove
to be computationally demanding, as mentioned in Davila et al. [13]. An alternative to PE/BEMS
modelling may be represented by the development of numerically efficient simplified building energy
models representative of the residential stock under study [14]. Simplified building energy models are
capable of reducing the required computation time for energy simulations at scales suitable from an
aggregation perspective, as demonstrated by Kim et al. [15] and Good et al. [16].

Among others, lumped parameter building energy models are one of the recognised techniques
capable of meeting the target of reducing the computational cost while achieving a good grade of
accuracy [17,18]. These models, also called RC building thermal networks, are based on the electrical
analogy method, in which electric resistances and capacitances model the thermal resistance and
capacitance of material layers. High order RC models with physically-based parameters can be
considered as simplified white-box models [19]. Considering a system divided in N elements, the heat
balance at each thermal node n is modelled as a first-order differential equation, taking the form:

Cn
dTn

dτ
= ∑
∀i∈N

Ti − Tn

Ri
+ Φn (1)

where Cn and Tn are the thermal capacitance and temperature of the component n, Ri is the thermal
resistance between elements i and n, and Φn is the sum of all the heat fluxes applied to the node
n. Different level of complexity can be achieved by increasing or reducing the number of nodes
(i.e., equations), which determines the order of the model and the number of parameters required.
For instance, Zhou et al. [20] developed a simplified RC model, consisting of eight resistances and
seven thermal capacitances (i.e., 8R7C) for control purposes, which showed good agreement with the
experimental results.

Similarly, Berthou et al. [21] used four different models (4R3C, 6R2C, 6R3C and 7R3C) to predict
heating and cooling demands as well as the indoor air temperature of a ten-storey office building in
Paris, France. Estimation errors below 15% were shown by all models considered. De Rosa et al. [19]
developed a 23R7C to predict the building energy consumption for heating and cooling. The model
implements a single node capacitance for the building envelope and takes into account the different
wall orientations when computing the absorbed solar radiations (direct, diffuse and reflected).
The comparison with synthetic data from commercial software (i.e., TRNSYS and Energy Plus) showed
deviations below 9%. The model was then extended by increasing the model order to investigate the
influence of the wall discretisation on the model accuracy [22].

An interesting aspect of RC models is that they provide a physically-based model whose
parameters can also be calibrated against metered (or synthetic) data with the aim of improving
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their accuracy. Numerically, the automated calibration problem consists of identifying building model
parameters which minimise the error between the model predictions and synthetic or metered building
data [23]. The minimisation problem is typically non-linear and non-convex given the nature of the
parameters being estimated (e.g., 1/CnRi). The resulting model keeps the original physically-based
structure, but the calibrated parameters do not reflect the thermo-physical characteristics of the
building. In other words, after the calibration, it will not be possible to get back to the real physical
characteristics of the building starting from the calibrated parameters. Consequently, these calibrated
models can also be considered as grey-box models.

Generally, grey-box models have the advantage of keeping a physical-based structure while
reducing the level of information details about the building, since only rough initial guesses are needed
as starting point for the calibration procedure [24]. Moreover, grey-box models typically require shorter
periods of data than black-box models for their calibration [25]. This semi-physical interpretation of
grey-box models, together with the reduced dataset required, makes them suitable for model order
reduction procedures aimed at adjusting their complexity to the specific application required, such
performance assessments and smart controls [26]. In particular, these models can be used to calibrate
a cluster of retrofitted building models simultaneously, as shown by Andrade-Cabrera et al. [27],
who performed a model order reduction in order to increase the computational performance of such
models. However, reducing the complexity of the retrofitted models by using automated model
reduction methods, such as balanced truncation [28], may lead to loss of model structure and, in turn,
to a reduction of prediction accuracy, as demonstrated by Deng et al. [29]. Therefore, a trade-off
between accuracy and computational cost is critical, especially when automated reduction techniques
are used.

