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Abstract: Social Housing (SH) in Mexico has a potentially important role in reducing both the emission
of greenhouse gases and the use of non-renewable resources, two of the main challenges facing not
only Mexico but the planet as a whole. This work assesses the environmental impact generated by
the embodied stages of a typical SH throughout its life cycle (cradle to grave), by means of a Life
Cycle Assessment (LCA). Two types of envelope and interior walls and three types of windows are
compared. It was found that SH emits 309 kg CO2 eq/m2 and consumes 3911 MJ eq/m2 in the product
stages (A1 to A3) and construction process (A4 to A5); the most important stages are those referring
to the products, namely, A1 to A3, B4 (replacement) and B2 (maintenance). Additionally, benefits
were found in the use of lightweight and thermal materials, such as concrete blocks lightened with
pumice or windows made of PVC or wood. Although the use of LCA is incipient in the housing
and construction sector in Mexico, this work shows how its application is not only feasible but
recommended as it may become a basic tool in the search for sustainability.

Keywords: life cycle assessment; social housing; embodied stages; embodied energy; embodied
greenhouse gases; residential sector; Latin America and the Caribbean

1. Introduction

The population of Latin America and the Caribbean (LAC) represents 8.55% of the world
population [1], of which 75% is concentrated in countries with emerging economies (32% Brazil, 20%
Mexico, and 22% for Colombia, Argentina, Peru and, Chile together) [1,2]. The high metabolic rates
of this region have obliged governments to design and introduce new approaches to separate their
economic growth from the use of resources and, consequently, their environmental impact [3].

Although the LAC countries have twice the population of the United States (U.S.), they produce
a lower global warming effect. This is similar to the case of the Asian giants, where India emits just
24% of the Greenhouse Gases (GHG) produced by China, despite each being home to 18% of the
world’s population. Regarding energy consumption, the USA, the European Union (EU), and China
consume 4.15, 1.89, and 1.26 times more than the world per capita average respectively, while India and
LAC consume 3.88 and 1.47 times less (Table 1). This indicates that the environmental impact indices
generated by each country (and region) are discordant with the number of people living in them.
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Table 1. Global basic indicators. Data from: [1,4–9].

Country/
Region

Total
Population
(People) [1]

Urban
Population

(%) [4]

CO2
Emissions

(%) [5]

CO2 eq
Emissions

(%) [6]

Energy
Consumption

(kwh/Capita) [7]

Population
Growth

(Annual %) [8]

Household
Size

(People) [9]

China 1,386,395,000 58 28.27 23.27 3927 0.6 3.4
India 1,339,180,127 34 5.69 5.61 805 1.1 4.6
U.S 325,719,178 82 14.43 11.85 12,984 0.7 2.5
EU 512,461,290 75 9.85 8.78 5908 0.2 -

LAC 644,137,666 80 5.21 10.74 2129 1.0 -
World 7,530,360,149 55 100 100.00 3127 1.2 -

The emerging economies of LAC must face up to important environmental challenges in order to
avoid replicating the throwaway society model of the industrialized nations [10]. Among the most
important problems is the rise in annual temperature caused by the increase of GHGs and the wasteful
consumption of energy (from renewable and non-renewable sources); there are also the residues
generated by this consumption, such as Construction and Demolition Waste (CDW) and Municipal
Solid Waste (MSW), which play an important part due to the quantities involved.

To overcome their own environmental challenges, LAC countries need to set up schemes to
achieve economic and social growth that will avoid unsustainable environmental damage, that is,
plans in line with the objectives of the new sustainable development agenda, which are governed by
three cardinal axes: Eradicating poverty, protecting the planet, and ensuring prosperity for all [11].

Mexico has the second largest population of the countries in LAC, with more than 129 million
inhabitants (80% concentrated in urban areas) [1]. Over the last ten years it has had economic growth
of 2.2% [12] and, up to 2017, annual population increase of 1.3% [8] (Table 2); therefore, an increase in
energy needs and consumption of natural resources can be expected in coming years, as well as GHG
emissions and the CDW and MSW that generate them.

Table 2. Basic indicators in LAC. Data from: [1,4–9].

Country/
Region

Total
Population
(People) [1]

Urban
Population

(%) [4]

CO2
Emissions

(%) [5]

CO2 eq
Emissions

(%) [6]

Energy
Consumption

(kwh/Capita) [7]

Population
Growth 6

(Annual %) [8]

Household
Size

(People) [9]

Argentina 44,271,041 92 10.7 6.6 3052 1.0 3.3
Brazil 209,288,278 86 27.7 52.0 2601 0.8 3.3
Chile 18,054,726 87 4.3 2.1 3912 0.8 3.6

Colombia 49,065,615 80 4.4 3.0 1290 0.8 3.5
Mexico 129,163,276 80 25.1 11.5 2090 1.3 3.7

Peru 32,165,485 78 3.2 1.3 1308 1.2 3.8
LAC 644,137,666 80 100 100 2129 1.0 -

2. Environmental Challenges in Mexico

In Mexico, the national inventory of greenhouse gases and compounds is closely linked to scientific
and technical criteria established by the Intergovernmental Panel on Climate Change (IPCC). It reported
that in 2015 a total of 683 million tons (Gg) of CO2 eq were emitted, of which 71% were Carbon Dioxide
(CO2) and 21% Methane (CH4). The inventory also counted 148 Gg absorbed by vegetation (mainly
forest and jungle), bringing the net emissions balance to 535 Gg of CO2 eq (Table 3). Additionally, 1.4%
of the total CO2 and 1.24% of the total CO2 eq in the world was generated in 2012 (in the LAC group,
only surpassed by Brazil) (Table 2).
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Table 3. National inventory of greenhouse emissions and compounds. Data from: [13].

Category Net Emissions Gg CO2 eq Total Emissions Gg CO2 eq

1 Energy 480,878.831 480,878.831
2 Industrial processes and use of products 54,111.761 54,111.761
3 Agriculture, forestry and other land uses −46,286.569 102,059.499
4 Residues 45,909.010 45,909.010
Total 534,613.033 682,959.101

Of all the emissions (Figure 1), the housing sector emits 3.1% of CO2 eq, derived from compounds
of CO2, CH4 and Nitrous Oxide (N2O) generated by the consumption of natural gas, liquid petroleum
gas, kerosene and diesel; there is also CH4 and N2O due to the burning of firewood in homes,
the emissions generated by their operational energy. Other emissions related to the residential sector
are those caused by the energy needed for transport (25.1%) and the construction and manufacturing
industry (9.3%); the mineral and metal industries (5.5%) and the elimination of solid waste (3.2%).
However, the corresponding proportional part of each must be obtained. It is essential to analyze
exhaustively the GHGs that generate the activities that are carried out throughout the life cycle of the
residential sector, especially social housing. Which, due to its high representation (88%) in the homes
of the country, is a dominant relevance.
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Figure 1. National inventory of greenhouse gas emissions and compounds. Data from: [13].

