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Abstract: This study was conducted to develop an energy consumption model of a chiller in a heating,
ventilation, and air conditioning system using a machine learning algorithm based on artificial
neural networks. The proposed chiller energy consumption model was evaluated for accuracy in
terms of input layers that include the number of input variables, amount (proportion) of training
data, and number of neurons. A standardized reference building was also modeled to generate
operational data for the chiller system during extended cooling periods (warm weather months). The
prediction accuracy of the chiller’s energy consumption was improved by increasing the number of
input variables and adjusting the proportion of training data. By contrast, the effect of the number
of neurons on the prediction accuracy was insignificant. The developed chiller model was able to
predict energy consumption with 99.07% accuracy based on eight input variables, 60% training data,
and 12 neurons.
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1. Introduction

The energy consumption of a building system can be controlled by employing an energy-saving
design as well as by proper operation of the building. Therefore, such design, referred to as a building
energy management system (BEMS), has been adopted for building operations to ensure effective energy
consumption and management. The integrated measurement, control, management, and operation
in a BEMS provide efficient energy management and allow the desired indoor environment to be
maintained. However, currently a BEMS is limited to a simple on/off switch that allows comparisons
of the actual value with a set value determined by the operator. Rational energy management tools
should be able to perform sophisticated functions that help managers make good BEMS decisions.
Collection and analysis of available data are necessary in order to develop and provide such advanced
management tools.

Recently, machine learning algorithms have been actively applied to optimize new type of heating,
ventilation, and air conditioning (HVAC) systems [1–6]. For example, Jang et al. [7] proposed a solution
for predicting the optimal heating time in winter by using artificial neuron network (ANN) technology.
For this type of application, ANN models utilize input data such as the indoor/outdoor temperature,
indoor/outdoor temperature difference, indoor temperature change, and outdoor temperature change.
Jeong et al. [8] compared the accuracy of different building energy consumption predictions obtained
by using three machine learning algorithms: ANN, a support vector machine, and random forest (RF).
The performance was ranked in the order of RF, ANN, and support vector machine. For their study,
Jeong et al. [9] investigated the sensitivity and importance of these variables for predicting the energy
consumption in elementary schools and commercial buildings and then evaluated the performance of
the machine learning models according to building function. For the elementary school buildings,
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the average coefficient of variance of the root mean squared error (CvRMSE) determined by ANNs
was 5.4% and the average CvRMSE for commercial buildings based on the RF model was 10.9%.

Jeon et al. [10] conducted a study of energy load predictions for a building unit. Their study used
an ANN and a test reference year. For each training period, the average CvRMSE for the prediction of
the energy load was 25%. Park et al. [11] proposed an ANN model that can predict the cooling load
according to the setback temperature in order to minimize the cooling energy consumption. Their
results confirm a CvRMSE of 21.3%, which reflects a better performance than the conventional criterion
of 30.0%. Ahmed et al. [12] investigated the performance of power load predictions associated with
ANN and RF algorithms for a single building unit using meteorological data. Their ANN model
obtained an average CvRMSE of 4.9% through normalization, extraction, and elimination of input
variables to improve prediction performance. The RF model led to an average CvRMSE of 6.1%.

Seong et al. [13] developed and verified a building energy prediction model based on time series
auto-regressions artificial neural networks based on the input variables of dry bulb and outdoor air
temperature, hour of day, and type of day. As a result, CvRMSE was 40.9% for the numerical analysis
model and 28.3% for the ANN model, which improved the accuracy. Seong et al. [14] developed an
artificial neural network-based air flow prediction model to observe changes in accuracy with the
number of input values. As a result, it was found that the predicted performance improved significantly
as the number of inputs increased. Kim et al. [15] developed an artificial neural network-based energy
consumption prediction model for fans to evaluate the accuracy according to input conditions. Mean
bias error (MBE) showed a distribution of 1.7% to 2.95% of the learning period and 2.3% to 4.5% of the
utilization period, while CvRMSE showed high predictive accuracy as it was distributed of 2.9% to
4.4% of the learning period and 3.6% to 7.9% of the utilization period.