The present paper addresses this issue by introducing a top-down methodology to reduce the
complexity of building models, while retaining the model structure, capable of detecting the most
suitable model order depending on the specific application requirement. Different levels of model
complexity are tested, from BEMs to low order calibrated RC networks, with the aim of detecting a
trade off between accuracy and computational costs. Insight is provided on the complexities associated
with achieving both conflicting goals (computational tractability vs. energy estimation accuracy)
by using a case study representative of mixed-use buildings. A residential building corresponding
to a detached house located in Wüstenrot, a district in the Baden-Württemberg region in Germany,
was used as case study (Section 3). This building is currently monitored in the framework of a
European Commission supported H2020 research project Sim4Blocks [30], which is concerned with
the implementation of demand response in building cluster. Experimental data on building energy
consumption and internal temperatures were collected and used for validating both the detailed (2.1.1)
and simplified white-box models (Section 2.1.2). Then, synthetic data were generated with the purpose
of testing the calibration procedure described in Section 2.2. Results and conclusions are described in
Sections 4 and 5, respectively.

2. Materials and Methods

As outlined in the previous section, the present work is aimed at testing different levels of model
complexity for building energy simulation. This section describes the numerical approaches and
calibration methods adopted.

2.1. White-Box Models

Generally, white-box tools are widely recognised as the most complex models available capable of
providing accurate and reliable results. In the present work, the following classification of white-box
models is adopted [13]:

• Detailed white-box tools: These models provide a detailed physical representation of the simulated
building thanks to the high level of building details required. More accurate results can be
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obtained despite the greater user effort in their implementation and higher computational costs
while running. Examples of detailed white-box model are Energy Plus and INSEL (Section 2.1.1).

• Simplified white-box models: These models implement a simplified building physics but they
are considered physically-based since all parameters are determined from the actual building
properties (e.g., thermal properties of envelope, windows, etc.). No tuning or optimisation
procedures are used. BEPS (Section 2.1.2) is an example of simplified white-box model based on
the thermo-electric analogy.

2.1.1. Integrated Simulation Environment Language (INSEL)

INSEL (Integrated Simulation Environment Language) is a block diagram simulation environment
for programming applications from the entire renewable energy sector. Models of system applications
can be created with the INSEL graphics editor and, in addition, INSEL offers a unique interface for
the extension of the block libraries in programming languages such as Fortran and C/C++, whereas
the blocks used in this work were realised. The aim of the building model is to keep the numerical
representation of the building as detailed as possible and let the simplification to be taken at the data
model level. Therefore, the same physical model is suitable for any Level of Detail (LOD) of the data
model. Specifically, the dynamical building model is based on the nodal method. This method is
common for building simulations since it has the advantage of being able to simulate multiple zone
buildings. This gives a very good rate between results and calculation time. The principal assumptions
thereby are:

• Each building zone is a homogeneous volume characterised by uniform state variables.
• A node represents a room, a wall, a window or else the exterior of the building.
• The thermal transfer equations are solved for each node of the system. This means that the nodal

method can be considered as a one-dimensional approach.

The building model is divided into different parts, representing the different components, which
can be connected to represent any building. The connection between those parts is made by variables
that are considered as internal connectors (i.e., inputs and outputs for the blocks). The model contains
a one-dimensional numerical solution of the heat conduction equation for each wall. Additional nodes
contain room air and windows. Long wave radiative exchange between the room surfaces is also
considered. Model inputs are external boundary conditions such as temperature and irradiance, which
is converted to the different orientations. The heat pump model simulates the compressor behaviour
based on a polynomial function (according to norm DIN EN 12900). Both heat exchangers on the
evaporator and condenser side are taken into account with the NTU method (Number of Transferred
Units). This has the benefit, that the calculation process can be simplified because no calculations due
to complicated streamlined shapes are needed. In the thermal buffer storage model, all layers are
modelled physically. Heat exchange in between the layers is taken into account. The heat is always fed
into the appropriate layer. The thermal losses are credited to the specific building zone. Figure 1 gives
an overview of the integrated model structure.
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Figure 1. Integrated white-box model (INSEL) combining the dynamic building model with the energy
conversion systems.

2.1.2. Building Energy Performance Simulator (BEPS)

A simplified numerical model was developed to simulate the Wüstenrot site. The model was
developed starting from the work shown in [19,31] and based on the BEPS platform. Implemented in
Matlab/Simulink (Figure 2), BEPS model consists of three different blocks representing the different
floors of the Wüstenrot building. For each block, a set of ordinary differential equations is implemented
to describe the heat transfer occurring between the building and the external air. Each heating/cooling
zone j is modelled as a single isotherm volume at temperature Tint,j, and with thermal capacitance
Cint,j which exchanges heat with the surrounding components. The energy balance equation of a
single internal heated/cooled zone can be written as in Equation (2) and it takes into account the
contributions of: (i) internal heat sources (qis,j); (ii) ventilation (q̇v,j); and (iii) heat gains/losses through
the external walls (q̇w,j and windows (q̇v,j).