Moreover, in 2017, Mexico ranked 16th in the list of countries with the highest energy consumption
in the world, reporting the third consecutive year with an energy independence index equivalent to
0.76; that is, 24% less energy was produced than necessary for the various consumption activities
within the national territory [14]. This is despite the country’s wealth of natural resources such as gas,
coal and renewable energy sources (water, wind, solar and marine energy); however, its economy and
energy supply are dependent on fossil fuels, which together with the lack of energy planning is a major
cause for concern [15].

The national energy balance in 2017 (Figure 2), shows that the national energy consumption for
this year was 9249.75 Petajoules (PJ), of which the 58% corresponding to total energy consumption and
32% to activities inherent to the energy sector (transformation, own consumption, and losses) stand out
(Figure 2a). The total energy consumption (Figure 2b) in this year was 5362.8 PJ, which is attributed to
the internal market or the productive activities of the national economy, of which the housing sector
is responsible for 14%, due to the operating requirements of housing [14]. Additionally, other data
needed for this sector is that referring to the proportional part of transport (44%) and industry (35%).
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Figure 2. (a) National energy consumption: 9249.75 PJ; (b) Total energy consumption: 5362.8 PJ. Data
from: [14].

Regarding the waste products (Table 4), Mexico generates 0.4% of the world total of CDW and 3.4%
of the MSW (second in the LAC region), and although the sum of its waste is lower than that of countries
such as China (1,130,000,000 t CDW; 328,922,213 t MSW), U.S (548,000,000 t CDW; 240,380,753 t MSW)
and India (530,000,000 t CDW), the impact on a national scale should not be ignored as it has limited
management protocols and lacks the infrastructure for waste processing [16].

Of the CDW generated in public and private works, 20% is disposed of in authorized dumps and
only 3% is recycled; the rest is used in site levelling, landfills and, inappropriately, in road or street
repairs [16]. In this respect, the NOM-161-SEMARNAT-2011 norm came into effect in 2013, stating that
construction waste shall be classified as special handling waste, requiring action to be taken for its
reuse and recycling or, where appropriate, for its proper disposal [17]. In the case of the 44 million
MSW generated annually [18], despite having the General Law for the Prevention and Management of
Waste, only 84% are collected, 78.5% are dumped in final disposal sites, and only 9.6% are recycled [19].

Table 4. CDW and MSW. Data from: [18,20–24].

Country CDW [20] MSW MSW

Region (t/Year) (t/Year) (kg/Capita.Year)

Brazil 70,000,000 79,900,000 [21] 382 [21]
China 1,130,000,000 328,922,214 [24] 237 [24]
India 530,000,000 90,000,000 [23] 67 [23]

México 12,000,000 44,432,167 [18] 344 [18]
U.S. 519,000,000 240,380,753 [18] 738 [18]
EU 830,000,000 247,518,803 [18] 483 [18]

LAC - 131,000,000 [22] 203 [22]
World 3,000,000,000 1,300,000,000 [24] 173 [24]

2.1. Life Cycle Assessment in Mexico

Various methods have been used in recent decades to measure the environmental performance of
human and natural activities. One of these is the Life Cycle Assessment (LCA). “LCA, has become a
key methodology to evaluate the environmental performance of products, services and processes and
it is considered a powerful tool for decision makers” [25]. In Mexico, the LCA was used for the first
time in the late 1990s and early 2000s, in a study on waste management carried out by the National
Institute of Ecology and Climate [26]. The methodology has been used in several economic sectors in
the country, such as the energy [27] or mining industries [28]. According to the study conducted by
Valdivia, until 2014 Mexico was the second ranking LAC country in terms of publications referring to
LCA (101 articles) [3].

Until 2010 research using LCA had a preferential focus on waste management issues; from that
year onwards, studies focused on topics such as the energy sector, the analysis of carbon and water
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footprints and the construction sector [26]. Within the latter, studies have been carried out on the
co-processing of municipal waste used as fuel for a cement kiln [29], as well as the publication of a
book on LCA in construction, where topics such as social housing (SH) are analyzed [30].

The housing sector began to attract attention in 2006, when the government introduced life cycle
thinking into the National Housing Law [31]. In this respect, Cerón-Palma et al. (2013) measured the
Global Warming Potential (GWP) of the operating energy of a SH [32]; as well as proposing strategies to
reduce energy demand [33], other studies have focused on optimizing rainwater [34,35]. In addition to
the LCA, other tools such as the Building Sustainability Rating Systems [36] and product environmental
statements [31,37] have been used.

Although in Mexico the use of LCA in the construction and residential sector is basically nil,
its application is feasible and can become a valuable tool in the search for environmental solutions as it
has been in various regions of the world [38].

2.2. Housing in Mexico

Housing types in Mexico are classified according to their constructed surface: Economic (30 m2),
popular (42.5 m2), and traditional (62.5 m2), known together as SH. There are also medium (97.5 m2),
residential (145 m2), and residential plus (225 m2) [39]. In the last five years, more than 2.58 million
housing units have been built, of which 88% are SH (11% economic, 47% popular, 30% traditional),
while the remaining 12% corresponds to the medium, residential and residential plus models [40]. It is
estimated that 600,000 new housing units will be needed annually during the next decade [41].

Due to the high representation of the SH, the National Development Plan 2013–2018 has promoted
the issue of sustainable construction in this sector [31]. As a result, in the last decade, Mexico has
stood out among the middle-high income level countries due to its Finance Program for Housing
Solutions, which aims to provide more sustainable SH. These actions have been considered exemplary
with respect to global good practices [36].

According to data compiled up to 2010 by the National Housing Commission (CONAVI), 86%
of the housing stock is in use (80.12% permanent use and 5.65% temporary use), while 14% is
unoccupied [42]. Until 2015, the inventory of occupied housing showed 31,949,709 private units with
an average of 3.7 habitants each [43]; of these, 73% are single-family, 19% are two-family, and 7%
are multifamily housing. Multifamily housing is mainly concentrated in the states with the highest
population density of the Republic (41% in Mexico City, 15% Mexico State, 7% in Jalisco and 5% in
Puebla), while it is practically nil in the rest of the country (an average of 1% per state) due to the
persistence of the single-family dwelling [44].

