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Abstract: To improve the robustness of grid-connected inverter against grid impedance in a weak
grid an integrated design method of LCL-filter parameters and controller parameters is proposed.
In the method the inherent relation of LCL-filter parameters and controller parameters is taken
into consideration to realize their optimized match. A parameter normalization scheme is also
developed to facilitate the system stability and robustness analysis. Based on the method all
normalization parameters can be designed succinctly according to the required stability and robustness.
Additionally, the LCL parameter and controller parameter can be achieved immediately by restoring
normalization parameters. The proposed design method can guarantee the inverter stability and
robustness simultaneously without needing any compensation network, additional hardware, or the
complicated iterative computations which cannot be avoided for the conventional inverter design
method. Simulation and experiment results have validated the superiority of the proposed inverter
design method.

Keywords: grid-connected inverter; parameters integration design method; weak grid; adaptation

1. Introduction

LCL-type inverters have been widely utilized in renewable energy applications to convert DC
power into AC power [1,2] as renewable energy expands. One of the challenges encountered by
grid-connected inverters is the instability due to the uncertainty and variation grid impedance in a
weak grid [3–6]. It has been revealed that the interaction between inverter and grid impedance is the
main reason for that problem [7–10]. Additionally, some solutions have been proposed to cope with
this issue from different perspectives. The existing solutions for this problem can be classified as two
categories. One is to add additional compensation network in the inverter or hardware equipment
outside the inverter after the instability phenomenon occurs in the power plant [11–22]. Additionally,
the other is the optimization design by taking grid impedance into account before the inverter is
produced [23–30].

The first class of methods belongs to repair strategies. For example, a zero-compensation element
is inserted in the conventional current controller to improve the phase response [11]. An online
phase compensation method was proposed to ensure that the inverter has enough stability margins
and bandwidth against varied grid impedance [12]. The notch filter was designed to generate an
anti-resonance peak to offset the resonance of the LCL filter [13,14]. Since LCL resonant frequency
varies along with grid impedance, the center frequency of the notch filter has to be regulated from
the detected resonance frequency in real time. Given that the feedforward of the voltage at the point
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of common coupling (PCC) is equivalent to adding a virtual impedance in parallel with the inverter
output impedance [15–18], possible solutions are to enhance the phase margin by reshaping the
magnitude or phase of the ratio of the inverter output impedance and the grid impedance. Based on
the feedforward PCC voltage, the grid current feedback has been used through the estimated grid
impedance to alleviate the influence of grid impedance on system stability [19]. Reference [20] proposed
an optimized capacitor-current-feedback active damping to improve inverter robustness against grid
impedance. Additional equivalent impedance is added to the LCL filter in [21] to enhance the inverter
robustness in a weak grid. A rectifier connected to the PCC was controlled as an active damper to damp
the resonance [22]. Since this kind of method needs additional compensation networks or hardware
devices it is complicated in practice.

The second class of methods is to take the grid impedance into consideration while the inverter
is designed originally. A controller parameter design guideline based on the current loop transfer
function was proposed to obtain better system performance against grid impedance variation [23].
An optimal capacitor-current-feedback for a digitally-controlled inverter was investigated so that the
gain margin for stability was always satisfied as grid impedance varies [24]. A robust active damping
factor and current controller parameters were designed to ensure that the inverter stability margins
satisfy the requirement as grid impedance varies from the minimum to the maximum value [25].
Two stability criteria were proposed to limit the controller parameters [26]. Then collection of controller
parameters fulfilling the criteria is derived so that the inverter can function well in a weak grid. Others
attempt to improve the inverter robustness by the advanced controller [27,28]. The robust partial
state feedback [27] and a robust H∞ controller [28] have been employed in the single-loop inverter
to improve the inverter adaptability to grid impedance. An optimized range of the ratio between
the switching frequency and resonant frequency was derived to ensure that the active damping is
always effective under the grid impedance variation [29]. Moreover, the ratio between the grid-side
inductance and the converter-side inductance was optimized to reduce the influence of LCL parameter
variation on resonant frequency. An LCL-filter parameter design method was developed to ensure the
resonant frequency always in the tolerance range as LCL-filter parameter variation due to the internal
and external factors [30]. Although this kind of method can prevent instabilities for grid-connected
inverters to some degree, it always designs LCL parameters and controller parameters separately
rather than taking their inherent relation into consideration. Therefore, this kind of method cannot
realize the optimal match between LCL parameters and controller parameters to prevent instabilities.

