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Abstract: The integration of numerous intermittent renewable energy sources (IRESs) poses challenges
to the power supply-demand balance due to the inherent intermittent and uncertain power outputs
of IRESs, which requires higher operational flexibility of the power system. The deployment of
flexible ramping products (FRPs) provides a new alternative to accommodate the high penetration of
IRESs. Given this background, a bi-level risk-limiting real-time unit commitment/real-time economic
dispatch model considering FRPs provided by different flexibility resources is proposed. In the
proposed model, the objective is to maximize the social surplus while minimizing the operational risk,
quantified using the concept of conditional value-at-risk (CVaR). Energy and ramping capabilities
of conventional generating units during the start-up or shut-down processes are considered, while
meeting the constraints including unit start-up/shut-down trajectories and ramping up/down rates in
consecutive time periods. The Karush–Kuhn–Tucker (KKT) optimality conditions are then used to
convert the bi-level programming problem into a single-level one, which can be directly solved after
linearization. The modified IEEE 14-bus power system is employed to demonstrate the proposed
method, and the role of FRPs in enhancing the system flexibility and improving the accommodation
capability for IRESs is illustrated in some operation scenarios of the sample system. The impact of
the confidence level in CVaR on the system operational flexibility is also investigated through case
studies. Finally, a case study is conducted on a regional power system in Guangdong Province, China
to demonstrate the potential of the proposed method for practical applications.

Keywords: flexible ramping products; intermittent renewable energy sources; operational flexibility;
operational risk; real-time economic dispatch; real-time unit commitment

1. Introduction

The ever-increasing penetration of intermittent renewable energy sources (IRESs) such as wind
power and photovoltaic power generation brings about higher variability and uncertainty, which
poses a serious challenge to the operational flexibility of a power system [1]. Generally, it is relatively
straightforward to dispatch controllable resources like conventional thermal power and hydropower
units to cope with the fluctuations of the net load (referring to the user load demand not served by
IRESs) when the proportion of IRESs is comparatively low [2]. However, as the share of IRESs in the
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power supply increases, the flexibility level of the system decreases due to the priority of renewable
energy generation in the dispatch. On the other hand, the need for flexibility increases due to the
inherent intermittency and uncertainty of IRESs, and conventional generating units are therefore
required to adjust their power outputs more frequently and sometimes even have to start up or shut
down in the real-time unit commitment/real-time economic dispatch (RTUC/RTED) [3]. Moreover,
the deviation or the steep changing rate of the net load demand beyond anticipation may lead to
insufficient ramping capability even with sufficient installed generation capacity, and thus results in a
price spike in the electricity market, undesired curtailment of IRESs, and/or compulsory load shedding.
Therefore, it is indispensable for the integration of high penetration of IRESs to ensure that the required
operational flexibility is maintained in the power system concerned.

The issues related to the flexibility of a power system have been considered in some existing
publications. With the growing integration of IRESs into a power system, the arising issues in
both operation and planning have endowed the assessment of flexibility with greater importance.
The insufficient ramping resource expectation (IRRE) metric is proposed in [4] to measure power
system flexibility for use in long-term planning, and the metric and methodology are further improved
in [5] with network constraints considered. Reference [6] proposes a flexibility resource adequacy
assessment method which can assess an annual flexible capacity requirement based on the duration
curve models of net-load fluctuations. Three metrics power capability for up/down regulation, energy
storage capability and power ramping capability are proposed in [7] to quantify and assess available
operational flexibility of generating units. An “offline” flexibility index is presented in [8] to measure
the technical flexibility level of both an individual generating unit and the whole system. Furthermore, a
unit construction and commitment algorithm is introduced in [8] to determine the optimal investments
in additional flexible units required to cope with increasing wind power penetration. In [9], the dispatch
flexibility of a solar-hydro coordinated generation system is defined as the expected proportion that the
coordinated generation can serve the load demand. Reference [10] proposes a systematic method for
characterizing intra-hour net load deviations from the operating plan that requires the deployment of
flexibility resources and formulates an optimization model to simultaneously evaluate the day-ahead
flexibility requirements for different regulation intervals.

In addition to the assessment of power system flexibility on different time scales, the approach to
enhance the flexibility of a power system or the procurement of flexibility from a “flexibility market”
is another research priority. Flexible ramping products (FRPs), a new market design for improving
the operational flexibility of the power system, have attracted extensive attention in academic and
industrial communities and have been preliminarily deployed in two major electricity markets,
the California Independent System Operator (CAISO) and the Midcontinent Independent System
Operator (MISO) [11]. FRPs can cope with unexpected changes in the net load between future periods
by retaining some ramping capability in the current dispatch period, thereby avoiding insufficiency
of upward or downward ramping capability. A stochastic day-ahead scheduling model of electric
power systems with flexible ramping resources for managing the variability of IRESs is proposed
in [2], in which the hourly forecast error and the random outages are simulated using the Monte Carlo
simulation. In [12] a “multi-timing” day-ahead scheduling method is proposed, which allows for the
optimal procurement of flexible ramping capacity on an intra-hourly basis with energy and reserves
concurrently optimized over hourly time intervals. References [13,14] compare a deterministic unit
commitment model considering FRPs with a stochastic one, and conclude that the latter can achieve a
higher social surplus. References [15,16] respectively studied the mechanism of FRPs provided by the
interruptible load (IL) and by the battery energy storage in a joint energy and ancillary service market.

FRPs provide a new alternative for the accommodation of high-proportion IRESs. However, many
existing works assume by default that the flexibility requirements are met by conventional generating
units, neglecting the integration of other emerging flexibility resources such as the demand response
(DR). As a resource capable of following the dispatch signal on the demand side, the integration of DR
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resources can help balance the real-time supply with demand after the large-scale IRES generation is
connected to the power system.