There are many attempts to reduce energy consumption for the chiller systems including by
using multiple linear regression analysis, interaction analysis of each components, and data-driven
analysis [16–18].

In sum, various studies of machine learning methods, including ANN models, have been
conducted in the field of building energy. The estimation of the energy consumption of a building,
cooling load, etc. has been studied with results of high accuracy. However, most of the previous
research has focused on the entire building system, and thus, management tools such as a BEMS
need to be able to predict also the energy usage of subsystems such as air conditioners, heat source
equipment, and transportation equip. To that end, the authors have developed management software
for a centralized HVAC system. As shown in Figure 1, the centralized HVAC management software
is composed of a real-time operation and performance monitoring function, energy performance
prediction and optimization application, a performance evaluation report, and all the functions that
utilize real-time data collected from a BEMS. Figure 1 shows the schematic diagram of a centralized
HVAC management software, energy performance prediction and optimization function (EPPOF).

The developed software, referred to as energy performance prediction and optimization function
(EPPOF), uses machine learning techniques to calculate control variables for predicting and optimizing
energy consumption in a centralized HVAC system. To predict the energy consumption of the system,
a prediction model based on ANNs was developed for the air conditioner, air handling unit, and heat
source equipment that constitute the main energy consumers in an air conditioning system.

In this study, the authors investigated the accuracy of this developed model that is based on
ANNs with respect to the input parameters, i.e., the number of input variables, proportion of training
data, and number of neurons. The generated chiller operational data were generated and used to
evaluate correlation between possible parameters in the chiller model. Section 2 presents the predictive
energy consumption model for HVAC system with ANN. In Section 3, the accuracy for the predicted
models with respect to input variations was evaluated and then Section 4 predicts the prediction of
energy consumption based on the optimized input variations. Section 5 shows the conclusion based
on the comparison between the simulated results and predicted results.
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Figure 1. Schematic diagram of centralized heating, ventilation, and air conditioning (HVAC)
management software, energy performance prediction and optimization function (EPPOF).

2. Predictive Model for Energy Consumption of a Chiller in an HVAC System

2.1. Modeling of the Reference Building Unit

A large amount of data is required for both training and testing with ANNs. For this study,
the authors modeled a large-scale office building, designated in the commercial prototype building
models in the U.S. Department of Energy (DOE) Building Energy Codes Program [19], and modified
the related input variables for comparable buildings in Korea. Specifically, the climate data for Seoul,
Korea were collected using the TRY (test, reference, year) format. This study generated the necessary
data in accordance with the requirements for the DOE reference building model that has a standard
pattern for energy consumption (annual energy consumption per area). Several parameters were
considered to generate the reference building model: The heat source equipment, HVAC equipment,
and energy performance variables, including core size, roof type, structure, construction year, heat
flow rate, window area ratio, etc. Energy simulation software (Energyplus) was used to generate the
related chiller operational data. The generated building was 12 storeys and a basement with floor
area of 46320 m2, and rectangular shape with aspect ratio of 1.5. Table 1 presents detailed boundary
condition associated with reference building.

Table 1. Simulation condition of reference building large scale office.

Component Features

Weather Data and Site Location TRY Seoul (latitude: 37.57◦N, longitude: 126.97◦E)

Building Type Large Scale Office

Total Building Area (m2) 46320

Hours Simulated (hour) 3761

Envelope Insulation (m2K/W) External Wall 0.35, Roof 0.213, External Window 1.5

Window-Wall Ratio (%) 40

Set Point (◦C) Cooling 26, Heating 20

Internal Gain Lighting 10.76 (W/m2), People 18.58 (m2/person),
Plug and Process 10.76 (W/m2)

HVAC Sizing Auto Calculated

HVAC Operation Schedule 7:00–18:00
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Table 2 presents the specification chiller system used in this study.