Housing in Mexico has great challenges to face; on the one hand, there are impacts generated
throughout its use, and on the other hand, there are environmental impacts arising from the incorporated
stages of materials and processes necessary for construction. National inventories of energy and
greenhouse gases and compounds have clearly established the impacts generated by the residential
sector in its operation (B6, Operational energy [45]); however, it is necessary to define the environmental
burdens that are generated from the incorporated activities of its life cycle to consider a “from the
cradle to the grave” approach.

2.3. Objectives of the Study

The objectives of this research are (1) to identify the state of the most relevant environmental
impacts occurring in Mexico, emphasizing the residential sector, and (2) to achieve an approximation of
the environmental impacts generated by this sector. To reach the latter objective, an LCA methodology
applied to a representative SH of the Mexican ambit will be used; the elements that make up its
envelope will be varied, resulting in a total of six options to be analyzed throughout its life cycle.
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3. Materials and Methods

3.1. Goal and Scope of the LCA

The objective of the LCA was to establish the environmental impacts generated by a typical SH in
Mexico throughout its life cycle. For the analysis the constructive elements that make up the structure,
the envelope (opaque and transparent parts) and the internal partitions were considered, as well as
their basic finishes. Previous studies have analyzed the structure, the envelope [46–50] and the interior
walls [51,52] of a building because of their contribution to the total environmental loads generated by
their incorporated stages and also because of the impact these elements (especially the envelope) have
on the energy performance of the building’s operational stage.

The reference dwelling is a built and practical prototype in the Mexican ambit; five additional
alternatives are proposed by varying interchangeable and feasible materials and construction solutions
in the local practices. Of the six options to be analyzed, all have in common the structure (consisting
of foundation slabs, columns and beams of reinforced concrete, and roof slab of reinforced concrete
lightened with Expanded Polystyrene Pieces, EPS), the exterior and interior wooden doors, and the
basic finishes (1.5 cm thick mortar for exterior and interior walls, 1.5 cm thick plaster for roof slab,
and vinyl paint for all cases). The elements that differed were the exterior and interior walls (two types
of concrete pieces: (1) Hollow Block of 12 × 20 × 40 Filled with Expanded Perlite (PE) and (2) Solid
Partition of Lightened Concrete with Pumice Aggregates of 10 × 14 × 28 (PU)) and windows (three
types: Aluminum (AL), PVC (PV) or Wood (WO)). The nomenclature used is shown in Figure 3.
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Exterior and interior walls:

Concrete block of 12 x 20 x 
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Figure 3. Nomenclature and elements of the options analyzed.

The basic characteristics of the structure are illustrated in Figure 4, and Figure 5 shows the
configuration of the exterior and interior walls, as well as the location and dimensions of the doors and
windows of the SH.

The established functional unit was the 42 m2 dwelling (Figure 5), with a useful life of 50 years
according to previous research [53–56]. Its dimensions correspond to those of popular housing,
which is nationally the most representative (47% which, together with the traditional and economic
housing, makes up 88% of the SH [40]). The analyzed elements allow an approximate estimate of
the environmental impact generated by a Mexican SH in all stages of its life cycle; in addition, any
changes of the proposed elements are required to be equivalent with respect to their thermal, structural,
and functional capacities, thus allowing for their possible comparison and the best environmental choice.
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Despite the initiatives of CONAVI aimed at the construction of sustainable housing and related
programs, it has not yet been possible to comply with the regulations on energy efficiency in SH;
however, these efforts have led to the search for solutions and practices that show a continual
improvement, as reported in previous studies [36]. The walls of the reference prototype are one
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example of this. They have eco-technology used in SH (expanded perlite insulation to fill the concrete
blocks, with a thermal conductivity coefficient (λ) of 0.042 W/mK); however, its Thermal Transmittance
(U), equal to 1.07 W/m2K, does not comply with NOM-020-2011 (U = 0.476 W/m2K for cities with
extremely hot climates to U = 0.909 W/m2K for cities with temperate-cold climates [57]). Therefore,
the construction of concrete walls lightened with pumice aggregates (λ = 0.052 W/mK) was proposed,
with similar characteristics of functionality and compressive strength (13 cm thick, F´c > 90 kg/cm2),
but with improved thermal performance due to the intrinsic properties of the material. This results
in walls with a U equal to 0.46 W/m2K (complying with NOM-020-2011 for the least favorable case;
Figure 5).

3.2. Boundaries and Functional Unit

The analysis considered the Stages of Product (A1 to A3) and Construction Process (A4 to A5);
Maintenance (B2) and Replacement (B4), Demolition (C1), Transport (C2) and Disposal (C4). The Use
(B1), Repair (B3), and Refurbishment (B5) stages were excluded, being considered dependent on the
user; Waste Processing (C3) was also omitted as immediate dumping is the single most used scenario
in the Mexican context [16]. The analysis may be considered cradle to grave, according to the proposal
of annex 57 of the IEA EBC for evaluating the incorporated energy and the CO2 eq emissions. Annex
57 complements the international ISO 21931-1 and European EN 15978 standards for the evaluation of
building structures to improve transparency for the multiple stakeholders in the LCA process [58].
The limits of the LCA system are shown in Figure 6.
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3.3. Life Cycle Inventory

Two databases were used, one specializing in the quantification of materials and construction
processes at the Mexican level, CYPE [59], and another specializing in life cycle inventories, ecoinvent
3.1 (2014) [60]. However, since ecoinvent initially included products and activities exclusively at the
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European—in particular the Swiss—level, recent versions incorporate global, and sometimes specific,
processes from countries outside Europe, as in the case of Mexico or North America. Previous studies
conducted in Mexico using ecoinvent have obtained favorable results [29,32,61–64]; and although their
use might presuppose a limitation, this is in turn an available tool that generates reliable approaches to
environmental impacts.

3.3.1. Product Stage (A1 to A3)

The product stage included the manufacture of the structure, the envelope, the internal partitions,
and the basic finishes. The weights obtained from the inventory were also considered with a 5% waste
rate. The required quantities of each material used and the corresponding dataset are shown in Table 5.
The processes and materials used (taken from ecoinvent) were adapted to the conditions of the SH;
however, in the specific case of the windows (AL, PV, and WO), the dataset analyzed represents a more
efficient window than those used for the SH; although the weights and dimensions were adapted to
the conditions of the project, in the case of these elements, it is prudent to consider the results as values
of close environmental impact.