Moreover, most of the existing research publications focus on unit commitment and economic
dispatch in the day-ahead electricity market using scenario generation methods [2,13–15]. Few researchers
have explicitly quantified the operational risk in the RTUC/RTED (real-time unit commitment/real-time
economic dispatch) with FRPs incorporated, which is one of the reasons why FRPs are employed.
Nevertheless, despite the economic optimality, the containment of the operational risk in the power
system should also be one of the concerns for the Independent System Operator (ISO). Currently, the ISO
directly assigns the requirement for ramping capability or sets a price cap on the FRPs no matter how
much the potential demand is. If the bidding price or the opportunity cost of an FRP market participant
is greater than the price cap, the participant will not be selected to provide FRPs even if there is a ramp
shortage [16]. Complete elimination of the risk is neither economical nor feasible. But an assigned
requirement or a fixed price cap may lead to a large shortage of ramping capabilities or even infeasibility
of dispatch in some situations.

In this paper, a bi-level risk-limiting RTUC/RTED model considering FRPs provided by generating
units and DR resources is proposed with the objective of maximizing the social surplus while minimizing
the operational risk. The model can be run by the ISO in the real-time market and considers a system-level
ramping capability requirement. Different types of DR resources are modeled and incorporated into
the proposed model. The operational risk is quantified by the conditional value-at-risk (CVaR) and
the ramping capability requirement is determined by the tradeoff between the operational risk and the
operation cost. Then, the bi-level programming problem is converted into a single-level problem using
the Karush–Kuhn–Tucker (KKT) optimality conditions and is linearized by the big-M method. Next,
scenarios are generated by the Latin Hypercube Sampling method and reduced by the fast forward
method. A method for simulating the actual dispatch process with the generated scenarios is then
proposed. Finally, a number of cases illustrate the role of FRPs in improving system flexibility and
the accommodation of IRESs, as well as the impact of the confidence level in CVaR on the system
operational flexibility.

The contributions of this paper are as follows:

(a) A risk-limiting RTUC/RTED model with FRPs provided by conventional generating units and DR
resources is formulated, in which the energy and ramping capabilities of conventional generating
units during start-up or shut-down processes are also considered.

(b) The CVaR is applied to describe the risk of the penalty for IRES curtailment and compensation
for load shedding. The demand for ramping capability is then determined by reaching the
compromise between economic performance and reliability.

(c) A validation method that simulates the actual real-time operation is proposed. The proposed model
is rolled forward against different realizations of uncertainties generated by Latin Hypercube
Sampling method. The expected social surplus and realized operation cost can then be calculated.
Different dispatch models will be compared.

(d) The impact of FRPs on the operational flexibility of power systems and the impact of other factors
on the system flexibility with FRPs are illustrated and analyzed.

The remainder of this paper is organized as follows. In Section 2, the concepts and characteristics
of power system flexibility and FRPs are introduced. Afterwards, the mathematical formulation of the
studied problem is proposed in Section 3. In Section 4, case studies are then carried out with numerical
results presented and discussed. Finally, Section 5 concludes this work.

2. Power System Flexibility

2.1. Definition of Flexibility and Acquisition of Flexibility Resources

Flexibility is one of the required features of a power system. Flexibility is needed in multiple stages
and processes such as planning, operation, and overhaul of a power system. There is currently no
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general agreement on the definition of power system flexibility. Generally speaking, the term flexibility
describes the ability of a power system to cope with variability and uncertainty in both generation and
demand, while maintaining a satisfactory level of reliability at a reasonable cost over different time
horizons [8,10]. Reference [4] defines flexibility as the ability of a system to deploy its resources to
respond to changes in the net load. According to the International Energy Agency, flexibility expresses
the extent to which a power system can modify electricity production or consumption in response
to variability, expected or otherwise [17], while the North American Electric Reliability Corporation
emphasizes the ability of a flexible power system to deal with load variations [18].

In a narrower sense, power system flexibility refers to the operational flexibility of a power system,
which pays more attention to the system operational stage. More precisely, the operational flexibility
refers to the ability of a power system to meet various operational constraints and ensure the secure and
stable operation at a reasonable cost through unit commitment and economic dispatch that consider
the uncertainty and variability on both sides of supply and demand. The definitions of flexibility by
CAISO and MISO fall into this category. From the perspective of actual needs in system operations,
they define flexibility as the ability of the system to meet potential demand for upward or downward
ramping capability by dispatching additional flexibility capacities in a real-time setting [19,20].

Although the definition of power system flexibility is still evolving, the reasons of the need for
the flexibility are basically consistent, namely the variability and uncertainty brought about by the
integration of a high-penetration level of IRESs, and more intensive and interactive participations
from terminal users. Based on the aforementioned definitions of flexibility, characteristics of power
system flexibility include directionality, state dependence, multiple spatiotemporal characteristics and
probabilistic characteristics.

Flexibility resources refer to resources that can enhance power system flexibility; they are available
in all aspects of power sources, power grids, loads and energy storages. More specifically, flexibility
can be enhanced by improved operations, demand response, improved grid infrastructures, quick
start resources and energy storage [11]. So far, conventional generating units have been the primary
providers of flexibility to a power system. However, studies have also indicated that IRESs such as
wind power can also be employed in enhancing power system flexibility [21], and that flexibility can
be provided by multi-carrier energy systems and virtual power plants [22].