Table 2. Chiller specification.

Type Nominal
Capacity

Nominal
Efficiency

Initial Design
Size Reference
Chilled Water

Flow Rate

Design Size
Reference

Chilled Water
Flow Rate

Design Size
Reference

Condenser Water
Flow Rate

Design
Chilled
Water

Temperature

Electric:EIR 5114517 W 5.5 W/W 0.12 m3/s 0.18 m3/s 0.26 m3/s 6.7 ◦C

2.2. Determination of Input Values

Among the many variables in the dataset that were generated for the reference building model,
some were selected to be used as input values for the ANN model. The accuracy of the final results
could be affected if little or no correlation exists between the variables used as input values in the
ANN model and the energy consumption of the chiller. Therefore, the correlation between the energy
consumption of the chiller and the Spearman rank-order correlation coefficient for each variable was
analyzed. The Spearman rank-order correlation coefficient had a value between –1.0 and +1.0, similar
to other correlation coefficients.

Table 3 presents the Spearman rank-order correlation coefficient for each variable used for the
ANN analysis of the proposed chiller’s energy consumption. Nine variables were originally considered:
Chilled water flow rate, cooling water temperature, outside dry-bulb temperature, outside wet-bulb
temperature, dew-point temperature, outside relative humidity, hours, type of day, and supply chilled
water temperature. The correlation coefficients indicate that the outside dry-bulb temperature, outside
wet-bulb temperature, and outside relative humidity are the main parameters. The negative correlation
coefficient of supply chilled water temperature results in the increase of chiller energy consumption
as the water temperature decreased. Table 3 shows the correlation between variables and chiller
energy consumption.

Table 3. Correlation between variables and chiller energy consumption.

Variables
Chilled

Water Flow
Rate (kg/s)

Cooling
Water
Temp.
(◦C)

Outside
Dry-Bulb

Temp.
(◦C)

Outside
Wet-Bulb

Temp.
(◦C)

Dew-Point
Temp.
(◦C)

Outside
Relative
Humidity

(%)

Hour Type of
Day

Supply
Chilled
Water

Temp. (◦C)

Spearman
correlation
coefficient

0.99 0.90 0.89 0.88 0.83 0.16 0.06 0.04 −0.67

2.3. Development of a Predictive Model of Energy Consumption of the Chiller Using the ANN Model

An ANN model is a network created by connecting nodes. It processes learning based on the
weight of the nodes between the input and target values and outputs the result. An ANN model
consists of an input layer, hidden layer, and output layer. An input value for training is derived and
the input signal is transmitted to the next node in the input layer. The hidden layer is connected to
all the nodes in the input layer, receives the input signal, and performs the neural network operation
through the connection of the hidden layer nodes. Then, the output layer calculates the final result
through the operation value of the hidden layer. For this study, the input values for the input layer
were selected after making a list in the ANN to find the most accurate model to predict the energy
consumption of the chiller. Figure 2 presents a schematic diagram of the ANN model used in this study
as derived using MATLAB (version R2018a). A feed-forward automatic nonlinear NARX (nonlinear
autoregressive network with exogenous) method, which uses measured values as inputs to dynamic
neural networks, was employed to improve the predictive performance of the model. The NARX
method is preferred to predict a time series dataset [20,21]. Figure 2 shows the schematic diagram of
the predictive model of chiller energy consumption using the ANN model.
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Figure 2. Schematic diagram of the predictive model of chiller energy consumption using the artificial
neuron network (ANN) model.

Table 4 summarizes the input and output settings for the predictive model. The accuracy of the
predicted results for chiller energy consumption according to the input setting was analyzed and tested
to find the optimal conditions for the proposed ANN model. To do that, three input variables were
considered: The number of input data points, the number of neurons and their size, and the amount
(proportion) of the training data. By applying these input variables, the accuracy of the predicted
results could be compared. Eight input values were used instead of the original nine, because the
supply chilled water temperature had a negative correlation coefficient among the data generated.
The eight remaining input values were added in order of their correlation coefficient from highest to
lowest, and the accuracy of the results was compared according to the number of input values, which
correlated to eight ‘cases’ for this study.