Table 5. Inventory of materials of the product stage.

Element Material Quantity Ecoinvent Dataset1

Structure Concrete (m3) 13.8 Concrete production 20 MPa, RNA only, RoW
Steel (kg) 975.4 Reinforcing steel production, RoW
EPS (kg) 193.1 Polystyrene foam slab production, RoW

Block (kg) 1869.0 Concrete block production, RoW
Mortar (kg) 211.8 Cement mortar production, RoW
Water (m3) 0.05 Tap water production, conventional treatment, RoW

Ceramic tile (kg) 776.3 Ceramic tile production, RoW
Cement (kg) 316.9 Cement production, Portland, RoW
Plaster (kg) 633.8 Stucco production, RoW

Doors Exterior doors (m2) 3.8 Door production, outer, wood-glass, RoW
Interior doors (m2) 5.5 Door production, inner, wood, RoW

PE wall Block 12 × 20 × 40 (kg) 12,199.5 Concrete block production, RoW
Mortar (kg) 6638.5 Cement mortar production, RoW
Water (m3) 0.3 Tap water production, conventional treatment, RoW

Expanded perlite (kg) 196.8 Expanded perlite production, RoW

Vinyl paint (kg) 24.3 Alkyd paint production, white, water-based, product
in 60% solution state, RoW

PU wall Pumice block (kg) 8155.9 Lightweight concrete block production,
pumice, RoW

Water (m3) 0.3 Tap water production, conventional treatment, RoW
Mortar (kg) 6941.9 Cement mortar production, RoW

Vinyl paint (kg) 19.7 Alkyd paint production, white, water-based, product
in 60% solution state, RoW

Windows Aluminum-window (m2) 0.8 Market for window frame, aluminum,
U = 1.6 W/m2K, GLO 2

PVC-window (m2) 0.8 Market for window frame, poly vinyl chloride,
U = 1.6 W/m2K, GLO 2

Wood-window (m2) 0.8 Market for window frame, wood, U = 1.5 W/m2K,
GLO 2

Glazing 3 mm (kg) 2.4 Market for glazing, double, U < 1.1 W/m2K, GLO
1 RNA: Northern America; RoW: Rest of the World; GLO: Global. 2 Its characteristics correspond to a window with
measurements of 1.6 × 1.3 m, with frame visible area ≈ 0.5 m2, and U value of 1.6 W/m2K, weight per m2 of frame
visible area of 50.7 kg for aluminum, 94.5 kg for PVC and, 80.2 kg for wood.

3.3.2. Construction Process Stage (A4 to A5)

In Mexico the greatest impact on the demand for electricity in homes occurs in the northern and
coastal areas of the country—warm climates—where the use of cooling equipment is more common
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than heating equipment [57]; therefore, for better representativeness, the analyzed SH is assumed to be
located in the Northwest of Mexico, using in this work the proposed alternative that satisfies the most
unfavorable U-value corresponding to the cities of Hermosillo, Guaymas, and Mexicali (0.476 W/m2K).

The environmental impact generated by a truck operating with a load capacity of 7.5–16 t, measured
in Tons-kilometers (tkm), was determined for a complete travel cycle (round trip) of the material.
The maximum dimensions of the truck correspond to those established by the communications and
transport secretariat for long distance roads ET-A (maximum load of 17.5 t) and for short distance
roads D (maximum load of 11 t) and Euro 4 engine [65].

The values considered for the distances travelled were an average of the journeys between the
hypothetical center of each capital of the north-western states of the country (Baja California, Baja
California Sur, Chihuahua, Durango, Sinaloa, and Sonora) and the nearest factories of each type of
material previously established in the inventory (determined using Google maps). The resulting
values were: 15 km for concrete, steel, EPS, doors, and windows; 20 km for vinyl paint; 400 km for
ceramic floors; 470 km for steel; and 510 km for expanded perlite (methodology used in previous
studies [66,67]). The quantities required for each construction alternative are shown in Table 6.

Table 6. Inventory of processes of transport from factory to site (A4).

Process PE-AL PE-PV PE-WO PU-AL PU-PV PU-WO Ecoinvent Dataset

Lorry operation (tkm) 3454 3455 3455 3141 3142 3142 Transport, freight, lorry
7.5–16 metric ton, EURO4

For the assessment of the Construction Stage (A5), the processes and materials necessary for the
formwork of the structure (with wood and steel) were considered, as well as those for the transport,
discharge, and vibration of the concrete used in the structure and for mixing the mortar used in the
walls. The quantities used are shown in Table 7.

Table 7. Inventory of materials/processes of the construction process (A5).

Element Material/Process Use Time Ecoinvent Dataset 1

Formwork of the
structure

Steel (kg) 37.51 Reinforcing steel production, RoW

Wood (m3) 0.23 Sawnwood production, softwood,
kiln dried, planed, RoW

PE alternatives Potency less than 18 kW (h) 8.73 Machine operation, diesel, <18.64
kW, steady-state, GLO

Potency greater than 75 kW (h) 1.76 Machine operation, diesel, ≥74.57
kW, steady-state, GLO

PU alternatives Potency less than 18 kW (h) 9.01 Machine operation, diesel, <18.64
kW, steady-state, GLO

Potency greater than 75 kW (h) 1.76 Machine operation, diesel, ≥74.57
kW, steady-state, GLO

1 RoW: Rest of the World; GLO: Global.

3.3.3. Use Stage (B2, B4)

Of the stage of use, those stages corresponding to the useful life of each material during the
building’s 50 years of useful life were considered, that is, the Maintenance (B2) and the Replacement
(B4) of the elements. The maintenance intervals and replacement cycles obtained from the literature
are shown in Table 8.

The elements that needed Maintenance (B2) were the doors, the windows (painting every ten
years = 3 cycles) and the walls (painting every five years = 9 cycles). In the Replacement stage (B4),
the doors and windows are the elements with a useful life less than the SH, and so their replacement is
considered at 30 years (one replacement cycle in the total timeline of the SH). The quantities required
are listed in Table 9.
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Table 8. Maintenance intervals and replacement cycles for SH elements. Data from: [54,55,68–72].

Element Useful Life
(Years)

Activity
Maintenance

Maintenance
Cycle

Replacement
Cycle

Reinforced concrete
structure 50 [68] - - -

External and internal walls >50 [69,70] - - -
Ceramic tiles 50 [68] - - -

Interior and exterior doors 30 [55,71] Paint every 10
years [54] 3 1

Windows 30 [54] Paint every 10
years [54] 3 1

Vinyl paint 5 [72] Paint every 5 years 9 -

Table 9. Inventory of materials/processes of maintenance and replacement.

