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Abstract: In this work, we are concerned with the theoretical and numerical analysis of the pressure
build-up on the cap of an aquifer during CO; injection in saturated porous rock formations in all
flow regimes of the problem. The latter are specific regions of the parameter space of the plume flow,
defined by the CO,-to-brine relative mobility and the buoyancy parameter (injection pressure to
buoyancy pressure scale ratio). In addition to the known asymptotic self-similar solutions for low
buoyancy, we introduce two novel ones for the high buoyancy regimes via power series solutions of
asymptotic self-similarity equations. The explicit results for the peak value of pressure on the cap,
which arises in the vicinity of the well, are derived and discussed for all flow regimes. The analytical
results derived in this work are applied for the purpose of cap integrity considerations in six test cases
of CO,; geological storage from the PCOR partnership, most of which correspond to high buoyancy
conditions. The validity of the self-similar solutions (late time asymptotics) is verified with CFD
numerical simulations performed with the software Ansys-Fluent. The result is that the self-similar
solutions and the associated pressure estimations are valid in typical injection durations of interest,
even for early times.

Keywords: CO; sequestration; pressure build-up; multiphase flow; self-similar; flow regimes; porous
media; caprock stability; gravity segregation; saline aquifer; VOF method

1. Introduction

It has been observed that the global temperature has increased over the years, causing adverse
climatic effects. It is believed that one of the factors contributing to this global warming effect is
the increasing demand in the combustion of fossil fuels to produce energy. Therefore, according to
the International Energy Association, CO, capture and storage (CCS) must be part of the strategy
for mitigating climate changes by setting a target to control and decrease the global temperature at
least by 2 °C until the year 2040. This target is by no means trivial to obtain, as it will require by the
international community to invest 1.6 trillion dollars annually with most of this capital absorption to be
in renewables, nuclear, and CCS. Regarding CCS projects, it has been estimated that 75 billion/year will
be able to contribute to suppressing the global cumulative CO, by as much as 13% by 2050. It is worth
mentioning that related technologies for CCS are still under development and much focus is devoted
from the oil and gas industry, because it presents similarities with enhanced oil recovery (EOR) and
enhanced gas recovery (EGR). Currently, any CCS projects are economically viable primarily when
they are combined with other oil and gas technologies like enhanced oil recovery (EOR) [1-7].
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Suitable reservoirs for storing carbon dioxide are chosen as a function of depth because they
should have thermodynamic conditions (pressure and temperature) that will ensure that the CO,
injected will remain thermodynamically stable and in supercritical state in order to guarantee efficient
storage. Saline aquifers are considered promising for storing large quantities of carbon dioxide in the
subsurface. Thermodynamically speaking, supercritical CO, has a density much larger than gaseous
COy, and it is still small relative to the density of the resident brine, with a difference ranging from
250 kg/m3 to up to 950 kg/m?>. This difference is attributed to formation depth, geothermal gradient,
pressure gradient, surface temperature, and water salinity. Sequestration of CO, in saline aquifers
involves flow of both carbon dioxide and resident brine. The understanding of the multi-phase flows
in porous media is of paramount importance to address various questions related to the CO,-brine
multiphase flow properties such as the relative permeability and the viscosities of the brine and
CO,, which in turn influence the injectivity of fluids in reservoir conditions [8,9], containment [10,11],
pressure build-up [12,13], formation cap integrity [14-16], and long-term effectiveness [16,17].

The physical process of CO, sequestration into the subsurface is usually described by a nearly
immiscible multiphase flow of the supercritical CO, and the resident fluid, for example, see the
literature [18-23]. The difference in their densities leads to buoyancy effects mobilizing the carbon
dioxide to reach the cap of the formation relatively fast, thus creating vertical gravity segregation
between the CO, (layering on the top) and the brine (recedes at the bottom) in the formation.
Furthermore, according to the properties of these fluids, CO, can migrate away from the injection site
depending on its buoyancy and mobility relative to the brine. Usually, the modeling of this two-phase
flow in porous media involves complete gravity segregation, that is, a sharp interface separates the two
fluids. According to the Dupuit approximation, when the time scale required for buoyant segregation
is small compared with the time scale required for horizontal propagation of this interface, then it can
be assumed that the CO, and the brine have reached pressure equilibrium in the vertical direction,
so that the two fluids move only horizontally. A further assumption of negligible capillary pressure
and negligible miscibility between the CO; and the brine leads to the well-known non-linear diffusion
equation that describes the dynamics of the sharp interface evolution [8,18-21].

Recently, researchers developed a flow regime analysis identifying the regime of validity of
asymptotic solutions in the parameter space (A, I') of this problem; A is the CO;-to-brine relative
mobility, and the buoyancy parameter I' can be interpreted as the ratio of buoyancy to injection pressure
scales, encoding the strength of buoyancy. Regimes I to III correspond to injection-driven flows with
the injected fluid being highly viscous, equally viscous, and less viscous, respectively, than the resident
fluid. For these regimes, simple analytical solutions exist. Regime IV is the buoyancy driven flow, for
which we offer a novel analytical solution in terms power series. Finally, Regime V is the transition
where the forces generated by fluid injection become comparable to the forces generated by buoyancy.
This regime requires the numerical solution of the exact self-similar equation [9,21].

As a natural consequence of multiphase fluid flow in the aforementioned regimes from the work
of [9,21], a pressure build-up will be created, and it has to be ensured that it will remain below the
strength of the cap rock so as to ensure sure its safe fate over large periods of time. The caprock is an
integral part of any sequestration project. The caprock, which is associated with the reservoir rock
(CO, storage target formation), has to be deep enough, it must be away from faults, and its mass must
be dense and intact. The main petrophysical parameters of the caprock include uniaxial strength,
young modulus, porosity, and permeability. A caprock should possess low permeability to keep the
CO; from seeping through it over a long period. The cap rock must also have high strength in both
compression and tension, so as to be able to undertake the stress change during and after injection [15].
Even so, the above-stated properties of a good candidate caprock do not guarantee the avoidance of the
following leakage-related risks involved in a CO, sequestration project: (a) reactivation of faults, (b)
induced shear failure of the caprock, (c) hydraulic fracturing (prior and during injection), (d) leakage
through the injection well, and (e) capillary membrane seal pressure exceedance. Thus, these have to
be studied in each project.
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The caprock properties and CO; interaction should be thoroughly studied with empirical,
numerical, and analytical models for each project during planning and deployment of the CO; injection
process in order to reach closer to real case scenarios. Existing simplified analytical solutions for
determining the maximum sustainable pressure often predict incorrect values, suggesting that the fully
coupled problem (fluid flow mechanical deformation) must be considered. Nonetheless, the majority
of CO; injection simulations are only concerned with the multiphase flow problem without mechanical
coupling [8,22-24]. These studies yield accurate results when reproducing small pilot CO; injection
projects. However, one may argue that the associated volumes of CO, injected are small; therefore,
caprock stability is not expected to yield visible results or be of concern. On the other hand, when
considering the fully coupled problem, the computational burden is much higher than the hydraulic
problem; therefore, significant loss of accuracy is expected while solving the fully coupled problem,
especially when the deflection of the caprock is also important in the solution [25-29]. One possible
reason for this high computational cost is that the mechanisms involved in the multiphase flow in
porous medium coupled with the caprock are not yet fully understood. Clearly, there is still much
work that needs to be done in terms of mathematical and numerical modeling in order to understand
the involved mechanisms, and then in turn start improving both the accuracy and predictions to come
closer to real case scenarios. In terms of physics, in addition to the propagation of the CO; plume, it is
important to understand the evolution of pressure, which may also include compressibility effects,
because supercritical CO, is highly compressible relative to the resident brine fluid. Analytical or
semi-analytical works in this direction include those of [12,23,30].