In fact, the stability and robustness of the grid-connected inverter are closely related to the LCL
parameters as well as the controller parameters. Only when LCL parameters and controller parameters
complement each other perfectly will the inverter be characterized with strong stability and robustness.
Therefore, the paper is aimed at developing a robust inverter design method by taking the inherent
relation of LCL parameters and controller parameters into consideration. Additionally, the salient
contributions are summarized as follows: (1) An integrated inverter design method by taking the
inherent relation of LCL-filter parameters and controller parameters into consideration is proposed;
(2) A parameter normalization scheme is developed to facilitate the system stability and robustness
analysis; (3) Parameter constraints and design guidelines for robust inverter design are derived.

The rest of this paper is organized as follows. In Section 2, the inverter is modeled and stability
constraints are investigated. Section 3 derives the limitations of control parameters such that the
current loop transfer function and the inverter admittance contain no RHP poles. The proposed
integrated design method is described in Section 4. Section 5 presents a case study to illustrate the
design procedure. Simulation and experimental results are presented in Section 6. Section 7 states
the conclusion.
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2. System Modeling and Stability Constraint

Single loop control structure of the LCL-inverter with grid-side current feedback is shown in
Figure 1. L1 is the inverter-side filter inductance, L2 the grid-side inductance, and C is the filter capacitor.
Udc is the dc-link voltage. i1 is the inverter-side current and is is the inverter current to the grid. ic is
the filter capacitor current and up is the PCC voltage. Zg is the grid impedance and ug is the ideal
power grid voltage. In the control structure, ir is the reference current generated by the magnitude of
I* and the PCC phase locked by PLL. Gc is the quasi-proportional plus resonant (quasi-PR) current
controller [23]

Gc(s) = kp +
2krωis

s2 + 2ωis + (ω0)
2 (1)

where kp is the proportional coefficient, kr is the resonant coefficient, ωi is the bandwidth coefficient,
and ω0 is the fundamental angular frequency.
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Figure 1. Control strategy of the grid-connected inverter for grid-side current feedback control structures.

The s-domain model of the inverter is depicted in Figure 2 where kpwm ≈ Udc/2 is the transfer
function of the pulse width modulation (PWM) modulator and Gd(s) is the transfer function of the
total delay due to digital control. The delay includes the computation delay, zero-order holder and the
sampling switch and can be expressed as [31]

Gd(s) =
1
Ts

1− e−Tss

s
e−Tss (2)
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According to Figure 2, the open-loop transfer function from the current (ir − is) to is is to be
derived as

Gos(s) =
is

ir − is
=

kpwmGc(s)Gd(s)

s3L1L2C + s(L1 + L2)
(3)

and the inverter admittance can be expressed as

Yes(s) =
is
up

=
s2L1C + 1

s3L1L2C + s(L1 + L2) + kpwmGcGd
(4)
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The Norton model of the inverter is depicted in Figure 3 [15]. Yg is the equivalent grid admittance
and Ug the grid voltage. Ge is the closed-loop transfer function from the reference current to the
inverter output current and can be expressed

Ge(s) =
Gos(s)

Gos(s) + 1
(5)
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It has been shown [32] that stability of the system in Figure 3 can be assessed by the admittance
ratio Ko = Yes/Yg as long as Ge contains no RHP (right-half plane) poles. If Gos satisfies the Nyquist
criterion, then Ge contains no RHP poles. In accordance to Nyquist criterion, more conditions have
to be satisfied to guarantee the closed-loop system stable if the open-loop transfer function contains
RHP poles. If Gos contains RHP poles, sufficient stability margin is difficult to obtain even though Gos

satisfies the Nyquist criterion [24]. The inverter design method developed in the following will be
based on the condition that Gos contains no RHP poles.