Stage Element Quantity Ecoinvent Dataset

B2 Paint doors (kg) 5.94
Alkyd paint production, white,

water-based, product in 60% solution state,
RoW1

Paint windows WO (kg) 0.52
Alkyd paint production, white,

water-based, product in 60% solution state,
RoW1

Paint walls (kg) 218.25
Alkyd paint production, white,

water-based, product in 60% solution state,
RoW1

Transport for WO (PE/PU, tkm) 8.99 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Transport for AL-PV (PE/PU, tkm) 8.97 Transport, freight, lorry 7.5–16 metric ton,
EURO4

B4 Exterior doors (m2) 3.8 Door production, outer, wood-glass, RoW1

Interior doors (m2) 5.5 Door production, inner, wood, RoW1

Aluminum windows (m2) 0.8 Market for window frame, aluminum,
U = 1.6 W/m2K, GLO1

PVC windows (m2) 0.8 Market for window frame, poly vinyl
chloride, U = 1.6 W/m2K, GLO1

Wood windows (m2) 0.8 Market for window frame, wood,
U = 1.5 W/m2K, GLO1

Glazing 3 mm (kg) 2.4 Market for glazing, double, U < 1.1 W/m2K,
GLO1

1 RoW: Rest of the World; GLO: Global.

3.3.4. End of Life Stage (C1, C2, C4)

The CDW management scenarios in Mexico are limited by the scarcity or even lack of infrastructure.
There is only one CDW recycling plant in the whole country, in Mexico City (Recycled concretes);
nevertheless, this is a pioneering initiative not only in Mexico but also in the LAC region [73]. The
NOM-161-2011 [74] sets out the requirements for special waste management (where the CDW are
included) and is obligatory for large-scale generators of waste (>80 m3).

In this sense, at the end of life stage, the energy required for the operation of the demolition
equipment of the structure and walls (C1) of the SH (pneumatic hammer, cutting equipment,
and portable compressor) was considered. Subsequently, the effect of the operation of the transport
truck (C2) was obtained by the same process previously established in A4. The average distance
between the hypothetical center of each reference city to the dump was 30 km. Finally, the total amount
of CDW generated by SH was calculated to obtain the impact of its landfill disposal (C4) (processing in
a recycling plant being currently impossible). The materials used were considered inert, as being of
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petrous, metallic, and petroleum origin, so their processing did not pose a potential risk. The quantities
are shown in Table 10.

Table 10. Inventory of materials/processes of the end of life. Data from: [60].

Stage Process Quantity Ecoinvent Dataset

C1 Use time PE alternatives (h) 187.54 Machine operation, diesel, <18.64 kW,
steady-state, GLO1

Use time PU alternatives (h) 185.33 Machine operation, diesel, <18.64 kW,
steady-state, GLO1

C2 Lorry operation PE-AL (tkm) 3477.44 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Lorry operation PE-PV (tkm) 3479.56 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Lorry operation PE-WO (tkm) 3478.87 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Lorry operation PU-AL (tkm) 3241.22 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Lorry operation PU-PV (tkm) 3243.34 Transport, freight, lorry 7.5–16 metric ton,
EURO4

Lorry operation PU-WO (tkm) 3242.64 Transport, freight, lorry 7.5–16 metric ton,
EURO4

C4 Inert waste PE-AL (kg) 57,319.06 Treatment of inert waste, inert material
landfill, RoW1,2

Inert waste PE-PV (kg) 57,957.34 Treatment of inert waste, inert material
landfill, RoW1,2

Inert waste PE-WO (kg) 57,992.62 Treatment of inert waste, inert material
landfill, RoW1,2

Inert waste PU-AL (kg) 54,020.30 Treatment of inert waste, inert material
landfill, RoW1,2

Inert waste PU-PV (kg) 54,055.59 Treatment of inert waste, inert material
landfill, RoW1,2

Inert waste PU-WO (kg) 54,044.07 Treatment of inert waste, inert material
landfill, RoW1,2

1 RoW: Rest of the World; GLO: Global. 2 Module Treatment of inert waste, inert material landfill, RoW, contains
exchanges to process-specific burdens (energy, land use) and infrastructure.

3.4. Environmental Impact Assessment

More than 40% of world energy consumption and 30% of the GHGs can be attributed to the
construction industry [58]. Therefore, both effects measured in their respective impact categories have
been considered inherent to this sector and have been addressed in previous investigations [75–79].
In this sense, the categories of impact selected for analysis in this study are those referring to energy and
embodied emissions of SH, which are climate change and embodied energy. Additionally, to complete
the information, two more categories have been chosen, which like the previously mentioned have
been considered to have a global effect: Human toxicity and Abiotic Depletion Potential (ADP).
The environmental impact methods used were, therefore, IPCC 2013 for the GWP (climate change),
Cumulative Energy Demand (CED, for embodied energy), and CML 2001 for Human Toxicity Potential
(HTP) and ADP.

4. Results

The analyzed SH generates an environmental burden (including all the stages of A to C) of 17 t
CO2 eq, 252.5 Gigajoules (GJ) eq, 104.3 kg antimony eq, and 9.4 t Paradichlorobenzene (1,4-DCB) eq
(average of the six options). Of these, just the construction of the SH (finished product A1 to A5)
generates a load of 13 t CO2 eq, 165 GJ eq, 71 kg antimony eq, and 7 t 1,4-DCB eq (Table 11), i.e., more
than 70% of the average impacts of all the categories analyzed when the embodied stages of the life
cycle are considered.
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Table 11. Impacts generated by the SH in stages A, B, and C.