2.2. Flexible Ramping Product

FRPs refer to the capacity dispatchable by the ISO, which is able to deal with the energy imbalances
in the RTED [19]. FRPs are also referred to as “flexiramp” in CAISO, and ramp capability in MISO.
It is a new type of market product designed to enhance the flexibility of a power system, which
can be categorized into improved operations mentioned previously. Since the implementation of
FRPs does not require additional new grid equipment or facilities, FRPs are generally regarded as
an economical resource for enhancing system flexibility. By retaining some ramping capability in
the current dispatch period, FRPs can dispose changes in the net load in the following consecutive
periods, thereby alleviating or avoiding the power imbalance caused by insufficient system adjustment
capability in real-time operation.

The main differences between the FRPs and other conventional auxiliary services are as follows.
Firstly, FRPs are set aside in the current period but used in the future periods, while resources such as
regulation and reserves are generally implemented and settled in the current time period. Secondly,
the time scale of the regulation is on the level of seconds, which is used to deal with the fluctuations
of the net load during the current dispatch period. However, the time scale considered by FRPs is
much longer (typically 5–15 min), which is used to cope with the fluctuations of the net load between
future time periods (primarily the current time period and the next one). Thirdly, the spinning and
non-spinning reserves are mainly prepared for contingencies or overhauls and rarely called on in the
RTED, while upward and downward ramping capabilities retained as FRPs are frequently called on in
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the RTED. Finally, FRPs can improve the ISO’s dispatch flexibility in the RTED while ancillary services
usually cannot.

FRPs can be divided into two types, upward ramping products (notated as FRUs in CAISO)
and downward ramping products (notated as FRDs in CAISO). Theoretically, any market entity that
can follow the dispatching signal of the ISO can serve as a flexibility resource for providing FRPs.
Furthermore, it is noted that in the MISO, providers of FRPs do not need to bid for their capacity
because FRPs are priced based on the marginal units at optimality, while the bidding is allowed in
both day-ahead and real-time markets in the CAISO [19,20].

3. Problem Formulation

The stochastic optimization models are usually computationally intensive, and more importantly
the fairness and transparency of the dispatching outcomes for electricity market participants should be
guaranteed. The deterministic formulations therefore remain valid and widely used by ISOs worldwide [23].
With this in mind, the presented model in this paper is a deterministic one. In addition, for notation
simplicity, other ancillary services such as frequency regulation, spinning and non-spinning reserves are
omitted in this work.

The proposed RTUC/RTED model in this work is a bi-level optimization model. The upper level
is the model of the joint electricity and FRP market with an objective to maximize the social surplus,
while the lower level aims at minimizing the operational risk represented by the CVaR.

3.1. Upper Level

DR programs can be broadly divided into incentive-based programs and price-based programs.
The incentive-based DR refers to a controllable and schedulable resource that can serve as an alternative
resource on the supply side, and hence is modeled as a virtual power plant in this work. The incentive-based
programs include the direct load control (DLC), the interruptible load (IL), the emergency demand response
(EDR) and so on. The users of these programs generally need to participate in the electricity market through
an agent such as a curtailment service provider or a load service entity. Under normal circumstances,
a qualified DLC capacity usually participates in the reserve or regulation market for capacity and energy
gain [24]. Therefore, only the IL is considered to provide the “virtual power output” and FRUs through
load reduction in this work. The price-based DR, which is not directly dispatched by the ISO but is treated
as a predictable change in the amount of the power used, can affect the demand curve and is thus presented
by the willingness-to-pay of various user groups of electricity.

3.1.1. Objective Function

With the consideration of DR resources on the demand side, the objective of the proposed joint
electricity and ancillary service market is to maximize the social surplus, i.e., the overall utility of
consumers minus the total production cost, as formulated in Equation (1). Reference [25] points out that
representing the generation in a staircase fashion (energy blocks) may lead to misleading estimations
of a system’s ramp availability; therefore, a formulation of power trajectory is proposed. With this in
mind, a clear distinction between power and energy is drawn in this work.

In Equation (1), the marginal generating cost of an IRES unit is assumed to be zero. A user group
with decremental willingness-to-pay and an IL agent with incremental bidding prices are modeled
as user groups with different willingness-to-pay and agents with different bidding prices. The same
modeling method is applied to generating units with incremental bidding functions too. The start-up cost
Cstart

k includes the energy production cost and the cost of providing fixed upward ramping capabilities
during the start-up process. Likewise, the energy production cost and the cost of providing fixed
downward ramping capabilities during the shut-down process are included in the shut-down cost Cshut

k .
Therefore, Equations (2) and (3) only consider the energy produced by a unit during its dispatchable
state (i.e., udisp

k,t = 1). The bidding function for energy production of unit k in Equation (2) also reflects the
unit’s energy production cost.
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max Jupper =
T∑

t=1
∆t
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πm,tdm,t −
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n=1
λn,tqn,t

− T∑
t=1

Ng∑
k=1

(
Cstart

k ustart
k,t + Cshut

k ushut
k,t + Cfixed

k udisp
k,t + cenergy
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−

T∑
t=1

Na∑
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λ
up
n,tq

up
n,t −

T∑
t=1

Ng∑
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(
γ

up
k,t rup

k,t + γdn
k,t rdn

k,t

) (1)

cenergy
k,t = Gk

(
ek,t

)
= bk,tek,t (2)

ek,t = ∆t
[
Pkminudisp

k,t +
1
2

(
pk,t−1 + pk,t

)]
(3)

3.1.2. Supply and Demand of Power and Ramping Capability

The power supply and demand balance constraint for each time period is presented in Equation (4).
The requirements for upward and downward ramping capabilities are respectively governed by
Equations (5) and (6), in which an IL is assumed to provide only upward ramping capability because
consumers are motivated to resume power consumption immediately after performing responses.
As can be seen in Equations (5) and (6), the ramping capabilities provided by generating units
during their start-up and shut-down processes are also considered. Since the start-up and shut-down
trajectories are fixed, the generating units cannot provide FRP freely as they do in the dispatchable
state. However, generating units can still provide fixed ramping capabilities, which can facilitate the
power system in some cases and should not be neglected. Normally, the requirements for upward and
downward ramping capabilities in period t can be calculated by Equations (7) and (8) with a price cap.