Yg does not contain any RHP poles or RHP zeros because it is passive. So the admittance ratio Ko

has no RHP poles as long as Yes does not contain any RHP poles. Additionally, the system will be
stable as long as Ko has sufficient phase margin (PM). For the grid impedance, since the resistive part
tends to make the system stable, in this study, only the inductive component is considered. Therefore,
Yg = 1/(sLg), where Lg is equivalent grid inductance. The phase of Yg can be viewed as −90◦ for all
frequencies. Then the PM of Ko can be expressed as

PM = 180
◦

−

∣∣∣arg[Yes( jωin)] + 90
◦
∣∣∣ (6)

where ωin denotes the frequency at which the magnitude responses of Yes and Yg intersect. Generally,
PM should be no less than 30◦ to thwart the adverse effects due to harmonics [16]. Therefore,
arg[Yes(jωin)] should be in the range of (−240◦, 60◦). However ωin varies with the variation of Lg.
To keep PM > 30◦ as Lg varies, the phase response of Yes is required to be in the range of (−240◦, 60◦).
Therefore, one of the design objectives is to keep the phase arg[Yes(jω)] in (−240◦, 60◦) for a wide
frequency range.

3. Frequency Response Analysis

This section develops alternative expressions of the inverter admittance so that the frequency
response can be easily analyzed for stability improvement. Instead of using the admittance, we
investigate the frequency response of the impedance. It follows from Equation (4) that the inverter
impedance can be expressed as

Zes = sL2 +
1

s2L1C + 1︸     ︷︷     ︸
Zc1

· (sL1 + kpwmGcGd)︸                  ︷︷                  ︸
Za

= Z2 + Zc1 ·Za︸  ︷︷  ︸
Zcs

(7)
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It can be seen from Equation (7) that Zes is expressed as two impedances: Z2 the impedance due to
the grid-side filter inductance and Zcs = Zc1·Za the equivalent impedance seen from the filter capacitor,
i.e., Zcs = uc/is.

Since Zes is the reciprocal of Yes, it follows from (6) that the phase of Zes should be in the range of
(−60◦, 240◦) in order to keep PM of Ko no less than 30◦. It is desired that Yes contains no RHP poles.
Then Zes should contain no RHP zero. Since Z2 does not contain any RHP zero or RHP pole, if Zcs has
no RHP zero or RHP pole, then Zes does not have any RHP zero.

The Padé approximation is widely adopted to linearize Gos and Za because they are nonlinear
functions [31]. Figure 4 shows the frequency responses of the first-order to the fourth-order Padé
approximations and the original function. It can be seen from Figure 4 that the fourth-order approximation
is sufficiently accurate for a broad range of frequencies. Therefore, in the following the fourth-order
approximation is brought in to conduct the qualitative analysis, such as obtaining the variation tendency
of root locus zeros or Bode diagrams. Meanwhile, Euler’s equation is brought in to conduct the
quantitative analysis such as obtaining the boundary value of kp.
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Figure 6 shows the Bode diagrams of Za for various kp. It is observed from Figure 6 that two
resonant peaks occur at ωt and ωe no matter what the value of kp is. This implies that |Za(jω)| is nearly
zero at ωt or ωe. To find ωe, we assume that ωe is much larger than ω0 such that kr is ignored. Then the
frequency response Za(jωe) can be expressed as

Za( jωe) =
kpwmkpB− j(kpwmkpA−ω2

eL1)

ωe
(8)

where A =
cos Tsω− cos 2Tsω

Ts
, B =

sin 2Tsω− sin Tsω
Ts

, Ts is the sampling period.
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Set the real part of Za(jωe) to zero. We have kp = 0 or B = 0. When kp = 0, the imaginary part of
Za(jωe) is not zero. Therefore kp = 0 does not make |Za(jωe)| = 0. Since B = 0 occurs at ω = ωs/6, then
the imaginary part of Za(jωe) becomes zero at ωe = ωs/6 and kp = kpcr where

kpcr =
ω2

sL1Ts

36kpwm
. (9)

To find ωt, kr cannot be ignored because ωt is close to ω0. Under this circumstance, the real part
and the imaginary part of Za(jωt) are expressed as

Re[Za( jωt)] =

[
AJDkr + BJ2kp + BD2(kp + kr)

]
kpwm

(J2 + D2)ωt

Im[Za( jωt)] = ωtL1 −

[
AJ2kp + AD2(kp + kr) − JDBkr

]
kpwm

(J2 + D2)ωt

(10)

where J = ω2
0 −ω

2
t and D = 2ωiωt.