Cint,j
dTint,j

dτ
= q̇is,j + q̇v,j + q̇w,j + q̇win,j (2)

The external walls of each internal zone are lumped together depending on their orientations x
(e.g., north, south, east, and west) to allow an accurate computation of the incident solar radiation.
The mathematical model for the solar radiation described in De Rosa et al. [19] was adopted. The wall is
divided into the internal and external layers, determined depending on the wall thermal characteristics,
while the wall thermal capacitance (Cx

w,j) is lumped in between them. Regarding the perimeter walls,
the energy balances are written as shown in Equation (3), where q̇x

w−i,j is the heat flow rate between the
internal zone Tint,j and the wall with orientation x, while q̇x

w−e,j is the heat flow rate between the in the
wall with orientation x and the external environment (represented by the temperature Te for perimeter
walls and by the basement temperature Tbg for the floor wall). The contribution of the floor heating is
represented as a thermal power input q̇hs,j, calculated from the heat pump performance curves and
lumped to the floor node of each internal zone j.

Cx
w,j

dTx
w,j

dτ
= q̇x

w−i,j + q̇x
w−e,j (3)

This model is considered to be a physically-based (i.e., white box) since all parameters (thermal
resistances and capacitances, thermal properties, exchange rates, etc.) are determined starting from
the actual physical characteristics and/or experimental measurements. No tuning or optimisation
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algorithms are implemented in the model. Notwithstanding, BEPS is also considered to be a simplified
model due to the reduction of equations and parameters required to characterise the building physic.
This results in lower computational costs, despite a reduction of the model accuracy.

Figure 2. Building Energy Performance Simulator (BEPS) model developed for the Wüstenrot site
using Simulink.

2.2. Reduced Order Model Calibration

An RC reduction technique was developed based on the Ensemble Calibration (EC) [27],
an automated calibration methodology which enables researchers to obtain lumped parameter building
models for a number of desired retrofit configurations of a residential dwelling modelled in BEMS
environments. Starting from the work presented in Andrade-Cabrera et al. [32], a modelling tool
capable of calibrating a simplified lumped parameter model was developed and tested for the
Wüstenrot building using the building thermal energy demand as accuracy metric.

Generally, a lumped parameter model can be calibrated with optimal calibration parameters
p∗0 = [R∗0 , C∗0 ], while the model thermal response is provided by the room temperature Tr,0. Calibration
methods correlate the variation in parameters (∆p) which compensates for the variation in thermal
performance. This ∆p can be inferred from the semi-physical modelling. For instance, if external
wall insulation is progressively added to the building envelope, a parameter modelling external wall
resistance would be expected to increase as the insulation layer thickness increases [27]. During the
development of this framework, the key modelling concern consisted of obtaining an accurate lumped
parameter building model such that the thermal variations are well captured. To this aim, more
accurate white-box models, such as the ones described in Section 2.1, are required. Once these models
are validated against metered data obtained from the Wüstenrot pilot site (Section 3), synthetic data can
be generated for the calibration process. Then, a lumped parameter building model representative of
the target building is designed (i.e., starting from the simplified physical model described in Section 3)
and calibrated using the particle swarm optimisation method [33], until an accuracy target is reached.
The Root Mean Square Error (RMSE) was adopted as metric to assess the model predictive performance.
Generally, the RMSE can be based on the error between the synthetic room temperature time series
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(denoted TEP,k) and the estimated room temperature obtained using a lumped parameter building
energy model (TRC,k), over a horizon length NH, as shown in Equation (4). RMSE values below 0.5 are
indicated in the literature as acceptable calibration tolerance [34].