Impact
Category1

PE-AL PE-PV PE-WO PU-AL PU-PV PU-WO AVERAGE

A B C A B C A B C A B C A B C A B C A B C

GWP 13.3 2.5 1.7 13.0 2.2 1.7 12.9 2.1 1.7 13.3 2.5 1.6 13.0 2.2 1.6 12.9 2.1 1.6 13.1 2.3 1.7
EE 170 54 35 167 51 35 168 53 35 164 54 34 161 51 34 162 53 34 165 53 34.4

ADP 73.7 19.6 15.6 71.9 17.8 15.6 70.9 16.9 15.6 71.3 19.6 14.9 69.4 17.8 14.9 68.5 16.9 14.9 71.0 18.1 15.3
HTP 7.9 2.7 0.5 6.8 1.6 0.5 6.8 1.6 0.5 7.6 2.7 0.5 6.6 1.6 0.5 6.5 1.6 0.5 7.0 2.0 0.5

1 GWP: t CO2 eq; EE: GJ eq; ADP: kg antimony eq; HTP: t 1,4-DCB-Eq.

The product stage is established as that of greatest contribution (A1 to A3: 57% CED, 61% ADP,
71% HTP-GWP), followed by that of replacement (B4: 6% GWP, 8% ADP, 12% CED, 15% HTP)
and maintenance (B2: 6% HTP, 7% GWP, 9% ADP-CED); it is therefore established that the stages
with greater environmental effects are those involving finished products (A1 to A3, B2 and B4: 78%
CED-ADP; 85% GWP; 91% HTP), in this case, those used in constructing the building, the paint for its
maintenance, and the replaceable objects (windows and doors). Meanwhile, the stages referring to the
processes produce significantly less effect; from greater to lesser, they are those relating to transport
(A4 + C2: 3.3% HTP, 7.7% GWP, 9.3% CED, 10.1% ADP), to construction/demolition (A5-C1: 3.7% HTP,
6.1% GWP, 7.6% ADP, 9% CED), and lastly, to their final disposition (C4: 1.5% GWP, 1.6% HTP, 3.7%
CED and 3.9% ADP) (Figure 7).

Previous research has dealt with the embodied impacts of a building (or its elements), studying
different stages such as A1 to A4 [80], A1 to A5 [66,79,81], A and C [51] and A to C [48,49,82,83]; similar
to this study, these works found that the greatest environmental detriment occurs in stage A1 to A3,
with values ranging from 85% to 99% for those who evaluated up to A1 to A5 [51,66,79–81] and from
60% to 80% for those who evaluated the complete cycle (A to C) [48,49,82,83]. For the rest of the stages,
the results depended on the different criteria established in each study, so there are still discrepancies
in the results obtained. Nevertheless, the data obtained in this work is found within the previously
reported intervals; for example, the studies that evaluated B1-B5 reported values ranging from 11% to
25% [48,49], those that studied A4, from 1% to 9% [51,66,79–81], those that evaluated A5 from 1% to
8% [49,51,66,79–81], while those that studied the C stages showed intervals from 1% to 3% [48,51] up
to 23% [49], this stage showing the most variation.

Figure 7 shows how the greater variability occurs when a wood or PVC window is changed to
aluminum for the HTP, going from 11–12% to 19% of the total damage. This can be attributed to the high
amounts of contamination produced in the aluminum production process, which includes substances
such as CO2, Sulfur Dioxide (SO2), Polycyclic Aromatic Hydrocarbons (HAP), Perfluorocarbons (PFC),
Tetrafluoromethane (CF4) and Hexafluoroethane (C2F6) [84]. Similar to the study by Yasantha et al.
(2007), where it was found that although wooden windows have a better environmental (and economic)
performance, aluminum windows were preferred socially [85].

On the other hand, the damage caused by A1 to A3 is more evident for the GWP (70–72%), which
is because the most representative materials used in the SH (concrete, steel, ceramic pieces, mortar) are
linked with the emission of GHGs [13,66,67,86], due to the chemical reactions in their manufacturing
processes and the high content of carbonates in their basic components, such as limestone or clay [87,88].
The greatest variation found in the impact categories was in stage A1 to A3, with a difference of 14%
between the GWP (72%) and the CED (58%). This difference in the representation of the CED is spread
over the rest of the stages, above all in B4 and B2 (because the manufacture of paint and window
materials is more closely linked to energy consumption [86,89] than to GHG emissions) and in A5 and
C1 (for the energy used by the machinery).



Energies 2019, 12, 2837 14 of 24
Energies 2019, 12, x FOR PEER REVIEW 14 of 24 

 

 
Figure 7. Percentage of environmental damage generated by each stage analyzed in the entire life 
cycle for: (a) PE-AL, (b) PE-PV, (c) PE-WO, (d) PU-AL, (e) PU-PV and, (f) PU-WO. 

71%

57%
61%

73%

4%

5%

5%

2%
2%

4%
2%

2%

7%

9%
9%

7%

5%

11% 7%

11%
5%

5% 6%

2%
4%

5% 5%
2%

2% 4% 4%
2%

GWP CED ADP HTP

70%

57%
61%

68%

4%

5%
5%

1%

2%

4%
2% 2%

7%

9%
9%

5%

7%

12% 9%

19%

4%
5% 5%

1%
4%

5% 5%
1%

1%
4% 4%

1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GWP CED ADP HTP

a)
 P

E-
A

L

71%

57%
61%

72%

4%

5%
5%

2%
2%

4%
2%

2%

7%

9%
9%

7%

6%

11% 8%

12%
5%

5% 6%

2%4%
5% 5%

2%2% 4% 4%
2%

GWP CED ADP HTP

b)
 P

E-
PV

c)
 P

E-
W

O

72%

57%
61%

72%

4%

4%
5%

2%
2%

4%
2%

2%

7%

9%
9%

7%

5%

12% 7%

11%
5%

5% 6%

2%
4%

5% 5%
2%

1% 4% 4% 2%

GWP CED ADP HTP

71%

57%
61%

68%

4%

4%
5%

1%

2%

4%
2%

2%

7%

9%
9%

5%

7%

12% 10%

19%

4%
5% 6%

2%4%
5% 5%

1%1% 4% 4%
1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GWP CED ADP HTP

A1-3 A4 A5 B2 B4 C1 C2 C4

72%

57%
61%

72%

4%

5%
5%

2%
2%

4%
2%

2%

7%

9%
9%

7%

6%

11% 8%

12%
5%

5% 6%

2%
4%

5% 5%
2%

1%
4% 4%

2%

GWP CED ADP HTP

e)
 P

U
-P

V

f)
PU

-W
O

d)
 P

U
-A

L

Impact category

En
vi

ro
nm

en
ta

ld
am

ag
e 

Figure 7. Percentage of environmental damage generated by each stage analyzed in the entire life cycle
for: (a) PE-AL, (b) PE-PV, (c) PE-WO, (d) PU-AL, (e) PU-PV and, (f) PU-WO.

Analyzing each impact category separately (Figure 8), it was seen that the least favorable option
in all cases was that of the reference (PE-AL), which is more pronounced in the stages A1 to A3 and B4.
Previous studies have found that the production of aluminum (stages A1 to A3 or B4) requires high
energy consumption [89], up to six times that of steel per unit of weight [86], as well as the inherent
contaminants [84]. Therefore, the least favorable of the six combinations analyzed is that which
includes heavy material with a moderate load potential and light material with a high load potential.
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Figure 8. Environmental damage generated by each stage analyzed of the six alternatives of SH in the
four impact categories: (a) GWP, (b) CED, (c) ADP and, (d) HTP.