By setting Re{Za(jωt)} = 0 and Im{Za(jωt)} = 0, the solution yields the relationship between kr

and ωt

(J2 + D2)ω2
t L1B + (B2 + A2)DJkpwmkr = 0. (11)

Combining Re{Za(jωt)} = 0 with equation (11), we obtain the lower bound of kp as

kpt = −
krD(3ωtTs J + 2D)

2(J2 + D2)
. (12)

It is concluded from Equations equation (9) and (12) that the range of kp that ensures Za does not
have RHP zero is kpt ≤ kp ≤ kpcr.
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Moreover, it can be derived from Equation (10) that the phase of Za(jωt) can be expressed as

ϕ(ωt) = −
3ωtTs

2
(13)

It is observed from Figure 6 that when 0 < kp < kpt, all phase curves cross ϕ(ωt) − 180◦ at ωt and
tend to be −270◦ at the high-frequency range. When kpt < kp < kpcr, all phase curves cross ϕ(ωt) at ωt

and cross 90◦ at ωe. For kp > kpcr, all phase curves cross ϕ(ωt) at ωt and cross −90◦ at ωe.
In summary, since Zc1 does not contain RHP poles. To guarantee that Yes does not contain any

RHP poles, kp should be in the range of (kpt, kpcr).

4. Integrated Design Method

To improve grid-connected inverter robustness to grid impedance, this section presents an integrated
design method to design the LCL-filter parameters and inverter controller parameters. The following
parameter normalization is used for the development: kp = λpkpcr where kpt/kpcr < λp < 1.

4.1. Design ωres and ωc According to Stability Margin Constraints of Gos

Generally, the cutoff frequency ωc is far away from ω0 to guarantee enough bandwidth. Therefore,
the resonant coefficient of the current controller kr can be ignored. On the other hand, the phase curve
of Gos crosses 180

◦

at the frequency below ωr. Therefore, to obtain enough stability margins, ωc is
usually set much lower than ωr. Therefore, the influence of the filter capacitance C on |Gos(jωc)| can be
neglected. That is to say both kr and C can be neglected when calculating |Gos(jωc)|. Then kp can be
derived as Equation (14) by setting |Gos(jω)| = 1

kp =
ωc(L1 + L2)

kpwm
(14)

The open-loop transfer function can be expressed as Equation (15) according to Equation (3).

Gos(s) =
1

L1L2C
kpwmGc(s)Gd(s)

s3 + sω2
res

(15)

where ωres =

√
L1 + L2

L1L2C
.

To normalize ωres and ωc we mark ωres = δωe and ωc = ξω0. To ensure the stability, δ should be
larger than 1 and ωc should be lower than ωe, i.e., ξ < ωe/ω0. ωres is generally lower than half of the
switching frequency, i.e., ωres < ωsw/2, to ensure the proper filtering performance on the switching
harmonics. Since ωsw is equal to ωs/2 for the regular-sampling method, the range of δ is (1, 1.5).
ωc should be larger than 10ω0 to obtain sufficient bandwidth. Therefore the feasible range of ξ is
(10, ωe/ω0).

Substituting the above normalization parameters into Equation (15) a normalized open-loop
transfer function of the single-loop inverter can be derived as

Gos(s) =
ξδ2ω2

eω0Gd(s)
s3 + sδ2ω2

e
(16)

Since ω0, ωe, and Ts are known, Gos can be determined by δ and ξ. Therefore, the inverter stability
margins is also dependent on δ and ξ. These normalization parameters and their feasible region are
known. Therefore, PM and GM can be analyzed based on the normalized model of Equation (16).

Suppose that the required stability margins are GM > 6dB and PM > 30◦. The regions of ξ and δ
that meet the stability margin requirements are shown in Figure 7. It is observed from Figure 7 that
both GM and PM increase as δ rises. Nevertheless, both GM and PM decrease as ξ rises. It is found
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that δ = 1.5 is the optimal value such that both GM and PM are the maximum. As can be seen from
Figure 7, under this circumstance, ξ should be in (10, 19.4) to guarantee GM > 6 dB and PM > 30◦.
For sufficient stability margins, ξ should not be set too large. Therefore, care should be taken to select
ξ and δ to obtain large stability margins as well as sufficient bandwidth.
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4.2. Design ωr1 and kp According to Phase Constraints of Zes

It can be seen from Equation (7) that Zc1 only contains a pair of conjugate poles on imaginary axis.
Additionally, a resonant peak appears at ωr1 =