In this work, we derive the cap pressure formulas in the flow regimes of the works of [9,21] and
in particular at the location next to the well, that is, the peak of the cap pressure. Along the way, we
provide an analytical solution for Regime IV in terms of power series, as well as the analytical solution
of a region in the overlap of Regimes IV and V (which we call Regime IV+), together with the respective
cap pressure expressions. Regime V, which by definition requires the solution of the self-similarity
equation of the problem, is treated building on the work of our previous contribution [8], where we
investigated in detail the self-similar plume interface evolution. In that work, a detailed comparative
analysis was performed between the self-similar sharp-interface solution and the numerical simulation
of a two-phase flow solver [31]. The non-linear self-similarity equation, first derived and discussed in
the work of [32], is indeed susceptible only to numerical solution, but amounts to a far simpler and
computationally economic than the one dealt with by the two-phase solver. Given that the self-similarity
solutions are late time solutions, we set the derived cap pressure profiles against the results of a
two-phase flow solver (which utilizes the volume of fluid (VOF) method suit of methods in CFD
numerical calculations [31]). It is shown that the self-similar solutions are essentially correct as early as
one buoyancy time-scale [8]. The whole machinery is then applied to cap integrity considerations,
using the data of the works of [33-35] regarding two large geo-sequestration units in saline aquifers, the
Lower Cretaceous sandstone formation in Newcastle and a limestone formation in the Madison group.

This work is organised as follows. In Section 2, we present the background theory of the self-similar
plume evolution, the flow regime asymptotic solutions, and the associated pressure build-up analysis.
In Section 3, we describe the numerical models that were created and solved with the CFD numerical
solver [31]. In Section 4, we (i) present comparisons between the CFD numerical simulations and the
solutions of the self-similar equation for the plume interface and pressure profiles across the aquifer, and
(if) apply the derived injection pressure results of Section 2 to caprock integrity for the two formations
mentioned above. In Section 5, we present a summary of this work and certain conclusive remarks.

2. Theoretical Analysis

We model the spreading of the (supercritical) CO, plume into a porous formation, initially
saturated with brine, as an immiscible displacement problem obeying axisymmetry. The formation
is assumed homogeneous and confined above and below by impermeable geological settings. It is
also assumed that a sharp interface develops between the invading fluid (CO,) and the resident brine,
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which is immiscible, assuming vertical equilibrium and neglecting the capillary pressure. The fluids
are taken to be Newtonian, incompressible, and chemically inert, as simplifying assumptions for the
theoretical analysis.

The validity of the gravity segregation (sharp interface) and vertical equilibrium was discussed in
the work of [36], based on that of [37]. Vertical equilibrium is maintained because of the large aspect
ratio of the plume, that is, its radial extent is much larger than its thickness, at the mature stage of
the plume evolution. In the case under consideration, the aspect ratio is roughly 100:1, leading to
a negligible error of the order (1/100)?, according to the estimate of [36]. The assumption that the
capillarity effects are negligible implies that the fluids are clearly segregated according to density. This
assumption is less well founded, as capillary forces lead to a non-negligible transition saturation zone
that may modify the sharp interface or invalidate this simplifying assumption [38—41]. Nonetheless,
capillary effects are in general less important than the effects of gravity in this problem (see, for example,
the work of [41]) and we shall neglect the capillary pressure effects.

The injected carbon dioxide propagates radially, eventually forming a continuous plume with
a well-defined interface with the resident brine. The lower density and lower viscosity (i.e., higher
mobility) of the CO, relatively to the brine allow the injected carbon dioxide to move towards the top
of the porous formation (Figure 1).

P—>P

Impermeable Cap: wall boundary

Saline Aquifer
r
\d Siﬁ I—) r Impermeable Bedrock: wall boundary
z

Figure 1. Schematic representation of the CO, sequestration problem.
2.1. The Self-Similar Dynamics of the Plume Evolution

The equations governing the evolution of the CO,-brine interface have been developed in the
works of [32] (see also the works of [36,42]). Let k be the intrinsic permeability of the porous medium
and ¢ is the porosity of the formation. The mass density of the CO, will be denoted by p. = p and that
of the brine by py, = p + Ap. The dynamic viscosity of CO, and brine will be denoted by . and iy,
respectively. The relative permeabilities associated with the two fluids are taken to be 1 for simplicity.
We should note that in real applications, the relative permeabilities differ from the value assumed
for this analysis (the maximum value of brine is 1, but for the CO,, it is rather near 0.6, as saturation
cannot reach 100%). Let hi(r, t) be the thickness of the CO, plume at time  and distance r from the well.
The time-dependence of all quantities will be left understood from here on. Q is the CO; injection flow
rate. The formation is bounded at the top and bottom by two impermeable layers at z = 0 (cap) and
z = H (bed), as shown in Figure 1. Let p(r, z) be the pressure at distance r from the wellbore centre and z
the depth from the cap. The assumption of vertical equilibrium explicitly reads

) 7
pgz 2) = pg, z <h(r), (1a)
PUD) (o4 dp)g, 2> h(r), (1b)

with the solution
p(r,2) = peap(r) = pg z, z < h(r), (2a)
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p(r,2) = Pred(r) = (p + Ap)g(z = H), z > h(r). (2b)

The two branches are connected by continuity of pressure at the interface. We have
introduced the following symbols the pressure function at the bed and cap: ppeq(r) = p(r,H)
and peap (r) = p(r,0), respectively.

Using the continuity of pressure at the interface to match the relations (2a) and (2b), we obtain

p(r,2) = peap(r) + pg 2, z <h(r), (3a)
p(r,2) = peap(r) + (p + Bp)gz = Dpgh(r), z > h(r), (3b)
where the matching also produces the relation
Poed(r) = peap(r) + pgH + Apg(H —h(r)). @)
From these relations, we obtain

ap(r,z) _ 9Pcap(”)

P 5 2% h(r), (5a)
dp(r,z)  Ipcap(7) oh(r)
= o Apg 5 2 h(r). (5b)

Vertically averaging each of the relations 5a, 5b in the respective region, we also obtain

dp(r,z) Ipcap(r)
a or

z < h(r), (6a)

(9}7(1’,2) _ 8Pcap(”) —Ap g&h(?’)

ar ar ar
where the barred pressures are the vertically averaged values of the pressure in the indicated region. It
is convenient here to introduce the mobilities of the CO; and water, A, and Ay, respectively, and the
mobility ratio A (relative mobility of CO5):

, z>h(r), (6b)

A=l _Hu

N E He . (7)

As discussed in the works of [8,32], the mobility ratio A is one of the coordinates of the parameter
space in this problem. The second is the gravity number I' introduced below. The pressure gradients
are related to the volumetric rates of each fluid, Q. and Qy, respectively, after integrating vertically the
generalized Darcy law for the two-phase flow, as is usual when vertical hydrostatic equilibrium is
assumed [32,43]. We obtain

ap(r,
0. = —2mrhka P02 (8a)
or
ap(r,
Qu = —2nr(H - h)kAw%rz). (8b)

Conservation of mass requires that Q. + Q = Q (the well injection volumetric rate). Thus, we have