RMSE =
1

NH

√√√√NH

∑
k=1

(TEP,k − TRC,k)
2 (4)

Although the internal temperature can be used for calibrating building model, the small
magnitude of its variations typical of building application may lead to small differences in the
calibration metrics and, consequently, it does not provide enough confidence for trimming decision
making [32]. Another alternative is to adopt the energy performance as metric for the trimming
decision making. This choice comes from the consideration that energy estimation accuracy is the
paramount decision key for energy system modellers in most building applications (e.g., for primary
energy savings and cost assessment, optimisation algorithms, demand response evaluation, etc.). In the
present paper, the estimated building energy consumption Eb,est is evaluated as follows:

Eb,est =
NH

∑
k=1

Q̇ḣeat,k∆τ (5)

where NH is the horizon length and ∆τ is the sampling period (i.e., 15 min). The estimated energy
consumption Eb,est allows the comparison of the accuracy between the full model (Ez

b, f m) with the
reduced sub-models z (Ez

b,rm) created by the trimming procedure described hereafter. The comparison
is carried out by computing the energy estimation error defined as the percentage deviation of the
energy consumption predicted by the reduced model with the one estimated by the full model,
as shown below:

EEE =
|Ez

b,rm − Ez
b, f m|

Ez
b, f m

(6)

A linear optimisation problem aimed at minimising the target function J(Q̇heat) is used to estimate
the building energy model. The heat input Q̇heat can be related to the room temperature TRC,k by
considering the building dynamics shown in Equation (7), where the building model state is described
by the matrices F, G and H. The array xk is composed by all the node temperature (i.e, rooms and
walls temperature) and represents the building model state, while dk is the exogenous disturbance
array (i.e., weather variables such as ambient temperature).

xk+1 = Fxk + GQ̇heat,k + Hdk (7)

The constraints on the room temperature Tr,k and heat input Q̇heat implemented are shown in
Equations (8) and (9), where SPlow,k and SPhigh,k are the minimum and maximum values of the room
temperature allowed to meet the comfort criterion. Similarly, Q̇heat,min and Q̇heat,max represent the
lower and upper values of the heat input allowed, which depend on the energy system considered.

SPlow,k ≤ Tr,k ≤ SPhigh,k (8)

Q̇heat,min ≤ Q̇heat ≤ Q̇heat,max (9)

Starting from the full RC model (order N), which was calibrated against synthetic data obtained
from the E+ model shown in Section 2.1, the trimming procedure reduces progressively the model
order by removing one thermal capacitance adjacent to the room node (Tr) per iteration. Therefore,
the order of the new models will be N − 1 after the first iteration, N − 2 after the second iteration,
etc. Only one node is removed at a given time, with the exception of the attic node, which requires
the removal of both the attic and roof nodes. Each sub-model resulting from the node removal is
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re-calibrated using the RMSE as a metric and the error in estimating the energy consumption (EEE) is
then evaluated. Next, the node trimming corresponding to the smallest energy estimation error with
respect to the full model is selected and omitted to create a new trimmed sub-model with order N − 1.
The procedure is then repeated for further iterations until the lowest model order possible (i.e., 1C) is
obtained. The reasoning behind this model trimming strategy is that the sub-model with the highest
energy accuracy among its peers is more representative of the full model and, thus, the best topology
solution at the level of complexity being evaluated. The whole procedure is summarised in Figure 3.

The present paper describes the results obtained from testing this RC reduction technique using
synthetic data from the Wüstenrot site (see Section 3) in order to determine the trade-off between
accuracy and computational cost. More details about the RC models adopted and tested are reported
in Section 4.2.

Figure 3. Schematic of the adopted methodology. Detailed white-box models: Energy+ and INSEL.
Simplified white-box models: BEPS. Low order models: reduction (trimming) and calibration procedure.

3. Case Study

The present work is based on a plus energy district, which serves as pilot demonstration site in
the German community of Wüstenrot (Figure 4a). This district consists of 17 newly built, highly energy
efficient residential buildings. The concept combines low depth geothermal systems, heat pumps and
PV systems of sufficient size of 6–13 kWp for each building. The low temperature energy source of the
heat pumps is a central cold-water grid, which consists of a large innovative near surface agro-thermal
system (a variation of geothermal collectors).
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Figure 4. (a) The Wüstenrot pilot site “Vordere Viehweide”. (b) Schematic of the building considered.

Since the present research is aimed at assessing different levels of model complexity capable of
predicting the short-term energy demand at building level, the developed models were mainly focused
on the building envelope characteristics, rather than on the energy system. A detailed description of
the thermal characteristics of the building envelope is therefore reported in the following sections.