Furthermore, when the stages with higher variability are discarded (A1 to A3 and B4, Figure 8),
it can be seen that the options using PU are more favorable than those using PE, which can be attributed
to the fact that the pumice aggregates are lighter than the conventional ones [90]. This coincides
with previous research that recommends the use of volcanic materials—among them pumice—as
they may significantly reduce the environmental damage [91]. Therefore, the options with the best
environmental performance in all the impact categories were the PU-WO and the PU-PV.

Given the importance of the construction industry in the use of energy [47] and GHG emissions [92],
in Figure 9 these categories are dealt with separately, breaking the CED down into its proportional
Renewable (Re) and Non-Renewable parts (n-Re). The percentage of CED (n-Re) for all cases is
significantly higher than the CED (Re), being 84.8% for stage A, 67.6% for stage B and 98.8% for stage
C of the CED total. Of the three stages, B makes greater use of renewable sources due to the use of
wood in the doors and windows, followed by A, especially when the options PE-WO and PU-WO are
evaluated. Some authors mention the advantages of using wood due to the low energy requirements
of its manufacture [76]. Similarly, it can be seen that stage C is practically dependent on CED (n-Re),
due to the machinery (C1) and vehicles (C2) used.
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Figure 9. GWP, CED (Re), and CED (n-Re) caused at each stage of the SH: (a) A1 to A5, (b) B2, B4 and,
(c) C1, C2, C4.

The results found for the CO2 eq emissions and the consumption of incorporated energy are
figures that are found in the list of effects reported by other researchers (Table 12). The information has
been compared with that of residential, office, and commercial buildings, all of which have similar
characteristics in terms of the materials used in their construction (reinforced concrete framework
and traditional masonry). The majority evaluate the same components of the building (including the
structure and envelope) which enables comparison. In SH the interior partitions are also evaluated.

Table 12. kg CO2 eq and MJ eq generated by 1 m2 of building in stages A, B and C. Data from:
[48,49,78,93–95].

kg CO2 eq/m2 MJ eq/m2

Study Database Building Type Location A B C A B C

Current study ecoinvent 3.4 Detached
house Mexico 309 54 40 3911 1251 815

Iddon et al. [93] ICE 2.0 Detached
house UK 296 - - - - -

Islam et al. [48] AusLCI Attached house Australia 257 64 - 3743 1257 -
Othman et al. [49] Athena Office building U.S. 480 77 127 5597 1133 2030

Goggins et al. (floor slab) [95] Bibliography Office building Ireland 211 - - 1167 - -

Gustavsson et al. [94] ENSYST Residential
building Sweden - - - 3569 - 159

Sandanyake et al. [78] AGGA/Alcorn Commercial
building Australia 524 - - - - -

The SH analyzed emits 309 kg CO2 eq/m2 and needs 3911 MJ eq to perform stages A1 to A5; it also
emits 54 kg CO2 eq/m2 and needs 1251 MJ eq for stages B2 and B4, similar to what was reported by
Iddon et al. (2013) [93], Islam et al. (2015) [48] and Gustavsson et al. (2010) [94]. Additionally, when
the impacts of the SH are compared with multi-story commercial or office buildings, although the
results alternate within the same level of effect, the values tend to be higher in an interval of 30% to
40%. The stage showing most variation was C; as each study focused on specific end of life scenarios,
their comparison was not feasible.

For stages A and B, the level of comparison is especially interesting, as each study was carried out
in different geographical regions and with different databases. Therefore, it can be argued that the
LCA is an objective methodology which allows global results in the residential sector to be obtained
and it has been possible to standardize them, above all in the Product Stage (A1 to A3).

Considering the representativeness of the housing types in Mexico (11% economic, 47% popular,
30% traditional, 12% medium, residential, and residential plus [40], each of which was assigned 4%),
it was possible to obtain an approximation of the effects of their embodied stages. One square meter of
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construction (A1 to A5) produces 309 kg of CO2 eq and needs 3,911 MJ; as about 600,000 new housing
units are built annually in Mexico [41], the total annual effect of the residential sector in stages A1 to
A5 (until the finished house) is 11,275.8 Gg CO2 eq and 142.5 PJ eq of energy (Table 13).

Table 13. Gg CO2 eq and PJ eq generated annually by the construction of housing in Mexico.

Housing Area Gg CO2
eq/m2 PJ eq/m2 Annual Housing

Construction
Gg CO2
eq/m2 PJ eq/m2

Economic 30.00 9284.30 117,318.50 66,000.00 612.76 7.74
Popular 42.50 13,152.75 166,201.21 282,000.00 3709.08 46.87

Traditional 62.50 19,342.28 244,413.55 180,000.00 3481.61 43.99
Medium 97.50 30,173.96 381,285.13 24,000.00 724.18 9.15

Residential 145.00 44,874.09 567,039.43 24,000.00 1076.98 13.61
Residential + 225.00 69,632.22 879,888.77 24,000.00 1671.17 21.12

Total 600,000.00 11,275.78 142.48

Additionally, using the national inventory of CO2 eq emissions and compounds, these figures
represent 2.1% of the net emissions (taking absorption into account), and 1.7% if total emissions are
considered. Added to the 4% emissions from the housing sector due to consumption of natural gas,
liquid petroleum gas, kerosene, diesel, and firewood in the operating stage [13], this means that 6.1%
of the annual emissions may be attributed to the residential sector. Similarly, as regards the national
energy inventory [14], the figures represent 2,7% of the annual consumption. This, when added to the
14% operational energy consumption, gives an estimated total of 16.7% of energy attributed to the
residential sector (Table 14).

Table 14. GHGs and energy of the residential sector necessary for the construction of housing (A1 to
A5) and its operational energy (B6). Data from [13,14].