Nres∑
h=1

oh,t +

Ng∑
k=1

gk,t +

Na∑
n=1

qn,t =

Nug∑
m=1

dm,t +

Na∑
n=1

Qn,t (4)

Ng∑
k=1

rup
k,t +

Na∑
n=1

qup
n,t +

Ng∑
k=1

Tstart
k∑

z=1

(
Pstart

k,z+1 − Pstart
k,z

)
ustart

k,t−z+Tstart
k +2

≥ Fup
t (5)

Ng∑
k=1

rdn
k,t +

Ng∑
k=1

Tshut
k∑

z=1

(
Pshut

k,z − Pshut
k,z+1

)
ushut

k,t−z+2 ≥ Fdn
t (6)

Fup
t = max

{
Dnet

t+1 −Dnet
t + Ut, 0

}
(7)

Fdn
t = max

{
Dnet

t −Dnet
t+1 + Ut, 0

}
(8)

Dnet
t = Dtotal

t −Ototal
t =


Nug∑
m=1

Dm,t +

Na∑
n=1

Qn,t

− Nres∑
h=1

Oh,t (9)

3.1.3. Unit Commitment Logic

The relation between the operating state variable udisp
k,t and the start-up and shut-down variables

ustart
k,t and ushut

k,t is presented in Equations (10) and (11). Constraints Equations (12) and (13) ensure
the minimum time duration for the start-up or the shut-down process, while Equation (14) ensures
that a unit will not start up again in the course of shut-down. The relation between state variables is
illustrated in Figure 1. Furthermore, with constraint Equation (10), variables ustart

k,t and ushut
k,t can be

defined as continuous variables as long as udisp
k,t is defined as a binary variable.
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udisp
k,t − udisp

k,t−1 = ustart
k,t − ushut

k,t (10)

ustart
k,t + ushut

k,t ≤ 1 (11)

t∑
z=t−Tstart

k

ustart
k,z ≤ udisp

k,t (12)

t∑
z=t−Tshut

k +1

ushut
k,z ≤ 1− udisp

k,t (13)

t∑
z=t−Tstart

k −Tshut
k +1

ushut
k,z ≤ 1− ustart

k,t (14)

3.1.4. Power Output Constraints

The total power output including the start-up and shut-down trajectories is presented in Equation
(15). Examples of the start-up and shut-down trajectories are given in Figure 1. The starting power
output of a shut-down trajectory is omitted in Equation (15), which is Pkmin (i.e., gk,t = Pkmin and pk,t =

0) and is governed by Equation (18). The last power output of a start-up trajectory is also considered to
be Pkmin, which is guaranteed by Equation (17). Constraint Equation (16) limits the power output of a
unit to be within its technical output range. Other constraints on power outputs of generating units
and IL are listed in Equations (19)–(21).

gk,t =

Tstart
k +1∑
z=1

Pstart
k,z ustart

k,t−z+Tstart
k +2︸                          ︷︷                          ︸

(i) start−up trajectory

+ Pkminudisp
k,t + pk,t︸              ︷︷              ︸

(ii) output when being dispatchable

+

Tshut
k +1∑
z=2

Pshut
k,z ushut

k,t−z+2︸                  ︷︷                  ︸
(iii) shut−down trajectory

(15)

pk,t ≤ (Pkmax − Pkmin)u
disp
k,t (16)
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pk,t ≤M
(
1− ustart

k,t+1

)
(17)

pk,t ≤M
(
1− ushut

k,t+1

)
(18)

pk,t + rup
k,t ≤ (Pkmax − Pkmin)u

disp
k,t+1 (19)

pk,t − rdn
k,t ≥ 0 (20)

qn,t + qup
n,t ≤ Qn,t (21)

3.1.5. Constraints of Ramping Capacity and Rate

FRP capacity constraints are presented in Equations (22)–(24), while constraints on ramping rates
of generating units and IL agents are given in Equations (25)–(27).

rup
k,t ≤ Rup

k ∆t (22)

rdn
k,t ≤ Rdn

k ∆t (23)

qup
n,t ≤ Vup

n ∆t (24)

pk,t − pk,t−1 ≤ Rup
k ∆t (25)

pk,t−1 − pk,t ≤ Rdn
k ∆t (26)

−Vdn
n ∆t ≤ qn,t − qn,t−1 ≤ Vup

n ∆t (27)

3.1.6. Network Constraints

The direct current (DC) network power flow limits are enforced by Equation (28), and the elements
in the vector of nodal power injection can be calculated by Equation (29).

− F jmax ≤

Nb∑
i=1

H jipnode
i,t ≤ F jmax (28)

pnode
i,t =

∑
h∈i

oh,t +
∑
k∈i

gk,t +
∑
n∈i

qn,t −
∑

m∈i
dm,t −

∑
n∈i

Qn,t (29)

3.1.7. Bounds of Variables

The upper bounds of some variables are listed in Equations (30)–(32). In addition, all the decision
variables except pnode

i,t are nonnegative.

oh,t ≤ Oh,t (30)

qn,t ≤ Qn,t (31)

dm,t ≤ Dm,t (32)

cenergy
k,t , dm,t, ek,t, gk,t, qn,t, qup

n,t , pk,t, rup
k,t , rdn

k,t , udisp
k,t , ushut

k,t , ustart
k,t ≥ 0 (33)

3.2. Lower Level

3.2.1. Formulation of Conditional Value-at-Risk

CVaR is originally used in portfolio optimization for effective risk management. It is a risk
assessment measure that quantifies the amount of tail risk by taking a weighted average of the
“extreme” losses in the tail of the distribution of possible losses, beyond the value-at-risk (VaR)
cutoff point.
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Let L(x, y) be the loss associated with a set of decision variables x and a set of uncertain parameters
y. For a given confidence level β (0 < β < 1), the VaR defined in Equation (34) refers to the smallest loss
α, such that probability of losses above that level is at most 1−β [26].