√
1/(L1C). In the range (0, ωr1), the phase of Zc1 is

zero which does not affect the phase of Zcs. However, Zc1 has a phase jump of −180◦ at ωr1. When
ω > ωr1, the phase of Zc1 becomes −180◦. The frequency response of Zcs(s) can be expressed as

Zcs( jω) =
ω2

r1Za( jω)

ω2
r1 −ω

2
(17)

It can be seen from Equation (17) that arg[Zcs(jω)] is the same as arg[Za(jω)] for ω < ωr1. On the
other hand, arg[Zcs(jω)] is equal to arg[Za(jω)]−180◦ for ω > ωr1. Bode diagrams of Zcs(s) for various
ωr1 are shown as Figure 8. It is observed from Figure 8 that arg[Zcs(jω)] approaches to −90◦ even
lower than −90◦ in the vicinity of ωr1. Figure 8 also shows the Bode diagrams of Z2 for different L2.
It shows that |Zcs(jω)| is much larger than |Z2(jω)| in the vicinity of ωr1. When ω approaches to ωr1

from the left hand side, arg[Zes(jωr1)] ≈ arg[Za(jωr1)] and when ω approaches ωr1 from the right, we
have arg[Zes(jωr1)] ≈ arg[Za(jωr1)]−180◦. To have arg[Zes(jωr1)] in (−60◦, 240◦), both arg[Za(jωr1)] and
arg[Za(jωr1)]−180◦ should be in (−60◦, 240◦), that is, arg[Za(jωr1)] should be in (120◦, 240◦).
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It has been shown in the above analysis that the phase of Zc1 is below 90◦ in (ω0, ωe), but above
90◦ in (ωe, ωs/2). The phase curve shifts up with the increase of kp. So ωr1 should be set in (ωe, ωs/2)
to make the phase of Za(jωr1) higher than 120◦. Since ωe is much larger than ω0, kr can be neglected
when analyzing the frequency characteristic of Za in (ωe, ωs/2). Without considering kr the phase
frequency characteristic of Za can be derived as Equation (18). To normalize the phase function, we
define ωr1 = βωe where 1 > β > 0. Then arg[Za(jωr1)] can be obtained as Equation (19) by substituting
ω = ωr1 into (18).

arg[Za( jω)] = 180
◦

+ arctan

 9ω2T2
s

2λpπ2 cos
3Tsω

2
sin

Tsω
2

− tan
3Tsω

2

 (18)

arg[Za( jωr1)] = 180
◦

+ arctan

 β2

2λp cos
πβ

2
sin

βπ

6

− tan
βπ

2

, (19)

By combining Equation (9) with Equation (14), λp can be rewritten as Equation (20). Substituting
Equation (20) into Equation (19) yields arg[Za(jωr1)] as Equation (21).

λp =
36δ2ξω0

ω2
sTs(δ2 − β2)

. (20)

arg[Za( jωr1)] = 180
◦

+ arctan

 β2ω2
sTs(δ2

− β2)

72δ2ξω0 cos
πβ

2
sin

πβ

6

− tan
πβ

2

. (21)

This phase arg[Za(jωr1)] is a function of β only because ξ and δ have been known. Figure 9
illustrates the relationship of arg[Za(jωr1)] and β for β in (1, δ). It shows that the phase is a monotonic
increasing function of β. The phase arg[Za(jωr1)] is equal to 120◦ at β = βs1, which can be obtained by
solving the equation arg[Za(jωr1)] = −120◦. Therefore, we have arg[Zes(jωr1)] ≥ −60◦ if β is in (βs1, δ).
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In addition, it can be seen from Equation (20) that λp is also a monotonic increasing function
of β. There is an upper bound βs2 to make λp = 1. It is derived from Equation (20) that βs2 can be
expressed as

βs2 = δ

√
1−

ξω0

ω2
eTs

. (22)
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Therefore, the value of β should be in (βs1, βs2) to have arg[Zes(jωr1)] ≥ −60◦. In addition, since L2

is getting large when β approaches δ, β should be selected as βs1 or the value slightly higher than βs1 so
that L2 will not be too large. After β is determined, λp can be obtained according to Equation (20).