Table 4. Input/output conditions for chiller energy prediction model.

Input Data

Chilled water flow rate (kg/s)
Cooling water temperature (◦C)

Outside dry-bulb temperature (◦C)
Outside wet-bulb temperature (◦C)

Dew-point temperature (◦C)
Outside relative humidity (%)

Hour (h)
Type of day (weekdays, weekend)

Number of Neurons 2–20
Proportion of Training Data 50%–90% (of 3761 data sets)

Predicted Target Y(t) Chiller energy consumption (kWh)

For the training data, the amount of the data shows that the accuracy of the predicted results
varied between 50% and 90% of the 3761 datasets that corresponded to the cooling period (warmest
seasons) from May to September. Those data were generated based on the reference building model
discussed in Section 2.1. The number of neurons is also one of the most important variables in a neural
network. In this study, the accuracy of the results and computation speed were compared based on a
range from two to twenty neurons. Table 4 shows the input/output conditions for the chiller energy
prediction model.

ASHRAE (American Society of Heating, Refrigeration, and Air Conditioning Engineers) Guideline
14, Measurement of Energy and Demand Savings [22], was used to confirm that the test results were
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reliable when the tolerance limits were within the range of specified tolerances, as shown in Table 5. The
accuracy and reproducibility of the predictive model were verified through the CvRMSE of the results
obtained from 10 runs per condition. The chiller energy usage was predicted using the conditions with
the highest accuracy. Table 5 shows the acceptable calibration tolerances.

Table 5. Acceptable calibration tolerances.

Calibration Type Index Acceptable Value *

Monthly MBE ±5%
CvRMSE 15%

Hourly MBE ±10%
CvRMSE 30%

Note: MBE is mean bias error; CvRMSE is the coefficient of variance of the root mean squared error. * Lower values
indicate better calibration.

MBE and CvRMSE are defined by Equations (1) and (2):

MBE =
{
[
∑n

i=1
(yi − ŷi)]/[(n− p) × y]

}
× 100, (1)

CvRMSE = 100 × [
∑

(yi − ŷi)
2/(n− p)]

1/2
/y, (2)

where n is the number of data points, p is the number of parameters, yi is the utility data used
for calibration, ŷi is the simulation predicted data, and y is the arithmetic mean of the sample of
n observations.

3. Results and Discussion

The accuracy of the predictions of the chiller’s energy consumption was based on the results for
the number of input variables, amount (proportion) of the data, and number of neurons during both
the training and testing periods. The following sections present and discuss these results.

3.1. Effect of the Number of Input Variables for the Training Period and Testing Period

The accuracy of the predicted results was investigated according to the number of input variables.
The input variables were added sequentially one by one starting from the chilled water flow rate with
the highest correlation coefficient, as summarized in Table 6. The amount of training data was fixed at
50% of the total dataset, and the number of neurons was fixed at 20. Table 6 shows the conditions for
the input variables.

Figure 3 shows the CvRMSE of the predicted energy consumption of the chiller for each case
(number of inputs) during the training period. For most of the cases, the predicted values did not
exceed the ASHRAE Guideline standard of 30% at a fixed training period of 50%. In Case 1 with one
input parameter (chilled water flow rate), the repeatability was good with a standard deviation of
0.3. The results were comparable with Case 4 and Case 5, even when the number of input variables
was only one. Case 2 and Case 3 were 57.7% and 31.3%, respectively, which exceed the limit of 30%.
If the number of input variables is few, this factor will affect the reproducibility of the predicted results.
When the number of input variables was 7 (min. 17.7%, max. 21.2%, and mean 19.8%) or 8 (min. 17.5%,
max. 21.1%, and mean 19.5%), the predicted results were more accurate than for the other conditions.
Figure 3 shows the accuracy according to the number of input variables for the training period.