Impacts of Residential Sector in
Mexico (Stage) Quantity National Representativeness

Emissions Gg CO2 eq (A1 to A5) 11,275.8 2.1% 1 1.7% 2

Emissions Gg CO2 eq (B6) [13] 21,279.9 4.0% 1 3.1% 2

Net emissions Gg CO2 eq [13] 534,613.0
Total emissions Gg CO2 eq [13] 682,959.0

Energy consumption PJ eq (A1 to A5) 142.5 2.7%
Energy consumption PJ eq (B6) [14] 751.6 14.0%
Total energy consumption PJ eq [14] 5362.8

1 Considering net emissions. 2 Considering total emissions.

Although it is evident that performance in the housing sector in Mexico is steadily improving, it is
essential to deal with the accelerated changes that are being caused by environmental damage, not only
at a regional level but also at a global one. The residential sector has an enormous potential to reduce
these environmental burdens (including those of greatest concern today, such as climate change and
the depletion of resources and non-renewable energy), throughout the various sectors that are required
for its praxis. In this regard, it is necessary to opt for locally available materials, with high percentages
of reuse, with thermal properties that enable energy optimization and, of course, that these should
come where possible from renewable resources or from the discreet use of non-renewable resources.

On the other hand, while the importance of SH in the residential sector is indisputable, there
is also a need to apply sustainability criteria to medium and residential housing. Although their
representativeness is lower, in this work it was estimated that the resources invested in them (because
of their size) could generate loads greater than 30% in GWP and CED, and the application of
eco-technologies could be economically feasible (limitation present in the SH).

Moreover, while it is true that the LCA is a methodology that has been used in Mexico for
decades [26], extending its application to one of the country’s most demanding sectors would provide
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opportunities for reducing environmental burdens. This, through knowledge of the most commonly
used materials and the processes required throughout the life cycle of a dwelling. This knowledge
would enable the best environmental performance options to be chosen, and the opportunities for
improvement would be identified.

5. Conclusions

The present study has assessed the environmental impacts generated by an SH throughout its
embodied life cycle; a comparison of six alternatives was made by varying their elements (walls and
windows), and it was possible to apply the LCA methodology to Mexico’s residential sector with
promising results. In addition, a review of the country’s environmental situation focusing on the most
relevant problems facing the residential sector was made.

It was found that throughout the cycle the SH analyzed generates an environmental burden of
17 t CO2 eq, 252.5 GJ eq, 104.3 kg antimony eq, and 9.4 t 1.4-DCB eq; the requirements of stages A1 to
A5 stand out, exceeding 70% of the impact in all the categories analyzed. In general, the stages with
the greatest environmental effect are those containing a finished product (A1 to A3, B2, and B4: 78%
CED-ADP; 85% GWP; 91% HTP), while the stages referring to the processes have a considerably lower
impact. For A4 + C2 the figures are 3.3% HTP, 7.7% GWP, 9.3% CED, and 10.1% ADP. For A5 + C1 they
are 3.7% HTP, 6.1% GWP, 7.6% ADP, and 9% CED. Finally, C4 has 1.5% GWP, 1.6% HTP, 3.7% CED,
and 3.9% ADP.

The greatest variability in the results comes from changing the wood or PVC windows for
aluminum windows in the HTP category, passing from 11–12% to 19% of the total damage, which is
attributed to the aluminum production process.

The most unfavorable of the six cases analyzed was the reference sample (PE-AL), while the
options with the best environmental performance were PU-WO and PU-PV for all impact categories.
Environmental advantages can arise from using aggregates that could lighten the concrete for
configuring the walls, as long as their environmental burden is equal to or less than that of conventional
aggregates, and their basic attributes are not reduced.

The SH evaluated emits 309 kg CO2 eq/m2 in A1 to A5, 54 kg CO2 eq/m2 in B2 and B4, and 40 kg
CO2 eq/m2 in C1, C2, and C4. It requires 3,911 MJ eq in A1 to A5, 1,251 MJ eq in B2 and B4, and 815 MJ
eq in C1, C2, and C4. This data was collated with recent studies and, although they were carried out
in different regions and developed with different databases, the results show consistency. Therefore,
it was concluded that the methodology generates objective and global results in the residential sector
and that, with the continuous improvement in standardization, it is increasingly possible to apply
around the planet, especially in stages A1 to A3.

On the other hand, although ecoinvent regularly incorporates information from different regions
of the world, it is urgent to create local databases in Latin America or in the case of Mexico expand the
number of data for the existing one—mexicaniuh [96].

Considering the annual amount of the different types of dwellings built and their effect per m2 as
obtained in this study, an estimate of the annual impact of the residential sector on the finished housing
(A1 to A5) was obtained. This was 11,275.8 Gg CO2 eq, or 2.1% of net emissions. When added to the 4%
emitted in the operation of the dwelling (B6) and the compound emissions, according to the national
GHG inventory, this gives a total of 6.1% emissions attributed to the residential sector. Similarly,
according to the national energy inventory, the estimated energy required by the residential sector in
its finished housing phases (A1 to A5) is 142.5 PJ, or 2.7% of annual consumption. When added to the
14% operational energy consumption, this gives a total estimate of 16.7% of energy attributed to the
residential sector.

Finally, it will be interesting in future research to obtain the CO2 eq emissions of the residential
sector and the energy eq required to carry out phases B and C annually, as well as to know the
environmental impacts produced by public and commercial buildings (in addition to civil works), with
the aim of obtaining the total burden generated by the construction industry in Mexico.
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Abbreviations

1,4-DCB para-dichlorobenzene
A1 to A3 Product stage
A4 to A5 Construction process stage
ADP Abiotic depletion potential
AL Aluminum
B1 Use
B2 Maintenance
B3 Repair
B4 Replacement
B5 Refurbishment
C1 Deconstruction/demolition
C2 Transport
C2F6 Hexafluoroethane
C3 Waste processing
C4 Disposal
CDW Construction and demolition waste
CED Cumulative energy demand
CF4 Tetrafluoromethane
CH4 Methane
CO2 Carbon dioxide
CONAVI National Housing Commission
EPS Expanded polystyrene
EU European Union
Gg Millions of tons
GHGs Greenhouse gases
GJ Gigajoules
GLO Global
GWP Global warming potential
HAP Polycyclic Aromatic Hydrocarbons
HTP Human toxicity potential
IPCC Intergovernmental Panel on Climate Change
LAC Latin America and the Caribbean
LCA Life Cycle Assessment
MSW Municipal solid waste
N2O Nitrous oxide
n-Re Non-Renewable
PE Hollow block of 12 × 20 × 40 filled with expanded perlite
PFC Perfluorocarbons
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PJ Petajoules
PU Solid concrete brick lightened with pumice aggregates of 10 × 14 × 28
PV PVC
Re Renewable
RNA Northern America
RoW Rest of the World
SH Social housing
SO2 Sulfur dioxide
tkm ton-kilometer
U Thermal transmittance
U.S. United States
WO Wood
λ Coefficient of thermal conductivity
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