Experimental Building

The considered building (Figure 4b) has a living area of 310 m2, a PV system with 13.7 kWp,
a brine/water heat pump with 22 kW thermal output, two buffer storage tanks (1000 L space
heating, 400 L DHW) and a 5 kWh battery storage, which however is used for the optimisation
of PV self-consumption only. Detailed monitoring data are available for all relevant thermal and
electrical energy flows as well as for the relevant temperatures and weather data (ambient temperature
and global radiation). The building is located in a temperate seasonal climate zone, typical of Germany.
More building details can be found in Tables 1 and 2.

All relevant building energy flows are measured and stored in a cloud-based database. In this
cloud, the detailed monitoring data as well as the thermal simulation are available in a virtual machine.
The thermal demand and temperatures are logged in small intervals, 30 s for thermal data and as low
as 5 s for electricity data, which can be accessed via locally installed tools (Figure 5). Figure 6 shows
the measured buildings energy demand, the heat pumps COP and the heat source temperature on a
monthly basis for the year 2017.
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Table 1. Building geometry.

Parameter Value/Range

Latitude 49.6◦ North
Longitude 9.6◦ East
Elevation 495 m
Number of storeys 3

External walls

North 109.9 m2

South 147.3 m2

East 84.5 m2

West 85.0 m2

Basement 139.9 m2

Flat roof 25.0 m2

Tilted roof (south) 46.9 m2

Tilted roof (north) 78.9 m2

Windows

North 36.5 m2

South 28.6 m2

East 5.2 m2

West 13.0 m2

Solar heat gain coefficient 0.583
Roof pitch 15◦

Envelope leakages 0.3 1/h
Wall absorptance 0.2 (white)

Table 2. Building construction characteristics.

Part U-Value Thickness Construction
(W/m2k) (cm)

External walls 0.21 36.5 Autoclaved aerated concrete/brickwork
(λ = 0.08 W/mK)

Basement plate 0.27 15 Reinforced concrete (λ = 0.08 W/mK)
10 Thermal insulation PU (λ = 0.02 W/mK)

Flat roof 0.27 20 Reinforced concrete (λ = 0.08 W/mK)
12 Thermal insulation PU (λ = 0.035 W/mK)

Tilted roof 0.14 20 Thermal insulation mineral wool above rafter (λ = 0.03 W/mK)

External floor 0.23 20 Reinforced concrete (λ = 0.08 W/mK)
15 Thermal insulation PU (λ = 0.035 W/mK)

Inner walls 0.31 24 Auto-claved aerated concrete/brickwork
to unheated (λ = 0.08 W/mK)

Windows 0.77
Three layer Thermal insulation glazing

Frame percentage: 0.3 (U f = 1.00)
10/4/10/4 Gas filling: Krypton (Ug = 0.52)

Transmissivity: 0.583
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Figure 5. Real time monitoring of the Wüstenrot pilot site.

Figure 6. Measured heating demand and heat pump COP on monthly basis (year: 2017).

4. Results and Discussion

4.1. Detailed Model Analysis

The white-box model described in Section 2.1 was validated against experimental data collected
during a 33-day period between February and March 2018. Figure 7 reports the metered climatic
data (ambient temperature and solar radiation) during the considered period. The validation was
carried out comparing the internal temperature and the building cumulative thermal consumption
profiles predicted by the white-box models with the experimental data collected from the pilot site.
The numerical results from a detailed Energy Plus model was also used as reference.
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Figure 7. (a) Ambient temperature; and (b) solar radiation measured at the Wüstenrot pilot site during
the period considered

Figure 8a reports the internal temperature profiles during the simulated period for the three
models considered (Energy Plus, INSEL and BEPS). It can be observed from the graph resolution that
the fluctuations experienced by the internal temperature profiles are contained in the dead-band set by
the control system 22 ◦C ± 1 ◦C for both the experimental and numerical results. Figure 8b reports the
comparison between the cumulative building thermal energy demand measured from the pilot site and
the one obtained from the different numerical models. A good match between the experimental and
numerical results can be observed for all the models developed. In particular, Energy Plus provided
the best accuracy with an average estimation error lower than 4%, while INSEL and BEPS showed
slightly less accuracy, with average values below 7% and 9%, respectively.