Energies 2019, 12, 2860 7 of 13

Table 6. Conditions for the input variables.

Number of
Inputs

Possible Input Variables

Chilled
Water

Flow Rate
(kg/s)

Cooling
Water
Temp.
(◦C)

Outside
Dry-Bulb

Temp.
(◦C)

Outside
Wet-Bulb

Temp.
(◦C)

Dew-Point
Temp.
(◦C)

Outside
Relative

Humidity (%)
Hour Type

of Day

Spearman
correlation
coefficient

0.99 0.90 0.89 0.88 0.83 0.16 0.06 0.04

Case 1 #

Case 2 # #

Case 3 # # #

Case 4 # # # #

Case 5 # # # # #

Case 6 # # # # # #

Case 7 # # # # # # #

Case 8 # # # # # # # #
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Figure 4 shows the CvRMSE of the predicted energy consumption of the chiller during the testing
period for each case (number of inputs). For most cases, the CvRMSE is in the range of 30% to 60%. The
accuracy and reproducibility were shown to have decreased compared to the CvRMSE results during
the training period. However, the accuracy and reproducibility of the predicted results gradually
improved as the number of input variables increased. When the number of inputs was more than
7, the CvRMSE was an average of less than 30%, which is the ASHRAE standard. Case 8 shows
the best results with a min. of 19.4%, max. of 30.2%, mean of 22.8%, and standard deviation of 3.0.
The predicted values for energy usage during the training interval and testing interval according
to the variation in input variables confirmed that the prediction accuracy improved as the number
of variables increased. Even though variables such as outside relative humidity, hour, and type of
day were not closely correlated with chiller energy usage, but those variables also helped to improve
accuracy. Figure 4 shows the accuracy according to the number of input variables for the testing period.
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3.2. Effect of Amount of Data For Training Period and Testing Period

The accuracy of the predicted energy consumption was evaluated also by varying the amount of
training data from 50% to 90%, while the number of input variables and the number of neurons were
fixed at 8 and 20, respectively. Table 7 shows the conditions for training and testing data size.

Table 7. Conditions for training and testing data size.

Case 9 Case 10 Case 11 Case 12 Case 13

Training
period

Testing
period

Training
period

Testing
period

Training
period

Testing
period

Training
period

Testing
period

Training
period

Testing
period

Data
size
(%)

50 50 60 40 70 30 80 20 90 10

Figure 5 shows the accuracy for energy consumption with respect to the amount of the training
dataset. For the training period, the results confirmed that the accuracy improved as the proportion
of data used for prediction was increased. The reproducibility and accuracy of the predictions were
excellent, with a standard deviation less than 1 for all cases. Figure 5 shows the accuracy according to
changes in the proportion of training data for the training period.

Figure 6 presents the prediction accuracy for energy consumption with respect to the proportion
of the testing dataset in terms of the percentage used during the testing period. The best results were
obtained with the CvRMSE average of 18.2% and standard deviation of 1.1 when 60% and 40% of the
training data were used, respectively. The accuracy and reproducibility of the prediction decreased as
the amount of data used during the testing period was decreased. Since ANNs provide a technique for
performing predictions through data learning, the amount of datasets used for learning has a great
influence on the accuracy of the predictions. Therefore, the accuracy varied according to the proportion
of overall data used respectively in the training period and testing period. In this study, the predicted
results indicated that an optimal method to obtain accurate prediction results was to proportion the
data to be 60% for the training period and 40% for the testing period. Figure 6 shows the accuracy
according to changes in proportion of the testing data for the testing period.
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3.3. Effect of Number of Neurons for Training Period and Testing Period

In this study, the number of neurons was varied from 2 to 20, and the number of input variables
was fixed at 8 with 60% training data. Figure 7 shows that the average CvRMSE was less than 20%
accurate in every case except Case 14 (with two neurons, referred to as N2). These results indicate that
increasing the number of neurons to a certain level improves the accuracy of the predicted results;
however, no significant change was evident after more than 12 neurons were employed. Figure 7
shows the accuracy according to number of neurons used in the training period.