4.3. LCL Filter Computation According to Normalization Parameters

In this part, an LCL filter design scheme is developed by combing ωr1 and ωres with constraints
of the switching harmonics on LCL filter. The LCL filter design can be started with the design of
converter-side inductance. In the three-phase four-wire system, the maximum current ripple at the
inverter output is given by equation [33]

∆Imax =
Udc

6L1 fsw
. (23)

To restrict the switching current and the core loss of L1, the current ripple on the inverter side is
recommended to be around 20% of the rated inverter current. Then the inverter-side inductance can be
determined by

L1 ≥
Udc

6× 20%Is fsw
(24)

where Is =

√
2Pn

3Ug
. It is recommended that L1 be selected at or slightly larger than the lower bound

in order to keep the cost low and reduce the core loss. It follows from the relation ωr1 = βωe that the
capacitance C can be selected by

C =
1

L1β2ω2
e

. (25)

Moreover, since the reactive power absorbed by the filter capacitance should not be more than 5%,
C is limited by

C ≤
5%P

3ω0U2
g

. (26)

Finally, the grid-side inductance L2 can be derived as Equation (27) from the relation ωres = δωe.

L2 =
1

Cω2
e(δ2 − β2)

(27)

4.4. Design of kr

It has been shown [23] that |Gos(jω0)| higher than 50 dB and |Zes(jω0)| larger than 40 dB would
enable the system to have a good tracking performance. If the influence of L2, C, and Gd on |Zes(jω0)| is
negligible, then |Zes(jω0)| can be expressed as

∣∣∣Zes( jω0)
∣∣∣ = √

(ω0L1)
2 +

[
kpwm(kp + kr)

]2
. (28)

Similarly, since C and Gd only have a slight effect on |Go(jω0)|, ignoring C and Gd yields

∣∣∣Gos( jω0)
∣∣∣ = kpwm(kp + kr)

ω0(L1 + L2)
. (29)
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If it is required that |Zes(jω0)| > 40 dB and |Gos(jω0)| > 50 dB, then kr should satisfy the
following condition

kr ≥ max


√

104 − (ω0L1)
2

kpwm
− kp,

102.5ω0(L1 + L2)

kpwm
− kp

. (30)

Although ωc is far away from ω0, kr still affects the phase of Gos in the controller bandwidth. With
the increase of kr, the phase of Gos in the controller bandwidth decreases. This leads to the reduction of
stability margins. Therefore, an upper limit krm1 for kr needs to be set to guarantee GM > 6 dB and
PM > 30◦.

In accordance with Equations (11) and (12), kpt and kr has a positive linear relationship, as shown
in Figure 10. Kpt rises as kr increases. Therefore, there is an upper bound krm2 that satisfies kpt < kp.
krm2 can be obtained by a numerical method. Therefore, the overall constraint of kr can be obtained by

max


√

104 − (ω0L1)
2

kpwm
− kp,

102.5ω0(L1 + L2)

kpwm
− kp

 < kr < min{krm1, krm2} (31)
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4.5. Detailed Design Procedure

Table 1. summarizes the parameter constraints and design guideline of the integrated design
method. Procedure of the design is presented below.

(1) Initialize the power converter parameters: the rated power Pn, rated ac voltage Ug, fundamental
frequency f 0, dc-link voltage Udc, sampling frequency f s, and the switching frequency f sw.

(2) Refer to Figure 7 to obtain stability margins as large as possible. Set δ as 1.5.
(3) According to Figure 7, ξ should be selected from (10, 19.4) for δ = 1.5 to satisfy the stability

margin, PM > 30◦ and GM > 6 dB. The final ξ should be selected according to the desired stability
margins and bandwidth.

(4) Select β from (βs1, βs2) and β should be close to βs1.
(5) Compute λp from Equation (20). Select L1 from Equation (24) near the lower bound.
(6) Calculate C using Equation (25), verify that Equation (26) is satisfied, and obtain L2 from

Equation (27).
(7) Select kr according to Equation (31).
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As seen, compared with traditional inverter design method the proposed method is simple and
does not need complicated iterative computation and the trial and error method to design LCL filter
and controller parameters. Additionally, a set of normalization parameters can be used to design many
inverters no matter what the power level is. More importantly, the inverter will be characterized with
strong stability and robustness to grid impedance by using the proposed method.

Table 1. Parameter Constraint and Design Guideline.