VaR , min
{
α ∈ R : P

{
L(x, y) ≤ α

}
≥ β

}
(34)

VaR suffers from lack of convexity and subadditivity, so an alternative measure CVaR that overcomes
these issues has been proposed. Assume that the (joint) probability density function of y is denoted
by ϕ(y), and that VaR and CVaR associated with x for a given confidence level β are denoted by
αβ(x) and δβ(x). The definition of CVaR is then presented by Equation (35). A practical technique for
simultaneously calculating VaR and CVaR is given in Equations (36) and (37). In other words, the
minimization of Fβ(x, α) produces a pair of (x*, α*), not necessarily unique, such that x* minimizes
the CVaR and α* gives the corresponding VaR [27]. Furthermore, the integral in Equation (37) can be
approximated using samples generated from ϕ(y) as presented in Equation (38).

CVaR ,
1

1− β

∫
L(x,y)≥αβ(x)

L(x, y)ϕ(y)dy (35)

min
x
δβ(x) = min

x,α
Fβ(x,α) (36)

Fβ(x,α) = α+
1

1− β

∫
max

{
L(x, y) − α, 0

}
p(y)dy (37)

F̃β(x,α) = α+
1

Nsam(1− β)

Nsam∑
s=1

max
{
L
(
x, ys

)
− α, 0

}
(38)

3.2.2. Objective Function and Constraints

The operational risk of a power system should also be one of the concerns for the ISO. The
operational risk in this paper includes the curtailment of IRESs and compulsory load shedding; it is
assumed that other contingencies such as failures of transmission lines and outages of generating units
are handled by reserves. From the description above, CVaR can properly measure the tail risk and is
regarded as an appropriate approach to integrate the inherent risk management problem in the unit
commitment and dispatch procedures [28].

The insufficiency of upward ramping capability (i.e., ∆Dnet
t > f up

t > 0) may result in the compulsory
load shedding, while the shortage of downward ramping capability (i.e., ∆Dnet

t < − f dn
t <0) will give rise

to the curtailment of IRESs. The penalty for curtailment of IRESs and the compensation for compulsory
load shedding can be regarded as a loss to the ISO, and the operational risk in such extreme cases can
then be quantified by the CVaR.

In order to minimize the operational risk of the real-time operation for the time duration concerned,
the objective function of the lower level model is formulated in Equation (39) following Equation
(36). Equations (40)–(42) describe the linearization of the max function in Equation (38). For a given
distribution of ∆Dnet

t = Dnet
t+1 − Dnet

t , deterministic samples can be generated by the Latin Hypercube
Sampling method with sample points equally spaced on the probability scale, so the fairness and
transparency of the dispatching outcomes can be retained. Equations (5) and (6) are replaced by
Equations (43) and (44), in which the demanded ramping capabilities are decision variables of the
lower-level optimization problem. The lower bounds of the variables are given in Equations (45)
and (46). Pursuing economic benefits in the upper-level problem may lead to a large risk; constraint
Equation (47) is therefore imposed to limit the risk to an acceptable level. The variables placed at the
end of these equations are the Lagrange multipliers for the corresponding constraints.
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{
f up
t , f dn

t

}
∈ argmin

T∑
t=1

αt +
1

Nsam(1− β)

Nsam∑
s=1

lt,s

 (39)

lt,s ≥ Ccom
(
∆Dnet

t,s − f up
t

)
− αt : κup

t,s (40)

lt,s ≥ −Cpen
(
∆Dnet

t,s + f dn
t

)
− αt : κdn

t,s (41)

lt,s ≥ 0 : κt,s (42)

Ng∑
k=1

rup
k,t +

Na∑
n=1

qup
n,t +

Ng∑
k=1

Tstart
k∑

z=1

(
Pstart

k,z+1 − Pstart
k,z

)
ustart

k,t−z+Tstart
k +2

≥ f up
t : µup

t (43)

Ng∑
k=1

rdn
k,t +

Ng∑
k=1

Tshut
k∑

z=1

(
Pshut

k,z − Pshut
k,z+1

)
ushut

k,t−z+2 ≥ f dn
t : µdn

t (44)

f up
t ≥ max

{
Dnet

t+1 −Dnet
t , 0

}
: τup

t (45)

f dn
t ≥ max

{
Dnet

t −Dnet
t+1, 0

}
: τdn

t (46)

T∑
t=1

αt +
1

Nsam(1− β)

Nsam∑
s=1

lt,s

 ≤ Rac : ε (47)

3.3. Solution Methology

Mathematically, the proposed RTUC/RTED model in Sections 3.1 and 3.2 is a bi-level mixed-integer linear
programming (MILP) problem, which cannot be solved directly. The KKT optimality conditions are applied to
convert the problem into a single-level programming problem [29]. The Lagrangian function of the lower level
model is given in Equation (48). The equality constraints and the complementary slackness constraints derived
from the Lagrangian function are listed in Equations (49)–(52) and Equations (53)–(60), respectively.