Figure 9 illustrates the comparison between the measured and predicted building energy
consumptions at daily basis over the considered period. It can be noted that both Energy Plus
and INSEL showed a good agreement with the experimental results, with RMSE of 0.08 and 0.11,
respectively. On the other hand, BEPS showed a worse performance, with a RMSE of 0.15. In fact,
even if BEPS can be considered a white-box model, since its parameters have a physical meaning,
the simplified approach was used to determine the thermal network and the correspondent thermal
resistances and capacitances. Even though the model is accurate in a long-term perspective (weekly,
monthly and yearly calculations [19]), the simplified approach makes the model less accurate at lower
time resolution (i.e., daily and below). This is an important aspect when short-term assessment, like the
one required for activating demand response actions, and optimisation algorithms are implemented.
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Figure 8. (a) Comparison between internal temperature profiles from E+, INSEL and BEPS and
experimental data. (b) Cumulative building heat demand in the period considered.

Figure 9. Comparison between experimental and numerical (E+, INSEL and BEPS) daily building heat
demand profiles in the considered period.

4.2. Results of the Calibration Procedure

The RC reduction technique described in Section 2.2 was tested using synthetic data from the
Wüstenrot site starting from an heterogeneous lumped parameter building model used as high order
model for the calibration procedure (Figure 10). The multi-zone building is approximated as a two-zone
dwelling using the average room temperature (Tr) of the three heated zones, while Tamb is the external
dry-bulb outdoor temperature. Nodes Cw1 and Cw2 represent the outer and inner leaves of the external
walls, while Ca is the thermal capacitance of the room air mass at temperature Tr. Node Cint captures
the thermal mass of the internal partitions and other slower dynamics inside the building. The heat
gains due to solar radiation on the external walls, Qs,wall , are applied directly to node Cw1. The window
solar heat gain Qs,win and the heating power input Qheat are split between Ca and Cint via the splitting
fractions f1 and f2. Node Cceil models the ceiling between the room node Cr and the attic node Cattic.
The heat gains due to incident solar radiation on the roof surfaces, Qs,roo f , are applied to the roof node
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Croo f . Finally, a ground node Cgnd is added to model the heat transfer between the heated volume and
the building foundations.

Figure 10. Heterogeneous lumped capacitance models proposed for the calibration technique [32].

The lumped parameter model described above was then calibrated with the procedure described
in Section 2.2, by using synthetic data covering all the heating season obtained from the validated
model implemented in Energy Plus (Section 4.1). The BEM model in Energy Plus was developed and
used to determine the annual heating energy consumption, resulted to be equal 12.29 MWh/year.
This result is inline with the metered data and the simulation performed with the calibrated white-box
model presented in Section 4.1. The results obtained from the calibration are reported in Table 3,
while Figure 11 shows the comparison between the internal temperature trajectory from the calibrated
model and Energy Plus during a typical day with a time step of 10 min. It can be noted that,
despite the overall performance, the calibrated high order lumped model tended to overestimate
the internal temperature. This resulted in an annual energy overestimation of 7.16% with respect
to the selected BEM model. The key reason behind the discrepancy consists of the nature of the
operations of the building models. The lumped parameter building energy models, obtained in
Andrade-Cabrera et al. [35], were conceived for their linear co-optimisation with energy systems (e.g.,
power grid models). Thus, low-level controllers were not developed, as the linear optimisation
algorithm would identify the optimal heating load based on the optimisation objective (e.g., cost
minimisation) and constraints (e.g., reaching the set-point during comfort hours). This approach
enables the co-optimisation of the building and grid models, allowing for the full exploitation of
thermal mass flexibility and power systems flexibility. The linear optimisation problem must reach the
set-point when required, otherwise the linear optimisation problem is unfeasible.

Table 3 shows the performance metrics of each sub-model detected during the optimisation
procedure. The nodes considered in the first iteration are: (i) the second external wall node Cw2; (ii) the
floor node C f loor; and (iii) the internal mass node Cint. At this stage, the removal of the ceiling node
Cceil was not possible since it would have resulted in a mixture of the conditioned and unconditioned
spaces. Instead, the attic node Catt and the roof node Croo f were considered. It was assumed that the
attic temperature Tatt could be deemed to be similar to the outdoor temperature (which is likely to be
the case for winter conditions).
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Table 3. Performance metrics and computational time of the different models developed by the
reduction methodology.