Parameter Constraint Design Guideline

δ, ξ Region shown in Figure 7
Consider the desired

bandwidth and make PM and
GM as large as possible

β (βs1, βs2) β should be close to βs1

λp λp =
36δ2ξω0

ω2
s Ts(δ2 − β2)

–

L1 L1 ≥
Udc

6× 20%Is fsw

L1 should be as close to the
lower bound as possible

C C =
1

L1β2ω2
e

C ≤
5%P

3ω0U2
g

L2 L2 =
1

Cω2
e(δ

2 − β2)
–

kp kp =
λpω2

s L1Ts

36kpwm
–

kr
max


√

104 − (ω0L1)
2

kpwm
− kp,

102.5ω0(L1 + L2)

kpwm
− kp


< kr < min{krm1, krm2}

kr should be as close to the
upper bound as possible

5. Case Study

A 500 kW inverter was considered to evaluate the performance of the proposed integrated design
method. In the test, the sampling frequency was 16 kHz. The DC-link voltage and the grid voltage were
Udc = 700 V and Ug = 220 V, respectively. The asymmetric regular-sampling method was employed and
the switching frequency was 8 kHz. The LCL filter and controller parameters designed by the proposed
integrated design method and the conventional method are shown in Table 2. The conventional
methods design LCL filter and controller parameters separately and do not consider the inverter
impedance [23,34–36].

Table 2. New and conventional inverter parameters.

Item L1 (µH) C (µF) L2 (µH) kp kr

new inverter 70 33.6 143.7 0.0029 1
conventional inverter 70 40 75 0.0014 0.73

5.1. Parameter Design

(1) Start with Pn = 500 kW, f s = 16 kHz, Udc = 700 V, Ug = 220 V, and f sw = 8 kHz.
(2) δ is set as 1.5 in order to have the stability margins as large as possible.
(3) ξ is set as 15 to obtain enough bandwidth and stability margins.
(4) According to Equations (21) and (22) the range of β is calculated as (1.23, 1.28). A tradeoff between

L2 and λp yields β = 1.23.
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(5) Then λp is calculated as 0.82 and the lower bound of L1 is 68 µH according to Equation (24). L1 is
set as 70 µH.

(6) C is calculated as 33.6µF, which is less than the upper bound of 548 µF from Equation (26) and L2

as 143.7 µH.
(7) The range of kr is (0.2828, 1.47) obtained by Equation (31). kr is set as 1. Additionally, kp is

calculated as 0.0029.

5.2. Performance Evaluation

Bode diagrams of Gos for new and conventional inverters are shown in Figure 11 using the
parameters in Table 2. It is observed from Figure 11 that both inverters provide sufficient stability
margins. Additionally, the bandwidth is large enough to produce satisfactory dynamic performance.
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Bode diagrams of inverter admittance and grid admittance for new and conventional inverters 
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Figure 12 that the phase curve of the new inverter admittance is lower than 90° for the whole 
frequency range. Therefore, the admittance ratio Ko = Ye/Yg satisfies the Nyquist criterion as the grid 
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Bode diagrams of inverter admittance and grid admittance for new and conventional inverters
are shown in Figure 12 to evaluate the robustness to grid impedance interaction. It can be seen from
Figure 12 that the phase curve of the new inverter admittance is lower than 90◦ for the whole frequency
range. Therefore, the admittance ratio Ko = Ye/Yg satisfies the Nyquist criterion as the grid impedance
varies. Close examination reveals that the intersection frequency of the grid admittance and the
inverter admittance becomes small as Lg increases. However, the phase difference between the grid
and inverter admittance at the intersection frequency is always lower than 150◦ even for very large
Lg. Therefore, the cascade system can obtain sufficient stability margin even though the inverter is
connected to a weak grid.
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For the conventional inverter, there is a frequency range where the admittance phase exceeds
90◦. When the frequency at which the magnitude response of the inverter admittance and that of the
grid admittance intersect falls in that frequency band, the PM of Ko = Ye/Yg becomes negative. This
indicates that the grid-inverter system loses stability. Since the inverter impedance is not considered in
the conventional controller design, even though the current open-loop transfer function is designed
with sufficient stability margins, the inverter impedance may exist in the unstable region, where the
phase of inverter admittance is larger than 90◦.

6. Simulation and Experimental Results

Extensive simulations and experiments have been conducted to verify the effectiveness and
robustness of the proposed integrated inverter design method in a weak grid.