Q= -2mk{hAC[apC;1;(r)] +(H- h))\w[ap%im -Apg 8};—(:)]}- ©)
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This equation relates the pressure (at the top of the aquifer) to the plume thickness h. The
continuity equation, for example, for the brine, reads

2nr¢)@ + &% =0. (10)

Then, Equations (6b), (8b), and (9) allow us to re-write Equation (10) in the form

A _19[Mpgkho AR(H=N) oh = Q H-h
ot ror| ¢ Ah+H-h Jr 2mpAh+H-h|

(11)

This equation has been studied in the works of [8,32,36]. One may define the buoyancy time scale

as follows [8]:
H Huy

ubuoyancy B Apg k’

Thuoyancy = (12)
where upyoyancy is the speed scale for the injected CO, volume to traverse vertically the formation
due to buoyancy and Tpyoyancy 18 the related time scale (buoyancy time scale). At times, larger than
the buoyancy time scale one may look for self-similar asymptotic solutions. Thus, we define the
dimensionless quantities y, x by

12 Q h
M = — 1
PR YT H (13)
and seek a solution of Equation (11) of the form i = Hx(x), where x is the normalized plume thickness
and y is the square of the self-similarity distance ’ = +/x. We thus obtain the following self-similar
equation:
d« d Ax (1-x) dx 1-x

L ) i Sl VL S S S 14
N T AT Axrl—xNdy T Axr1-xf (14)

where T is the buoyancy parameter [32]:

r 2nH2Apg kAw

0 (15)

2.2. Pressure Analysis in the Flow Regimes of Plume Evolution

A detailed comparison between the solutions of exact self-similar equation, Equation (14), and
numerical simulations, was performed in the work of [8] at the level of CO, plume-brine interface and
its evolution. Here, we are interested in extending the comparison of pressure profiles, also studying
the early time behaviour of the self-similar solutions, and eventually using the resulting equations for
cap integrity considerations. Hence, we explicitly derive equations for the pressure profiles along the
aquifer, specializing these equations for the various flow regimes of the problem, as classified below.

Using the dimensionless distance and plume thickness defined through the relations in Equation
(13), Equations (5) and (9) give

. Q[Jw dar’
[Ax+ (1= x)|dpeap = ﬁ{—7 +T(1- x)dx}, (16)
which integrates to
~ Quo [1 (e dx r Aln(1+ (A-1)x)
Peap(r) = Peap(reap) = %{E[X AT -] a=1 = F -1 b a7

We have introduced the locations where the plume-brine interface meets the bed and the cap of
the aquifer, rcap = r(h = 0) and rpeq = r(h = H), which, in dimensionless form, read r¢,, = 1’ (x = 0)
and r; , = r'(x = 1), respectively. These correspond to the leading and trailing edges of the plume,
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respectively. Also, in accordance with our definition, in terms of the self-similarity coordinate, we have
x = (¥)*and Xcap = (réap)z. Given a solution x(x) or x(x), the cap pressure profile can be calculated.

Most of our considerations will be based on Equation (17). One should bear in mind that 7 < 7cap
and hence Equation (17) express the cap pressure at location r relative to the cap pressure at the tip of
the plume. The first term in the brackets of Equation (17) corresponds to pressure build-up at the cap
due to injection; the second term corresponds to pressure build-up due to buoyancy. At the same time,
buoyancy decreases the thickness x of the CO, plume. Hence, buoyancy also enhances the pressure
build-up due to injection, at least for CO, relative mobility A greater than 1.

The cap pressure at the end of the interface pcap(rcap) is fixed by the boundary conditions for
the pressure at large distances. In the numerical simulations, this amounts to pure hydrostatic brine
pressure at some large distance R. In general, there will be three regions, as seen in Figure 2: the inner
(pure CO,) region; the two-phase, that is interface region; and the outer (pure brine) region. Applying
Darcy’s law in the outer region, we have

, Qu
Pcap(’”cap) = peap(R) + zﬂkla_}l g

(18a)
cap

where the boundary condition implies that we should set pcap(R) = 0. Then, in the interface region,
Equation (17) holds. In the inner region, Darcy’s law gives

Q gt
Peap (1) = Peap (Fhea) + 5= log 22, (18b)

where peap(rped) is provided by Equation (17). Thus, one obtains the cap pressure profile throughout
the formation. Figure 2 shows the different regions of the pressure and their matching to obtain the
total pressure profile.

)t =2 it T, M0G0 |

2mkH 2+A-Dx(p)] A-1 A-1

i k i

Saline Aquifer

- OH: |0 T ou,
Po(7) = Peg(fiea) + = 108755 Peg(Ti) = P (R)+ -~ log X

cup
Figure 2. Matching pressure regions for complete CO, sequestration pressure profile.
For cap integrity considerations, we are interested in the cap pressure at the well relative to the

cap pressure at the tip of the plume: P = pcap(rw)—Pcap(*cap). We shall label P as the injection pressure.
There are two cases. First, the trailing edge of the plume lies away from the well. Then, P can be

written as ,
P 1 Thed {1chap dyx r AlnA }
—=—1lo +43 + -1+ . 19
By~ A8 T\2). X F -] T A-1 ! (19)
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In the above, we introduced the pressure scale Py, through which we will express the pressure in
dimensionless form:

Q[Jw
Py = . 2
O 2nkH 20)
The pressure build-up given in Equation (19) consists of three components:
PO% log rl;%d CO; Darcy flux pressure build — up
Py} X);Czp WM injection pressure —buildup - (21)
Py /\El -1+ A}&T“f} buoyancy pressure build — up

Second, there is no trailing edge of the plume; the plume does not cover the entire length of the
well. This happens for high buoyancy solutions where the idealized modeling of the interface predicts
that there is no pure CO, region near the wellbore up to a certain height [8,9,21]. Then, P reads

P 1 dy T ) Aln[1+4 (A = 1)x(xw)]

'Xcap
Roal, T T oo

Whether Equation (19) or Equation (22) applies depends on the mobility and buoyancy parameters,
that is, the regime of the parameter space of the flow. The flow regimes of the problem with regard
to the asymptotic solubility of the self-similarity Equation (14) have been discussed in the works
of [9,21,43], shown on the parameter space in Figure 3. Below, we summarize these findings, in our
notation, also calculating the injection pressure in each case. In the previous formulas, we introduced
the self-similarity coordinate x, and radial distance ry, of the well:

nioH
/)2: (P 7’2

Xw = (15, or v (23)

1000 — i — r
Regime IV I>41 .~
100 - g P 1
> —"“"‘ .
10 '~~..I; LA <" RegimeV _-~
F 1 T “\\‘\ ","’—’ 1
01 | Regime I‘\. ’,"/ ' 1
r<(1-1)/A 1 Regime III
0.01 - i r<0.1(-1)
II
0.001 ; ;
0.1 1 10 100

A

Figure 3. Flow regimes for the axisymmetric fluid injection into a confined porous medium bounded
by impermeable rock layers according to the works of [9,21,43]. An overlap between Regime IV and V,
which must be of large buoyancy and obey I' << A2, we shall call Regime TV+.

One should bear in mind that these quantities depend explicitly on time and are directly known
by the given parameters of the problem.
Regime I: I'<<1 and A< 1 (low buoyancy, low CO, mobility).

1-A
x= oo (1-x) +

T (24a)

1
2
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The injection pressure P from Equation (19) for this regime explicitly reads

1 1-A-AT

P, 1 = A““(A(l—(l—rm) r AlnA

LIS P . -1+ 2020 (24b)
Py A "% (1-A)2=AT(A+2) A-1 A-1

Regime II: I'<<1 and A= 1 (low buoyancy, unit CO, mobility).