Building Models RMSE Energy Estimation Error Computational Time
(K) (MWh/y) (%) (s)

High order model 0.36 13.17 7.16 61.56

First iteration

Wall 0.37 13.54 10.17 45.85
Floor 0.36 13.29 8.14 44.65
Attic 0.36 13.45 9.44 29.67
Internal mass 0.71 14.56 18.47 45.61

Second iteration
Wall 0.37 16.22 31.98 20.79
Attic 0.37 13.43 9.28 24.53
Internal mass 0.58 16.23 32.06 31.98

Third iteration
Wall 0.38 19.03 54.84 24.09
Internal mass 0.77 16.31 32.71 23.95
Ceiling 0.37 13.28 8.06 21.77

Fourth iteration Wall 0.60 14.08 14.56 4.97
Internal mass 1.03 13.78 12.12 3.82

Standard models 3R2C 1.38 13.87 12.86 1.35
1R1C 1.24 14.18 15.38 0.92

Figure 11. Temperature trajectories computed by Energy Plus and the high order reduced model
during three consecutive days in November.

The results of the first iteration showed that the inner wall node C f loor was the one with the lowest
energy estimation error (8.14%) and, therefore, it was triggered according to the procedure described in
Section 4.2. It is interesting to note that the sub-models with the floor and attic nodes removed showed
energy estimation errors higher that the high order model, even if similar RMSE accuracy metric were
obtained. Hence, the reticence of using this calibration metric as trimming decision variable. Finally,
the computational speed decrement is already significant at this stage of the trimming procedure, since
computational times reduced between 25% and 45% with respect to the full model.
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Starting from the results obtained from the first iteration, a subsequent trimming procedure was
carried out. The results are shown in Table 3, where it is possible to note that the attic node Catt showed
the smallest energy accuracy forecast error (i.e., 9.28%) and, consequently, was chosen for a further
model reduction. This selection implied that both the Croo f and Catt were removed at the same time.
Despite this double removal, the computational time of this trimmed model (i.e., 24.53 s) exceeded the
one obtained for the sub-model in which the wall node (Cwall) was removed.

The third iteration was then performed starting from the sub-model resulting from the trimming
of the internal wall node Cw2 (first iteration) and of the attic node Catt (second iteration). Observing
the results in Table 3, it can be noted that, from a model calibration point of view, the internal mass
node represented the largest error. This is due to the fact that the removal of the heating input
splitting fractions f1 and f2 significantly altered the performance of the model. On the other hand,
the sub-model corresponding to the ceiling node Cceil removal gave the lowest energy estimation error
(i.e., 8.06%) and, therefore, it was chosen for the further model reduction. It can also be noted that
this stage of the reduction procedure may represent a potential trade-off point for the selected target
building since all sub-models showed negligible improvements with respect to the previous step.

After all the above mentioned nodes were discarded, the fourth iteration was performed to reach
an even reduced sub-model. it can be observed in Table 3 that the sub-model resulting form triggering
the external wall node Cw1 had the lowest energy estimation error. Therefore, for the purposes of the
current case study, a low-complexity model of a third order, featuring external wall nodes Cw1 and
Cw2, as well as the room node Cr and internal mass Cint, resulted in an energy error estimation of 12%,
while being 93% faster with respect to the full model. It is important to highlight that even if the model
can be deemed inaccurate for some applications (e.g., investment model), it would be possible that
modellers devising systems at scale might consider these trade-offs as suitable for their needs.

Finally, Table 3 reports the results obtained from low order models (i.e., 3R2C and 1R1C) as
reference. It can be noted that the 1R1C model shows an RMSE value lower than the 3R2C model,
while the 3R2C model has a lower energy estimation error. Hence, the importance of using energy
metrics in lieu of calibration metrics for model reduction purposes. The 1R1C results in a topology
with a potentially acceptable underestimation of −15.38% on an annual basis, while using only 1.4% of
the computational time (0.92 s) of the full model (63.12 s). However, as explained below, this result
may not translate to other scenarios.