6.1. Simulation Results

Parameters of the inverter used in the test are listed in Table 2. In MATLAB simulation, both current
and voltage signals are sampled by ZOH and the computation delay is emulated by a delay module
with one sampling period. To demonstrate the transient performance of the inverter, the reference
currents of the current loop are alternated between the full load and half load.

Simulation results of the inverter output currents under different SCRs (Short Circuit Capacity
Ratio) for new and conventional inverters are shown as Figures 13 and 14 respectively. Reference
currents step between full and half load to illustrate the transient performance. It is evidenced from
Figure 13 that the steady-state current is smooth with satisfactory total harmonic distortion (THD).
All THDs of the steady-state current are not larger than 2%, which satisfies with the IEEE 519 Std.
However, for the conventional inverter, all THDs of the steady-state current are much larger than
that of the new inverter. In particular, when Lg is larger than 61µH the THD for half load exceeds 5%
which does not meet the IEEE 519 Std. Both inverters exhibit oscillation and overshoot current after the
reference current steps. Additionally, the overshoot current of the new inverter is smaller than that of
the conventional inverter for large grid impedance. Even worse, when Lg increases to 400 µH, currents
of the conventional inverter are completely out of control, indicating that the inverter loses stability.Energies 2019, 12, x FOR PEER REVIEW  15 of 19 
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6.2. Experimental Results

Experimental test was conducted to evaluate the effectiveness of the proposed inverter design
method. The test is based on a 10 kW experiment setup shown as Figure 15. The three-phase inverter
bridge is realized by a CCS050M12CM2 module. The program of the control algorithm for the inverter
is generated through a z-domain MATLAB/Simulink model and is implemented in the TMS320F28335
system. In the experiment, an inductor is inserted at the PCC in series with the programmable AC
source to emulate the inductive grid impedance. Inverters designed by the proposed methods and the
conventional method are shown as Table 3.Energies 2019, 12, x FOR PEER REVIEW  16 of 19 
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Figure 15. Photo of the experiment setup.

Table 3. New and conventional experiment inverter parameters.

Item L1 (mH) C (µF) L2 (mH) kp kr

new inverter 1.5 1.0 4.3 0.0776 18
conventional inverter 4.0 2.0 0.7 0.06 35

Output currents of the new inverter for various SCR are shown in Figure 15. In the figures,
the middle panel is the zoom-in view of the left panel showing the step-down detail and the right
panel is that of the step-up. It can be seen from Figure 16 that all currents are stable with small THDs in
response to load changes. All THDs of the steady-state current are less than 3% satisfied with the IEEE
519 Std. The step-down transients are excellent with nearly no oscillation and no overshoot. Small
overshoots appear in the step-up transients. The transient time of the step up is slightly longer than
that of the step down. Additionally, longer response time is observed as the grid impedance increases.
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Figure 16. Current waveforms of the new inverter for various SCR. (a) Lg = 1.0 mH (SCR = 45).
(b) Lg = 3.1 mH (SCR = 15). (c) Lg = 9.23.1 mH (SCR = 5). (d) Lg = 23 mH (SCR = 2). Left panel: current
waveform; middle panel: zoom-in view of current step down; right panel: zoom-in view of current
step up.

Experimental results of such output currents are shown in Figure 17. It can be seen from that the
output currents are satisfactory at Lg = 0. A disastrous high-frequency resonance happens when Lg

is only increased to 3.1 mH. For protection, the inverter is disconnected to the grid. Simulation and
experiment results demonstrate that the proposed integrated design method improves the inverter
robustness to grid impedance.
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7. Conclusions

This paper has presented an integrated design method that carries out the design of LCL filter and
controller by taking their inherent relation into account. This design improves the inverter performance
on stability and robustness with respect to grid impedance. A parameter normalization scheme based
on parameter constraints has also been developed to facilitate the system stability and robustness
analysis. Investigations have shown that the inherent LCL resonant frequency and the cutoff frequency
of the current open-loop transfer function are crucial to the inverter stability margins. The proportional
factor of the current controller and the resonant frequency of the inverter-side LC filter are critical to
the inverter robustness. Procedures that integrate the design of LCL filter and controller parameters
have been described. Additionally, parameter constraints and design guidelines for robust inverter
design are derived. Simulation and experimental results have demonstrated that the proposed design
method improves the inverter robustness to grid impedance, whereas the conventional design methods
may fail.
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