Γ =
T∑

t=1

(
αt +

1
Nsam(1−β)

Nsam∑
s=1

lt,s

)
−

T∑
t=1

Nsam∑
s=1

κ
up
t,s

[
lt,s −Ccom

(
∆Dnet

t,s − f up
t

)
+ αt

]
−

T∑
t=1

Nsam∑
s=1

κdn
t,s

[
lt,s + Cpen

(
∆Dnet

t,s + f dn
t

)
+ αt

]
−

T∑
t=1

µ
up
t

 Ng∑
k=1

rup
k,t +

Na∑
n=1

qup
n,t +

Ng∑
k=1

Tstart
k∑

z=1

(
Pstart

k,z+1 − Pstart
k,z

)
ustart

k,t−z+Tstart
k +2

− f up
t


−

T∑
t=1

µdn
t

 Ng∑
k=1

rdn
k,t +

Ng∑
k=1

Tshut
k +1∑
z=2

(
Pshut

k,z − Pshut
k,z−1

)
ushut

k,t−z+3 − f dn
t


−

T∑
t=1

Nsam∑
s=1

κt,slt,s −
T∑

t=1
τ

up
t

(
f up
t −max

{
Dnet

t+1 −Dnet
t , 0

})
−

T∑
t=1

τdn
t

(
f dn
t −max

{
Dnet

t −Dnet
t+1, 0

})
+ε

[
T∑

t=1

(
αt +

1
Nsam(1−β)

Nsam∑
s=1

lt,s

)
−Rac

]

(48)

∂Γ
∂αt

= 1−
Nsam∑
s=1

κ
up
t,s −

Nsam∑
s=1

κdn
t,s + ε = 0 (49)

∂Γ
∂lt,s

=
1

Nsam(1− β)
− κ

up
t,s − κ

dn
t,s − κt,s +

1
Nsam(1− β)

ε = 0 (50)
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∂Γ
∂ f up

t
= −Ccom

Nsam∑
s=1

κ
up
t,s + µ

up
t − τ

up
t = 0 (51)

∂Γ
∂ f dn

t
= −Cpen

Nsam∑
s=1

κdn
t,s + µdn

t − τ
dn
t = 0 (52)

0 ≤ lt,s −Ccom
(
∆Dnet

t,s − f up
t

)
+ αt⊥κ

up
t,s ≥ 0 (53)

0 ≤ lt,s + Cpen
(
∆Dnet

t,s + f dn
t

)
+ αt⊥κdn

t,s ≥ 0 (54)

0 ≤ lt,s⊥κt,s ≥ 0 (55)

0 ≤
Ng∑

k=1
rup

k,t +
Na∑

n=1
qup

n,t +
Ng∑

k=1

Tstart
k∑

z=1

(
Pstart

k,z+1 − Pstart
k,z

)
ustart

k,t−z+Tstart
k +2

− f up
t ⊥µ

up
t ≥ 0 (56)

0 ≤
Ng∑

k=1
rdn

k,t +
Ng∑

k=1

Tshut
k∑

z=1

(
Pshut

k,z − Pshut
k,z+1

)
ushut

k,t−z+2 − f dn
t ⊥µ

dn
t ≥ 0 (57)

0 ≤ f up
t −max

{
Dnet

t+1 −Dnet
t , 0

}
⊥τ

up
t ≥ 0 (58)

0 ≤ f dn
t −max

{
Dnet

t −Dnet
t+1, 0

}
⊥τdn

t ≥ 0 (59)

0 ≤ Rac
−

T∑
t=1

[
αt +

1
Nsam(1−β)

Nsam∑
s=1

lt,s

]
⊥ε ≥ 0 (60)

The complementary slackness constraints are nonlinear and the big-M method is employed
to convert them into linear constraints by introducing ancillary binary variables [29]. To describe
the above constraints in a vector form, let g(x) and η denote all the inequality constraints and their
corresponding Lagrange multipliers, respectively. The complementary slackness constraints presented
in Equations (53)–(60) can then be expressed in a compact way as shown in Equation (61). With the
introduced binary variables θ, constraints Equation (61) can be replaced by Equations (62) and (63), in
which I is a column vector with all elements being ones.

0 ≤ g(x)⊥η ≥ 0 (61)

0 ≤ g(x) ≤M(I− θ) (62)

0 ≤ η ≤Mθ (63)

The risk-limiting RTUC/RTED model considering FRPs provided by various flexibility resources
proposed in this paper is summarized in Equation (64). It is an MILP problem, which can be solved by
commercial solvers.

max J =
T∑

t=1
∆t

Nug∑
m=1

πm,tdm,t −
Na∑

n=1
λn,tqn,t

− T∑
t=1

Ng∑
k=1

(
Cstart

k ustart
k,t + Cshut

k ushut
k,t + Cfixed

k udisp
k,t + cenergy

k,t

)
−

T∑
t=1

Na∑
n=1

λ
up
n,tq

up
n,t −

T∑
t=1

Ng∑
k=1

(
γ

up
k,t rup

k,t + γdn
k,t rdn

k,t

)
s.t. (2) − (4) (10) − (33) (49) − (60)

(64)

3.4. Evaluation Approach

Since the forecast of user load demands (Dm,t or Dtotal
t ) and the available power outputs from

IRESs (Oh,t or Ototal
t ) are not completely accurate, errors exist in the forecast of the net load in the

future periods. The forecasted user demands and power outputs from IRESs can be expressed by
random variables, each following a normal distribution [3,15,23,30]. By assuming that the overall load
demand Dtotal

t and the available power output from IRESs Ototal
t are two mutually independent normal

distributions, the net demand Dnet
t = Dtotal

t − Ototal
t is also a normal distribution, whose expectation

and variance can be calculated by Equations (65) and (66), respectively.
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E
(
Dnet

t

)
= E

(
Dtotal

t

)
− E

(
Ototal

t

)
(65)

V
(
Dnet

t

)
= V

(
Dtotal

t

)
+ V

(
Ototal

t

)
(66)

Since the net load is a variable that follows a certain distribution and its exact value cannot be
known in advance, the net load is simulated using simulation. Different results can be achieved by the
same dispatch scheme under different simulated scenarios. As mentioned previously, the shortage
of upward or downward ramping capability may result in the compulsory load shedding or the
curtailment of IRESs, respectively. Therefore, the lack of operational flexibility of a power system
can be measured by the amount of the shed load or curtailed power output from IRESs in a given
time duration.