1 1
x=——=10-x)+ = (25a)
5 \/f( )+ 5
From Equation (19), the injection pressure here reads
Py 1++VT T
— =1 - 25b
Py T3 (25b)
Regime III: I'<<1 and A>1 (low buoyancy, high CO, mobility).
V(A/x) -1
S AL A— 2
X o1 (26a)
From Equation (19), the injection pressure for this regime reads
P[H 1 1 1 T AlnA
— =1 1-— -1 . 26b
Py A VA R L (26b)

Regime IV: T >> 1 (high buoyancy). This region of the parameter space is specified as shown in
Figure 3. Roughly speaking, one may say that it corresponds to cases where I'A and I'/A are bounded
from below by order 1 constants, for large and small A, respectively.

For this regime, no analytical solution is known. We present here a solution in terms of power
series. The self-similarity Equation (14) in the large buoyancy limit takes the form [21,43]:

A(yff') +yf =0, (27)

where
X ra

- Xcap S 2x. cap
with the boundary conditions f(17) =0, f’(17) = —1/4. Also, one may show that

r'A 1
Xcap = \/; I:= fo f(y)dy. (29)

It is straightforward to show that the solution of Equation (27) can be expressed as a power series
with respect to the tip of the plume,

y X, (28)

f=Y -y, (30)
i=1
where the coefficients c; are generated by the recursive relation,
i2 i-1

4
i1 = i i1—i(jci—(j+1)civ1),i=1,2,3,...,¢c1 =1/4. 31
Cit1 (i+1)261+i+1]2{61+1 j(ej=(G+1ejy), i a=1/ (31)

Equation (30) implies that all ¢; are positive. For large values of the index i, one may verify
numerically that (roughly) ¢; ~ O(1/i'*), which suggests that the series is convergent for 0 <y < 1.
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The convergence of the series in the neighborhood of y = 0, that is near the well, is painfully slow,
nonetheless the relation in Equation 31 allows the quick generation of thousands of terms. For example,
one easily finds that I = 0.179. The asymptotic behavior near i = 0 can be derived as follows. Integrating
Equation (27) from y to 1, we obtain

—4yff —yf -1+ fojf(y’)dy’ =0, (32)

utilizing also the boundary conditions at y = 1. Upon further integrating, it is easy to see that

I
f ~ —E 11'1 y, (33)

for y~0. The functional form of this solution has been anticipated by the authors of [36]. The asymptotic
behavior given by Equation (33) can be used as a test of accuracy of the series given by Equations (30)
and (31) in the neighborhood of y = 0.

Given that in the generic case of Regime IV, there is not trailing edge of the plume, the injection
pressure P will be calculated by Equation (23). By Equations (28) and (29),

2x. cap X
X = , 34
0 =SS (4)
where f is given by Equations (30) and (31). The thickness of the plume at the well is
2x cap ., Xw
X = . 35
() = S22 @)

A closed form expression of the injection pressure in this regime is not possible, but we may easily
derive an asymptotic expression for very large buoyancy. Indeed, Equations (29), (33), and (34) tell us
that for large AI', the CO, plume will form a very long but very thin layer, that is, x and x, are small.
Then, it is straightforward to show that Equation (22) simplifies to

Pry 1. Xcap 1. Xcap 2Xcap Xw
— ~-In +I'x =-In +
Py 2 Xw (o) 2 Xw A (Xcap)

, (36)

where the tilde indicates the fact that this result is asymptotic for large AI'. We also used Equation (35).

In the limit of large AT', we may approximate f by its asymptotic given by Equation (33), because
the argument of the function f in Equation (36) is necessarily very small. Using Equations (29) and (33),
we finally find

Pry 11 AT r AT

n—s- + ,[—=Ih—. 37
Py 4 202 AL 21)2 57)

Regime V: Intermediate buoyancy. It is shown in Figure 3. It corresponds to the cases where a
numerical solution of the self-similarity Equation (14) is necessary. Injection pressure may be calculated
by Equations (19) or (22), depending on the conditions of the problem.

Regime IV+: The solution presented for Regime IV can be modified to hold well on a region on
the overlap of Regime IV and Regime V, as given in Figure 3. Put differently, one may find a solution
for regime V near its boundary with Regime IV. This solution will be discussed in detail in a separate
publication, but the argument leading to it is as follows.

The derivation of Equation (27) follows from the approximations that x << 1 and (A-1)x <<'1
for the most part of the plume [21,43]. The approximation x << 1 follows for the fact that for large
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buoyancy (I >> 1), the plume forms a thin layer near the cap. Now, the analysis of the works of [21,43]
encoded in Equation (28) implies that x scales as

x ~ (TA)/2, (38)

Then, the approximation (A-1)x << 1 implies (roughly) that I' >> A, which is encoded in the
boundary curve I' = 4\ between Regimes IV and V, according to the discussion of the authors of [21,43].
Consider now a large buoyancy approximation (I' >> 1), which means that x << 1 will be assumed, but
consider also a large mobility approximation, such that (A—1)x >> 1. Then, the self-similarity Equation
(14) takes the form

dx d[zm dx 1]' (39)

Yoy T ax| A=Y ax T ax
This equation is similar to the one leading to Equation (27), which defines the solution of Regime
IV [21,43] with the following modifications:

- —— (40)

and the additional term (Ax)! in the square brackets. One may then seek for solutions that are
defined by equations similar to Equations (28) and (29) under the substitution in Equation (40). The
dimensionless plume thickness x for such a solution scales as follows:

A=1
—_— 41
- (@)

and hence, the additional term (Ax)~! scales as

1 / r T
Aax - \NAaA-1) \/; “2)

given that we have assumed large mobility. This term can be dropped in Equation (39) if
I < A2 (43)

Then, the remaining equation can be given exactly in the form of Equation (27), given Equations
(28) and (29), under the substitution in Equation (40). In all situations, the solution of Regime IV+
is exactly given by the asymptotic solution of Regime IV under the substitution in Equation (40). It
is expected to hold well for large buoyancy and mobility as long as Equation (43) holds. Boundary
curves for this regime, analogous to the ones shown in Figure 3, involve systematic comparison with
the numerical solutions of exact self-similar Equation (14), and will be given in a separate publication.

3. Numerical Modeling

As explained in Section 2, owing to the inherent nonlinearities in the multiphase flow regimes,
the immiscible displacement of CO, displacing brine possesses special challenges in the modeling
because of the interaction of the fluids with the porous formation. Closed form analytical solutions are
rare and apply under specialized or ideal conditions, which is thus computational modeling proof to
provide valuable tools for investigating the dynamics of the CO, front invading the porous medium
and the associated pressure build-up. The numerical computations were carried out in Ansys-Fluent, a
nonlinear CFD code [31].

The volume of fluid (VOF) method is a widely used scheme for moving boundary problems [8,31].
The moving interface with this method can be represented explicitly on a fixed cell grid and the tracking
is achieved by changes in the volume of each fluid in the grid cells. Those grid cells that the volume
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fraction of either fluid differs from (0) or (1) correspond to the interface. This way, the interface and its
evolution is a natural outcome of the solution algorithm. Furthermore, another important property of
the VOF method is that it conserves exactly the volume of the fluids in each cell. Another important
feature of the VOF method is that if a disruption in the interface is observed, it presents the capability
to reconnect as part of the computational solution. This formation of the moving boundary is very
elegant in CFD modeling of the CO, sequestration problem [8,31].