Figure 12 summarises the results by showing the trade between the model accuracy (Figure 12a)
and the model complexity (i.e., computational cost in Figure 12b). The number n of nodes of the
RC thermal network (i.e., the thermal capacitances and denoted as nC in Figure 12), represents the
number of ordinary differential equations to be solved by the numerical model and, therefore, it is
a direct measure of the details in simulating the building. For the sake of simplicity, only selected
models prior to trimming are represented in Figure 12). It can be noted that, for this particular building
configuration, a potential trade-off between computational complexity and energy prediction accuracy
corresponds to a model topology with four nodes (4C) or three nodes (3C).

It is important to note that the model reduction procedure presented in this work keeps the
frequency characteristics of the original model with respect to most of the inputs. However, some
responses are lost during the order reduction procedure due to the trimming. An example is the
frequency response of the system with respect to the roof solar radiation Qs,roo f which cannot be
considered satisfactory, since the balanced truncation algorithm is unable to capture the impact from
the roof solar radiation when considered as an input.

Finally, several limitations can be spotted from this reduction automatic procedure. Firstly,
the balanced truncation methodology may result in conservative models that restrict researchers
from potential better trade-offs on model complexity and accuracy. Moreover, a loss of physical
meaning in the resulting state-space model occurs as the result of the calibration procedure, which
transforms the sub-models into grey-box models. This means that any alteration in the building
characteristics (i.e., by retrofitting the building fabric) could rapidly be associated with building
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physical characteristics and the corresponding parameter change in the reduced RC model. On the
other hand, such relationships are not straightforward (or have not been proven yet) when automated
model reduction methodologies are applied.

Figure 12. Trade-off between (a) model accuracy and (b) computational efforts.

5. Conclusions

The present paper introduces an iterative methodology to reduce the complexity of building
models in order to detect a trade off between accuracy and computational costs depending on the
specific model applications. Different levels of model complexity were tested, from white-box BEMs
and RC models to low-order calibrated RC models. Experimental data from a residential building
located in Wüstenrot (Germany) were collected and used to validate two detailed white-box models
(INSEL and Energy Plus) and a simplified white-box model (BEPS). The validation process, performed
in terms of building thermal demand, showed good agreements between experimental and numerical
results, with RMSE of 0.08, 0.11 and 0.15 of Energy Plus, INSEL and BEPS, respectively.

Starting from the validated models, synthetic profiles were generated from the validated detailed
white-box models (i.e., Energy Plus) to be used for the reduction procedure. The proposed methodology
has the advantage of keeping the physical structure of the original lumped parameter model, thus
enabling the use of the trimmed lumped parameter building model for other applications. A trade
off between accuracy and computational costs can therefore be found depending on the particular
application intended for the model. Considering the specific case study analysed in the present
work, a trade-off demarcation between computational complexity and energy prediction accuracy was
observed for a model topology with four nodes (4C) or three nodes (3C).

In contrast with automated model reduction methods, where the compromise between building
and system energy modellers can be evaluated ex post only, the user-driven approach adopted
allows insights at each intermediate iteration to be obtained. This allows the procedure to be
adapted to the specific application considered. On the other hand, this iterative and heuristic model
reduction approach might be outperformed by alternative model reduction methods (such as balanced
truncation) and automated modelling frameworks (e.g., linear regression). Further work is required
to generalise the results obtained, i.e., by considering different exogenous conditions (e.g., different
weather conditions), different comfort periods and different building typologies. This will allow
the implementation of the proposed methodology in an ensemble calibration framework, capable of
investigating the effect of model reduction in retrofit-decision planning for scenarios such as integrated
building-to-grid type analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

a Air
att Attic
b Building
BEM Building energy models
C Thermal capacitance (JK−1)

DHW Domestic hot water
e External
E Energy (J)
EC Ensemble Calibration
EEE Energy Estimation Error
EF Energy Flexibility
est Estimated
f Fractions
f m Full model
F System matrix
G System matrix
gnd Ground
hs Heating system
H System matrix
i, int Internal
is Internal heat source
j Wall index
J Target function
k Index
n Node
N Number of components
NH Horizon length
NZEB Net-zero energy buildings
p Calibration parameter
PB Physically-based
Φ Heat source (W)
q̇, Q Heat flow rate (W)
r room
rm reduced model
R Thermal resistance (KW−1)

RC Resistance-capacitance thermal network
RMSE Root mean square error
s Synthetic/solar
SP Comfort band
T Temperature (◦C)
τ Time (s)
v Ventilation
w Wall
win Windows
x Building model state
z reduced model index
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