The impact of FRPs on the operational flexibility of a power system and the impact of other factors
on the system flexibility with FRPs will be illustrated in this paper by simulating the actual dispatch
process on randomly generated scenarios. Specifically, the RTUC/RTED model is rolled forward in
different scenarios, and then the probability-weighted values of the social surplus, the actually realized
operation cost, and probabilities and quantities of the load shedding as well as the curtailment of IRESs
can be attained under different operation conditions.

Please note that this paper does not focus on the forecasting methods for user demand and IRES
power output; they are assumed given as input parameters. The steps for generating scenarios by
the Latin Hypercube Sampling method [30] and the fast forward method [31] are executed as follows,
where each scenario provides a vector of overall load demand (i.e., Dtotal

t ) and a vector of the overall
available power output from IRESs (i.e., Ototal

t ) at t.

(a) A baseline of the overall load demand and a baseline of the overall available power output from
IRESs are given.

(b) Samples for the overall load demand and the overall available power output from IRESs in each
time period are generated by using the Latin Hypercube Sampling method according to their
probability distributions.

(c) Randomly scramble the order of sample points in each period, and then Nscen representative
scenarios are selected based on the fast forward selection method. The probability ρs of each
selected scenario is also obtained from the fast forward method.

(d) The overall load demand Dtotal
t and overall available power output from IRESs Ot are allocated to

Dm,t, Qn,t and Oh,t at different buses, each following a predetermined proportion.

During the actual system operations, the ISO continuously runs the proposed RTUC/RTED model.
At the beginning of the daily system dispatching (i.e., t = 1), the unit commitment at t = 1 should have
been determined in the previous period with the dispatch result in the previous period (i.e., t = 0)
used as the boundary condition. Therefore, the RTUC/RTED model shown in Equation (64) solves
the economic dispatch for t = 1, 2, . . . , T and the unit commitment for subsequent t = 2, 3, . . . , T,
but only the economic dispatch results for t = 1 and the unit commitment results for t = 2 are
practically implemented following the typical rolling horizon manner. Then the model moves to the
next period. Note that the operating states of conventional units with a long start-up/shut-down
time (e.g., several hours) should have been determined in the day-ahead market and thus remain
unchanged in the RTUC/RTED.

It should be noted that in the actual dispatch process used by the ISO, the RTUC and RTED may be
deployed in different frequencies. For example, in CAISO the RTUC is deployed in a 15-min resolution
while the RTED in a 5-min resolution, which reduces the efficiency requirement for the RTUC and the
computation burden for the RTED. However, for programming simplicity the RTUC and RTED are
always executed together in this paper, which has no impact on the conclusions obtained except that it
requires more computation time.
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4. Case Studies and Numerical Results

The method proposed in this paper is first applied to a modified IEEE 14-bus power system
in one-hour duration. Based on simulation results, the impacts of FRPs and other factors on the
operational flexibility of the power system are illustrated and analyzed. Finally, a case study of an
actual power system is conducted to demonstrate the potential for practical applications.

The modified IEEE 14-bus power system consists of 14 buses, 20 branches, five generating units
and 11 loads. Among all the units, G1 is the base-load unit with smallest ramping rates and operation
cost and offers a lowest bidding price for energy production. G2 is a quick start unit with highest
ramping rate but also with a highest operation cost, which gives rise to a higher bidding price for
energy production. G3, G4 and G5 are conventional generating units with medium ramping rates and
operation cost.

The bidding prices for hourly provision of FRPs of generating units are assumed to be 10% of their
bidding prices for the energy production. An IRES generating unit with zero marginal energy production
cost is added to bus 14 and an agent with 15 MW IL capacity at a bidding price of 70 $/MWh is placed on
bus 4. Load on each bus is assumed to have only one user group but with different willingness-to-pay
for electricity. Parameters of generating units and loads are listed in Tables 1 and 2, respectively.
Interested readers are referred to the website http://www.ee.washington.edu/research/pstca/ for the
data of branches in the system. Users will be penalized if they are incapable of following the dispatch
signals but are not motivated to resume power consumption immediately after performing responses.
Moreover, the capacity of IL usually cannot be called too frequently, so Vup

n is set to infinity while Vdn
n

is assumed to be 0.2 Qn,t. Since the online capacities of IL are usually determined in the day-ahead
market, Qn,t is set to be a constant for the time duration.

The clearing granularity of the RTED is set as 5 min (i.e., ∆t = 5 min and T = 12) in line with the
current market practice [15]. The 5-min forecasted overall user load and the overall available IRES
power output are presented in Figure 2. The forecasted net load is also presented in Figure 2. As can
be seen, the net load profile is fluctuant in Figure 2. Although in reality the net load is unlikely to be so
volatile within an hour, this is fabricated this way in order to illustrate the effects of FRUs and FRDs.

There are further assumptions adopted in this paper: (a) The proportions of Dm,t in Dtotal
t are

constant (i.e., Dm,t = am

(
Dtotal

t −

Na∑
n=1

Qn

)
). (b) Since the network constraints consider DC power flows,

the power factor in the whole system is assumed to be a constant (e.g., 0.9). (c) All bidding prices
are constant for the time duration concerned. (d) The standard deviations (forecast errors) of Dtotal

t
and Ototal

t are 1% and 10% of the expected values, respectively. (e) The compensation price for load
shedding and the penalty price for the IRES curtailment are both set as 500 $/MWh.
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Table 1. Parameters of generating units.