The governing equations of multiphase flow are solved with finite volumes. The volume fraction
for each fluid phase satisfies mass and momentum conservation. The latter includes a gravity term
inducing segregation of the phases and a sink term that incorporates Darcy’s law in order to model the
porous medium [8,31].

The PISO (pressure implicit with splitting of operators) method was used for the approximation
of the pressure in the multiphase flow. This method is especially useful in nonlinear and unsteady flow
problems. Some positive aspects of the PISO are that no under-relaxation is applied and the momentum
corrector step is performed more than once. The algorithm can be described with the following steps:
(1) set the boundary conditions, (2) solve the momentum equations for the intermediate velocity field,
(3) calculate the mass fluxes at the cells, (4) compute the pressure, (5) correct the mass fluxes, (6)
correct the velocities with the new pressure values, (7) update the boundary conditions (if necessary),
(8) iterate from (3) for a prescribed number of times, (9) increase time step and continue from step (1).
Steps (4) and (5) are repeated for a prescribed number of times to correct for non-orthogonality of the
control volumes in the numerical solution [8,31].

The considered domain was discretized to 5000 m x 30 m so as to ensure vertical equilibrium,
for the gravity segregation assumption to hold [36,37]. The wellbore location is at the left corner
(Figure 1). The wellbore radius is set to r4, = 0.15 m. Given the large horizontal dimensions of the
formation, the size of the wellbore radius becomes negligible and its effects can be ignored. The
model is axisymmetric in agreement with the theoretical model of Section 2. The injection of the CO,
performed at the wellbore constitutes the inlet boundary condition. To simulate the impermeable
rock layers above and below the aquifer, no flow wall boundary conditions were considered at these
locations. Finally, the outlet boundary condition of zero-gauge pressure was imposed in order to
ensure flow towards the outer boundary of the models. A sufficient fine mesh around the wellbore
and in the vicinity of the caprock was used, so as to effectively track the fine changes at the interface
of the two fluids and to resolve numerical instabilities arising around the interface, which results in
pressure changes in the various flow regimes of the problem.

In our previous contribution [8], we analysed in detail the mesh dependency of the problem in an
attempt to avoid uncontrolled generation of grid cells, as well as to save computational time. In that
work, we used biased mesh and created four same models with 3 k, 12 k, 48 k, and 192 k to solve the
same problem, which has shown that, balancing the solution accuracy with efficient computational
time, the 48 k grid cells are the optimum. The results presented in this work correspond to simulations
of 48 k grid cells. The grid spacing in the radial direction starts with a spacing of 0.96 m and increases
geometrically by a factor of 1.0038. Totally, there were 800 grid cells in those directions. The grid
spacing in the vertical direction starts with a spacing of 0.145 m at the cap and increases geometrically
with a factor of 1.0364. Totally, this includes 60 grid cells in the vertical direction. Roughly one-third of
the mesh is used near the cap in order to capture fine physical changes in the interface evolution and
the associated pressure build-up. The calculations were carried out in Ansys-Fluent, a nonlinear CFD
code suit of programs [31]. The usual eight-node tetrahedral cell elements were used to model the
fluid flow in the aquifer and the interface evolution process. The computation of the fluid diffusion
in the porous domain and the interface evolution process with the associated pressure build-up is
performed by the displacement of the dense fluid (brine) by the less dense (CO;) in the cells center.
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4. Results and Discussion

In this section, we present the results from the multiphase flow analysis performed for the
modeling of the CO, plume evolution and the respective pressure build-up into a porous formation. In
our previous work [8], we investigated the following cases that cover a practically interesting region of
the parameter space (I', A). These values are shown in Table 1. The brine and CO, data are taken from
the work of [22]. Such values cover a range of cases that exhibit qualitative distinct and interesting
behavior. The input parameters used for the numerical computations given in Table 1 include the
dimensions of the wellbore and the formation, the porous rock and fluid properties, as well as the
pumping parameters.

Table 1. Model input data.

Variable Value

Geometric properties

Aquifer thickness, H (m) 30
Wellbore radius, 1y, (m) 0.15
Wellbore face area, A (m2) 28.35
Porous formation properties
Rock permeability, K (m?) 2x 10714
Porosity, ¢ (-) 0.15
Fluids properties
Water density, pw (kg/m3) 1045
Water viscosity, pw (kg/s-m) 2.54 x 1074
CO, density, pc (kg/m?) 479
CO, viscosity, p. (kg/s'm) 423 %1072 1.69 x 107°
Mobility ratio, A (-) 6 15
Pumping parameters
Superficial velocity, u (m/s) 436 x107* 5.81 x 107°
Injection flow rate, Q (m3/s) 1.24 x 1072 1.65 x 1074
Buoyancy parameter, I (-) 0.2 15

In the analysis to follow, we show the influence on the interface evolution and the respective
pressure build-up, for mobility ratios corresponding to low and high mobility, and for fast injection
(low buoyancy) to slow injection (high buoyancy).

4.1. Comparison of Computational Results with the Solution of the Self-Similar Equation for the Interface

In this section, we compare the results of the full numerical solutions with the numerical solutions
of the self-similar Equation (14), as discussed in the work of [8]. Figure 4 presents this comparison
for the cases of fast (I' = 0.2) and slow (I' = 15) injection for mobilities A = 6 and A = 15. All results
presented illustrate the interface at the mature state of evolution. For the choice of parameters of
Table 1, the buoyancy time-scale defining the maturity of the interface evolution, given by Equation
(12), is 2.2 years. For all cases, we observe that the full numerical solution and the solution of the
self-similar Equation (14) are in excellent agreement. As expected on general theoretical grounds
(Section 2), the high buoyancy cases cause the CO; to accumulate from the early stages near the cap
and extend to large distances in the porous formation, creating a relatively thin and long plume. This
effect is enhanced by higher CO; relative mobility A. On the other hand, in fast injection scenarios, the
plume covers the whole length of the well advancing, so that the leading and the trailing edges of the
plume are much closer to each other than the slow injection scenarios. This means that the plume does
not extend to large self-similar distances in the formation. Of course, the higher mobility causes the
plume to extend further compared with the lower mobility case. The small discrepancy observed is
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explained as follows. The (high mobility) CO, advances faster than it can diffuse, hence the trailing
edge of the plume shows a tendency to slow down. The diffusion relaxation time should be larger than
the buoyancy time scale Tpyoyancy (given in Equation (14)) by a factor of the order of the aspect ratio of
the CO; plume. Indeed, the full numerical simulations show that the phenomenon diminishes slowly
with time.

1.0 1.0
0.8 0.8
0.6 0.6
[ =
04 0.4
(@)T'=02X1=6 b)F'=15X1=6
0.2 —— Self similar 0.2 —— Self similar
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T '¢7T—VH
1.0 1.0
08 05 M
0.6 0.6
N x|
0.4 0.4
(T =02x=15 @T=151=15
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0 1 2 3 4 0 1 2 3 4
¢nH onH
T v r v

Figure 4. Comparison of the interface dynamics between self-similar and CFD solutions.