For the testing period, as shown in Figure 8, the mean value of the CvRMSE was also less than
20% accurate except for Case 14 (N2). No significant difference was evident in all cases, but when the
number of neurons was 12 (N12), the best predicted result was obtained with the mean of 17.4% and
standard deviation of 0.7. Based on these results, the use of 12 neurons showed the best accuracy for
both the training period and testing period in this study. No significant effect on accuracy with respect
to the number of neurons was evident because the optimized number of input variables and amount of
training data were used. Since an increase in the number of neurons could delay the execution time for
ANN algorithms, the number of neurons should be considered carefully after selecting the number of
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input variables and proportioning the amount of training data. Figure 8 shows the accuracy according
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4. Prediction of Chiller Energy Consumption

The accuracy of the prediction of the energy consumption of the chiller was evaluated with respect
to the various input conditions for the proposed ANN model. The condition that led to the highest
level of accuracy was composed of eight input variables, 60% training data, and 12 neurons. The
energy consumption of the chiller based on these derived optimal conditions was computed and
compared with the data generated through the reference building in accordance with the large-scale
office building used in DOE guidelines.

Figure 9 shows the energy consumption of the chiller system during warm/hot weather. The
prediction period was from May to September, which comprises the seasons when cooling is most
needed. The training period (60%) was selected as May to July and the testing period (40% of the
dataset) was from August to September. Figure 9a presents a comparison of the monthly energy usage
computed during the training period (from May to July) and the usage generated for the reference



Energies 2019, 12, 2860 11 of 13

building. The error was 0.3%–2.4%. The error for August was 3.0% (predicted value of 127.7 MW
versus the generated value of 131.6 MW). The error for September was 1.0% (predicted value of
88.3 MW versus the generated value of 87.5 MW). Figure 9b shows the total energy consumption
prediction for the chiller with the error of 0.9% (predicted value of 488.1 MW versus the generated
value of 492.7 MW) for the entire range of the cooling period (May to September). The predicted MW
values closely matched the actual MW values. Figure 9a shows the monthly energy consumption and
Figure 9b shows the total energy consumption.
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5. Conclusions

This study was conducted to find optimal conditions for a chiller in a centralized HVAC system
by using an ANN algorithm. The developed chiller energy consumption model was evaluated for
accuracy in terms of the following input parameters: Input conditions, number of input variables,
amount of training data, and number of neurons. The limited findings were as follows.

With regard to optimizing the input variables, the prediction accuracy was secured in this study
by increasing the number of input variables even if the correlation with the output value is low. With
eight input variables, the CvRMSE reflected the highest accuracy of 19.5% and standard deviation of
0.9 in the training period, and the CvRMSE of 22.8% and standard deviation of 3.0 in the testing period.

With regard to optimizing the amount of training data, the prediction accuracy was similarly
secured by increasing the percentage of the training data. However, increasing the training data means
decreasing the testing data. The study results confirmed that prediction accuracy decreased gradually
when the amount of data was decreased.

With regard to optimizing the number of neurons, when the number of input variables and
amount of training data were fixed as per the previously verified conditions, no significant change in
accuracy was found in terms of the number of neurons.

In order to obtain highly accurate predictions, various parameters such as conditions and number
of input variables, sufficient available data, and the appropriate proportion of training versus testing
data must be considered. In this study, by estimating the chiller energy usage based on eight input
variables, 60% training data and 40% testing data, and 12 neurons, the predicted monthly energy
consumption could be compared to the actual energy consumption generated by the DOE reference
building. The comparison results indicated high prediction accuracy for the proposed chiller model
with an error of only 0.9% of the total energy usage, which means that the proposed chiller was
99.1% accuracy.

For broadening the research, a deep learning model with more hidden layers and various cross
validation method will be needed for the future works.
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