4.2. Comparison of Computational Results with the Solution of the Self-Similar Equation for the Pressure

This section is devoted to the comparison between the pressure profiles across the formation
for various times, between the computationally obtained results and the solutions of the self-similar
equation, as discussed in Section 2, applying the pressure Equations (17)—(19). In Figure 5, the vertical
axis is the dimensionless pressure, while the horizontal axis is the self-similarity radial distance. The
cases correspond once more to the fast and slow injection, I' = 0.2 and I = 15, respectively, and for
mobility, A = 6 and A = 15, respectively. The curves in each figure correspond to different times scaled
by the buoyancy time: the top curve corresponds to ¢t = 1.07, while every lower curve refers to a later
time by 1.07. As just mentioned, the higher pressure profile arises in the earliest time considered,
while as time progresses, the pressure is reduced by being diffused in larger distances in the formation.
Also, the peak value of the pressure profile for all times is observed in the vicinity of the well, thereby
suggesting high integrity risk near wellbore, as will be discussed later. We observe that the fast injection
and lower mobility scenario (Figure 5a) induced higher peak pressures (pressure at the well) than
the higher mobility case (Figure 5b). As expected, slow injection induces lower peak pressures by
nearly two orders of magnitude, especially when the CO, mobility is higher (Figure 5c,d). One should
also observe that the agreement between the pressure profiles of the numerical solutions and the
self-similarity solutions exhibits impressive agreement even at such early times as t = 1.0t. This is
practically very important, as it implies that the self-similarity equation can be applied, for example,
for integrity estimations, at much earlier times than what one could expect. The exception seems to
be the fast injection and high mobility scenario, where it requires at least 4.0t for deviations from
the numerical solution to become insignificant. That could be possibly attributed to the incomplete
self-similarity phenomenon discussed for this case above (Section 4.2). One should observe that the
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pressure may become comparable to the rock tensile strength (Figure 5a,b) if the rate of CO; injected is
large. Of course, this may also be the case for the slow injection conditions (Figure 5c,d) for a different
set of geologic and hydraulic parameters.
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Figure 5. Comparison of cap pressure profiles between the self-similarity equation and the numerical
CFD solution.

4.3. Pressure Build-Up Analysis for Cap Integrity Considerations

The following analysis is concerned with the application of the results of Section 2.2 in the case
studies of the work of [33]. These cases include two geo-sequestration sites, which are two large
saline aquifers: The Lower Cretaceous (sandstone) formations and the Madison Group (limestone)
formations. The Lower Cretaceous formations include a lower aquifer unit and an upper aquifer unit,
which are sandstones separated by a competent shale aquitard (Cretaceous A, B, C). The Madison
unit is a group composed solely by three carbonate formations (Madison A, B, C). The geologic and
hydraulic properties can be found in the work of [33].

We first identify the flow regimes on the (A, I') parameter space of each of the six cases, following our
discussion in Section 2.2. The results for the mobility and buoyancy parameters and the corresponding
flow regimes are given in Table 2 and presented pictorially in Figure 6: Madison B maps in flow Regime
III; Madison A, C and Cretaceous A fall into Regime V; while Cretaceous B and C fall on what we have
called Regime IV+.
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Table 2. Injection pressure estimates for the two formations.

Madison group
Variables Madison A Madison B Madison C
r 6.6 0.64 4.8
A 11.7 30.4 15.4
Regime \'% III \%
Pself—similar equation (MPa) 1.21 2.81 0.94
P analytical (MPa) - 1.31 -
PMathias et al. 2000 (MPa) 1.46 3.74 1.47

Cretaceous group

Variables Cretaceous A Cretaceous B Cretaceous C
r 15.1 79.6 51.3
A 20.8 26.0 13.5
Regime A\ IV+ IV+
Pself-similar equation (MPa) 1.38 0.46 0.93
p analytical (MPa) - 0.45 0.925
PhMathias et al. 2009 (MPa) 1.21 0.25 0.54
1000 r+ wt
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cc ‘—“ CB
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Figure 6. The six CO, injection cases associated with the flow regimes, with an obvious shorthand
notation. Two cases, Cretaceous B and C, belong to what we have called Regime IV+.

According to the discussion of Section 2.2, these results imply that the pressure analysis should be
based on the solutions of the exact self-similar equation for the cases of Madison A, C and Cretaceous
A. These cases form an interesting set of examples where the analytical asymptotic solutions do not
apply. They follow from the injection pressure formula (Equation (22)) using the numerical solution of
the exact self-similar Equation (14). The cases of Cretaceous B and C can be treated using the novel
asymptotic solution of Regime IV+ presented in this work. The results for the injection pressure, that is,
the cap pressure next to the well, are shown in Table 2. The calculations are done using the numerical
solutions of Equation (14) and applying Equation (22) or Equation (19). Also, where applicable, the
respective analytical solutions are applied. The time horizon used in these calculations is 50 years.
The results are also shown in Figure 7 in terms of the dimensionless pressure against the buoyancy

parameter I'.
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Figure 7. Comparison of the scaled injection pressure calculated via Equation (22) (using self-similar
solutions) and Equation (44) of the work of [12] as a function of the buoyancy parameter I'. The results
of the analytical solutions of Regimes IV+ and III (Section 2.2) are also shown in red crosses.

In Table 2, we also include the results for the injection pressure formula given in the work of [33]
and derived in the work of [12] under the assumptions that (i) buoyancy is negligible; (ii) the plume,
the brine, and formation are compressible (with constant compressibility coefficients); and (iii) the
inertia of the moving plume is taken into account by including a (Forchheimer) quadratic term in the
Darcy law. In our notations, this reads as follows:

P 1 1 1 1[,_ (A pck?b
2oy +1————[In(—P Co b )+ ]+P , 44
P, A r;u\/x 173 7 o(cw +cs) |+ Orwy%) (44)

where y = 0.5772 is the Euler-Masceroni constant. ¢, and cs are the compressibilities of the brine
and the formation, respectively. The constant b is the Forchheimer inertial parameter [12]. The other
quantities were defined in Section 2. Our results cannot be directly compared with the results of [33],
because the two analyses are not based on completely the same physics (our analysis covers high
buoyancy effects, while those of [12,33] consider compressibility and inertial effects). Nonetheless,
a few interesting comments may be made in light of what we have learned in Section 2.2.

One may observe that the first terms in Equation (44), which read

1 1 1

(45)

can be recognized as the single-phase Darcy pressure build-up in the CO; rich region and the
injection pressure build-up, by comparing with Equation (26b) of the flow regime III in Section 2.2.
As expected, the buoyancy pressure build-up term of Equation (26b) (the term proportional to the
parameter I') is missing in Equation (44). The rest of the terms in Equation (44) clearly represent the
compressibility and inertial effects, although the compressibility terms do not have a smooth limit to
the no compressibility case.

Figure 6 shows that—with the exception of Madison B—the conditions of all formations correspond
to high buoyancy, rendering Equation (44) virtually inapplicable for these cases. It may then be no
surprise that, as can be seen in Table 2, the injection pressure for the high buoyancy cases of the
Cretaceous A, B, and C formations is consistently higher when calculated through the self-similar
solutions (and Equation (22)) than via Equation (44). This occurs in spite of the different mobility from
case to case, and the inclusion of the compressibility and inertial effects in Equation (44). This finding
is also shown in Figure 7, through the indicated curves, in terms of the injection pressure scaled by
Py (defined in Equation (20)) as a function of the buoyancy parameter I'. This implies that the high
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buoyancy effects are not negligible compared with the compressibility of inertial effects, as far as those
effects are described by the respective components of Equation (44).

Finally, Figure 7 includes the results of the application of the analytical solutions given in Section 2.2
in the three cases in which they are applicable. The results are also given in Table 2. The outcomes of
the analytical solutions are shown in red crosses. We see that the Regime IV+ cases, which happen to
be the highest buoyancy ones, reproduce quite well the results of the numerical solutions of the exact
self-similar equation (Equation (14)). On the other hand, the analytical solution of the low buoyancy
case (Regime III) deviates significantly from the results of the self-similar equation. The main reason is
that the low buoyancy asymptotic solution actually corresponds to negligible buoyancy and is decently
accurate only for I' much smaller than 1.

5. Summary and Conclusions

In this work, we performed an analysis regarding the pressure build-up in the flow regimes
arising in the CO; injection problem in saturated porous rock formations. The purpose of this analysis
emanates from the need to quantify the pressure exerting at the cap rock during CO, sequestration. For
this reason, we derived expressions for the pressure during injection and applied them to saline aquifers
for cap rock integrity considerations. The pressure expressions derived in this work were applied by
calculating estimates for the injection pressure for six aquifer test cases belonging to two different
formations of geological importance (sandstone and limestone formations) considered excellent CO,
sequestration sites.

The flow regimes of the problem allow the derivation of analytical results for the pressure, valid in
specific regions of the parameter space of the plume flow, defined by the CO,-to-brine relative mobility
and the buoyancy parameter (injection pressure to buoyancy pressure scale ratio). In addition to the
known asymptotic solutions of Regimes I, II, and III, we introduced two novel analytical solutions,
one applying to Regime IV and the second to an overlap between Regime IV and V, which we named
Regime IV+. These latter regimes correspond to high buoyancy and mobility conditions and they
are rather important in practice. We showed that three of these test cases map into Regime V, where
the numerical solution of the exact self-similar equation (Equation (14)) finds excellent application.
Furthermore, two other test cases map into Regime IV+ and the associated analytical solution was
utilized for the pressure estimation in the formation.

The main contributions of our analysis can be outlined as follows: (A) We provided the pressure
build-up relations for all flow regimes (I-V) in the CO; injection problem in saturated porous rock
formations. (B) We provided explicit analytical solutions for regimes IV and IV+. (C) An important
matter is the applicability of the self-similarity equation and its flow regime asymptotic solutions.
Self-similar solutions are expected to apply to late times, but we showed, through CFD numerical
simulations utilizing a two-phase flow solver, that self-similar solutions are essentially applicable as
early as one buoyancy time scale. In most of the test cases considered, the buoyancy time scale is
about 10 years or less, which makes the self-similar solutions applicable for design durations of several
decades. (D) Both the self-similar and CFD models are capable of providing excellent estimates for the
pressure build-up for a wide range of buoyancy parameters and fluid mobilities.

The outcome of our analysis in the direction of cap integrity considerations is that injection
pressure estimates in high buoyancy conditions, that is, relatively slow injection, require application
of the pertinent asymptotic solutions, or the direct numerical solution of the self-similarity equation.
One should bear in mind that application of unsuitable asymptotic results leads to significant
under-estimation of the injection pressure, which may produce erroneous estimates. Another approach
is to utilize CFD solvers for the full analysis.

Future work on this subject will involve the fluid and formation compressibility effects, as well as
the inertial effects of the plume. Undoubtedly, such considerations can be extended through asymptotic
analysis in the high buoyancy regimes as well.



Energies 2019, 12, 2972 19 of 20

Author Contributions: Both authors contributed substantially to the work reported.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

International Energy Association. Climate Change; IEA: Paris, France, 2015.

European Commission. Directive 2009/31/EC of the European Parliament and of the Council of 23 April
2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European
Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation
(EC) No. 1013/2006. Off. J. EU 2009, 5, 114-145.

Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. (Eds.) IPCC Special Report on Carbon Dioxide
Capture and Storage; Cambridge University Press: Cambridge, UK, 2005.

Papanastasiou, P; Papamichos, E.; Atkinson, C. On the risk of hydraulic fracturing in CO, geological storage.
Int. J. Numer. Anal. Method. Geomech. 2016, 40, 1472-1484. [CrossRef]

Blunt, M.; Fayers, EJ.; Orr, EM., Jr. Carbon dioxide in enhanced oil recovery. Energy Convers. Manag. 1993,
34,1197-1204. [CrossRef]

Adu, E.; Zhang, Y; Liu, D. Current situation of carbon dioxide capture, storage, and enhanced oil recovery in
the oil and gas industry. Can. |. Chem. Eng. 2019, 97, 1048-1076. [CrossRef]

Ravagnani, A.G,; Ligero, E.L.; Suslick, S.B. CO, sequestration through enhanced oil recovery in a mature oil
field. J. Pet. Sci. Eng. 2009, 65, 129-138. [CrossRef]

Sarris, E.; Gravanis, E.; Papanastasiou, P. Investigation of self-similar interface evolution in carbon dioxide
sequestration in saline aquifers. Transp. Porous Media 2014, 103, 341-359.

Guo, B.; Zheng, Z.; Bandilla, KW.; Celia, M.A.; Stone, H.A. Flow regime analysis for geologic CO,
sequestration and other subsurface fluid injections. Int. . Greenh. Gas Control. 2016, 53, 284-291. [CrossRef]
Ouellet, A.; Bérard, T.; Desroches, J.; Frykman, P; Welsh, P; Minton, J.; Pamukcu, Y.; Hurter, S,;
Schmidt-Hattenberger, C. Reservoir geomechanics for assessing containment in CO, storage: a case
study at Ketzin, Germany. Energy Procedia 2011, 4, 3298-3305. [CrossRef]

Raza, A.; Gholami, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant aspects of carbon capture and storage-A
review. Petroleum 2018. [CrossRef]

Mathias, S.A.; Hardisty, P.E.; Trudell, M.R.; Zimmerman, R.W. Approximate solutions for pressure buildup
during CO, injection in brine aquifers. Transp. Porous Media 2009, 79, 265-284. [CrossRef]

Jenkins, L.T.; Foschi, M.; MacMinn, C.W. Impact of pressure dissipation on fluid injection into layered
aquifers. arXiv 2019, arXiv:1901.03623.

Gheibi, S.; Vilarrasa, V.; Holt, RM. Numerical analysis of mixed-mode rupture propagation of faults in
reservoir-caprock system in CO, storage. Int. |. Greenh. Gas Control. 2018, 71, 46-61. [CrossRef]

Shukla, R.; Ranjith, P.; Haque, A.; Choi, X. A review of studies on CO, sequestration and caprock integrity.
Fuel 2010, 89, 2651-2664. [CrossRef]

Vilarrasa, V.; Olivella, S.; Carrera, J.; Rutqvist, J. Long term impacts of cold CO, injection on the caprock
integrity. Int. J. Greenh. Gas Control. 2014, 24, 1-13. [CrossRef]

Hui, D.; Pan, Y.; Luo, P; Zhang, Y.; Sun, L.; Lin, C. Effect of supercritical CO, exposure on the high-pressure
CO, adsorption performance of shales. Fuel 2019, 247, 57-66. [CrossRef]

Hinton, E.M.; Woods, A.W. Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability.
J. Fluid Mech. 2018, 848, 411-429. [CrossRef]

Yu, Y.E; Zheng, Z.; Stone, H.A. Flow of a gravity current in a porous medium accounting for drainage from
a permeable substrate and an edge. Phys. Rev. Fluids 2017, 2, 074101. [CrossRef]

Debbabi, Y.; Jackson, M.D.; Hampson, G.J.; Salinas, P. Impact of the Buoyancy—Viscous Force Balance on
Two-Phase Flow in Layered Porous Media. Trans. Porous Media 2018, 124, 263-287. [CrossRef]

Guo, B.; Zheng, Z.; Celia, M.A.; Stone, H.A. Axisymmetric flows from fluid injection into a confined porous
medium. Phys. Fluids 2016, 28, 1-22. [CrossRef]

Nordbotten, ].M.; Celia, M.A.; Bachu, S. Injection and storage of CO; in deep saline aquifers: analytical
solution for CO, plume evolution during injection. Trans. Porous Media 2005, 58, 339-360. [CrossRef]


http://dx.doi.org/10.1002/nag.2502
http://dx.doi.org/10.1016/0196-8904(93)90069-M
http://dx.doi.org/10.1002/cjce.23393
http://dx.doi.org/10.1016/j.petrol.2008.12.015
http://dx.doi.org/10.1016/j.ijggc.2016.08.007
http://dx.doi.org/10.1016/j.egypro.2011.02.250
http://dx.doi.org/10.1016/j.petlm.2018.12.007
http://dx.doi.org/10.1007/s11242-008-9316-7
http://dx.doi.org/10.1016/j.ijggc.2018.01.004
http://dx.doi.org/10.1016/j.fuel.2010.05.012
http://dx.doi.org/10.1016/j.ijggc.2014.02.016
http://dx.doi.org/10.1016/j.fuel.2019.03.013
http://dx.doi.org/10.1017/jfm.2018.375
http://dx.doi.org/10.1103/PhysRevFluids.2.074101
http://dx.doi.org/10.1007/s11242-018-1063-9
http://dx.doi.org/10.1063/1.4941400
http://dx.doi.org/10.1007/s11242-004-0670-9

Energies 2019, 12, 2972 20 of 20

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

Dentz, M.; Tartakovsky, D.M. Abrupt-interface solution for carbon dioxide injection into porous media. Trans.
Porous Media 2009, 79, 15-27. [CrossRef]

Liu, Y,; Wang, L.E.; Yu, B. Sharp front capturing method for carbon dioxide plume propagation during
injection into a deep confined aquifer. Energy Fuels 2010, 24, 1431-1440. [CrossRef]

Vilarrasa, V.; Bolster, D.; Olivella, S.; Carrera, J. Coupled hydromechanical modeling of CO; sequestration in
deep saline aquifers. Int. . Greenh. Gas Control 2010, 4, 910-919. [CrossRef]

Vilarrasa, V.; Olivella, S.; Carrera, ]. Geomechanical stability of the caprock during CO, sequestration in deep
saline aquifers. Energy Procedia 2011, 4, 5306-5313. [CrossRef]

Vilarrasa, V.; Silva, O.; Carrera, J.; Olivella, S. Liquid CO; injection for geological storage in deep saline
aquifers. Int. ]. Greenh. Gas Control 2013, 14, 84-96. [CrossRef]

Vilarrasa, V.; Carrera, J.; Olivella, S. Hydromechanical characterization of CO; injection sites. Int. J. Greenh.
Gas Control 2013, 19, 665-677. [CrossRef]

Li, C,; Bares, P,; Laloui, L. A hydromechanical approach to assess CO; injection-induced surface uplift and
caprock deflection. Geomech. Energy Environ. 2015, 4, 51-60. [CrossRef]

Vilarrasa, V.; Carrera, J.; Bolster, D.; Dentz, M. Semi-analytical Solution for CO, Plume Shape and Pressure
Evolution During CO; Injection in Deep Saline Formations. Trans. Porous Media 2013, 97, 43—-65. [CrossRef]
ANSYS. ANSYS-Fluent User Manual, version 14; Ansys Inc.: Canonsburg, PA, USA, 2014.

Nordbotten, ].M.; Celia, M.A. Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech.
2006, 561, 307-327. [CrossRef]

Mathias, S.A.; Hardisty, PE.; Trudell, M.R.; Zimmerman, R.W. Screening and selection of sites for CO,
sequestration based on pressure buildup. Int. J. Greenh. Gas Control 2009, 3, 577-585. [CrossRef]

PCOR. Potential CO, Storage Capacity of the Saline Portions of the Lower Cretaceous Aquifer System in the PCOR
Partnership Region; Energy & Environmental Research Center (EERC): Grand Forks, ND, USA, 2005.
PCOR. Sequestration Potential of the Madison of the Northern Great Plains Aquifer System (Madison Geological
Sequestration Unit); Energy & Environmental Research Center (EERC): Grand Forks, ND, USA, 2005.
Houseworth, J.E. Matched boundary extrapolation solutions for CO, well-injection into a saline aquifer.
Trans. Porous Media 2012, 91, 813-831. [CrossRef]

Yortsos, Y.C. A theoretical analysis of vertical flow equilibrium. Trans. Porous Media 1995, 18, 107-129.
[CrossRef]

Golding, M.].; Huppert, H.E.; Neufeld, ].A. The effects of capillary forces on the axisymmetric propagation of
two-phase, constant-flux gravity currents in porous media. Phys. Fluids 2013, 25, 1-18. [CrossRef]
Nordbotten, ].M.; Dahle, H K. Impact of the capillary fringe in vertically integrated models for CO, storage.
Water Resour. Res. 2011, 47, 1-11. [CrossRef]

Zhao, B.; MacMinn, C.W.; Szulczewski, M.L.; Neufeld, ].A.; Huppert, H.E.; Juanes, R. Interface pinning of
immiscible gravity-exchange flows in porous media. Phys. Rev. E 2013, 87, 1-7. [CrossRef]

MacMinn, C.W,; Juanes, R. A mathematical model of the footprint of the CO, plume during and after
injection in deep saline aquifer systems. Energy Procedia 2009, 1, 3429-3436. [CrossRef]

Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: New York, NY, USA, 2006.

Zheng, Z.; Guo, B.; Christov, I.; Celia, M.A.; Stone, H.A. Flow regimes for fluid injection into a confined
porous medium. J. Fluid Mech. 2015, 767, 881-909. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s11242-008-9268-y
http://dx.doi.org/10.1021/ef9010498
http://dx.doi.org/10.1016/j.ijggc.2010.06.006
http://dx.doi.org/10.1016/j.egypro.2011.02.511
http://dx.doi.org/10.1016/j.ijggc.2013.01.015
http://dx.doi.org/10.1016/j.ijggc.2012.11.014
http://dx.doi.org/10.1016/j.gete.2015.06.002
http://dx.doi.org/10.1007/s11242-012-0109-7
http://dx.doi.org/10.1017/S0022112006000802
http://dx.doi.org/10.1016/j.ijggc.2009.05.002
http://dx.doi.org/10.1007/s11242-011-9874-y
http://dx.doi.org/10.1007/BF01064674
http://dx.doi.org/10.1063/1.4793748
http://dx.doi.org/10.1029/2009WR008958
http://dx.doi.org/10.1103/PhysRevE.87.023015
http://dx.doi.org/10.1016/j.egypro.2009.02.133
http://dx.doi.org/10.1017/jfm.2015.68
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Analysis 
	The Self-Similar Dynamics of the Plume Evolution 
	Pressure Analysis in the Flow Regimes of Plume Evolution 

	Numerical Modeling 
	Results and Discussion 
	Comparison of Computational Results with the Solution of the Self-Similar Equation for the Interface 
	Comparison of Computational Results with the Solution of the Self-Similar Equation for the Pressure 
	Pressure Build-Up Analysis for Cap Integrity Considerations 

	Summary and Conclusions 
	References