Unit
k Bus Pmax

(MW)
Pmin
(MW)

g0
(MW)

Rup/Rdn

(MW/5 min)
Tstart Tshut bt

($/MWh)
γup

t /γ
dn
t

($/MW)
Cstart

($)
Cshut

($)
Cfixed

($)

G1 1 100 50 100 2 - - 50 0.4167 - - 0
G2 2 60 18 0 8 3 2 100 0.8333 3000 250 0
G3 3 100 40 100 3 - - 60 0.5 - - 0
G4 6 80 30 80 5 - - 80 0.6667 - - 0
G5 8 60 25 25 5 - - 90 0.75 - - 0

IRES 14 100 0 35 - - - 0 - - - 0

Table 2. Parameters of loads.

User Group m Bus d0 (MW) am (%) Willingness-to-Pay
($/MWh)

1 2 28.79 8.86 140
2 3 124.96 38.45 142
3 4 * 58.51 13.39 144
4 5 10.08 3.10 146
5 6 14.86 4.57 148
6 9 39.13 12.04 150
7 10 11.94 3.67 152
8 11 4.64 1.43 154
9 12 8.09 2.49 156
10 13 19.23 5.92 158
11 14 19.77 6.08 160

* With IL connected.

All the tests are implemented on Matlab R2014a, and all the MILP problems are coded and solved
by YALMIP [32] and Gurobi.

4.1. The Role of FRPs in Enhancing the Operational Flexibility

In the simulation, it is set that Nscen = 30 and scenarios are generated based on the data in Figure 2.
One can then calculate the expectations of the total operation cost, the social surplus, probabilities of
load shedding and IRESs curtailment, and quantities of the shed load and the curtailed IRES in the
scenarios with and without FRPs, respectively. The simulation results are given in Table 3. In the
scenarios with FRPs, three models (fixed FRP demand, varied FRP demand and the risk-limiting model
proposed in this work) are adopted for comparison. In the model with fixed FRP demand, the values
of Fup

t and Fdn
t are set as 10 MW. In the model with varied FRP demand, the FRP requirements are

determined by the confidence interval of the forecasted net load.
It can be seen from Table 3 that integrating an appropriate amount of FRPs (considered by all

three models) in the RTUC/RTED can reduce the expected values of the probabilities and quantities of
IRESs curtailment and load shedding in most cases. However, a higher cost is incurred accordingly,
which is mainly reflected by the start-up cost and operation cost of the G2. It can also be observed
from the quantity of the shed load that a fixed FRP demand cannot handle the variation in the net load
well and sometimes may worsen the situation.

A typical scenario is generated for elaboration. The curves of the forecasted and actual net load
are shown in Figure 3. As can be seen, the forecast is accurate in most time periods except some periods
such as t = 4, 5, 9, and 10. Furthermore, whether there will be an error in the forecast for the actual
overall load and IRESs output in period t will not be known until it is very close to time t. If the forecast
is completely accurate, then despite the fluctuation of the net load curve, the IRESs curtailment or
load shedding can be avoided even though FRPs are not considered in the RTUC/RTED. As a baseline,
Table 4 below first displays the power outputs of generating units and the IL in each period when the
forecasts for the net user load and IRESs output is accurate.
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Table 3. Simulation results with and without flexible ramping products (FRP).

without FRP
Fixed FRP
Demand

(Fup
t /F

dn
t = 10)

Varied FRP Demand
(50% Confidence Interval)

Risk-Limiting
(β = 0.8, Rac = 1500)

Risk-Limiting
(β = 0.9, Rac = 1500)

Duration of G2 being dispatchable (∆t) 0 0 3 0 2
Energy provided by G2 (MWh) 0 0 4.7531 0 3.3530

Total operation cost ($) 19,682.90 19,832.95 22,765.42 19,892.30 22,920.93
Social surplus ($) 29,164.69 29,014.00 26,101.67 28,986.53 25,957.90

Probability of IRESs curtailment
(counted in periods) 0.0404 0.0351 0.0008 0.0197 0.0078

Probability of IRESs curtailment
(counted in scenarios) 0.4280 0.3774 0.0097 0.2366 0.0938

Quantity of curtailed IRES (MWh) 0.1249 0.0999 0.0005 0.0487 0.0137
Probability of load shedding

(counted in periods) 0.0959 0.0894 0.0279 0.0000 0.0000

Probability of load shedding
(counted in scenarios) 0.9628 0.8842 0.2903 0.0000 0.0000

Quantity of shed load (MWh) 0.2232 0.2277 0.0839 0.0000 0.0000
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Table 4. Power outputs of generating units and IL on the condition of accurate predictions with
no FRPs.

t 1 2 3 4 5 6 7 8 9 10 11 12

G1 (MW) 100 100 100 100 100 100 100 100 100 98 100 100
G2 (MW) 0 0 0 0 0 0 0 0 0 0 0 0
G3 (MW) 100 100 100 100 100 100 100 100 97 94 97 100
G4 (MW) 75 70 75 80 79 74 69 64 59 54 53 58
G5 (MW) 25 25 28 33 38 33 30 27 25 25 25 27
IL (MW) 5 10 11 15 15 14 11 8 5 2 15 15

When errors are present in the forecast of user load and IRESs output, IRESs curtailment or load
shedding may occur. According to Figure 3, at t = 3 the forecast increase in the net load for the next
time period is +14 MW. G4, G5 and IL with the highest marginal costs can provide the required 14 MW
upward ramping capability, so the ISO will not lower the output of the units with lower marginal costs
to retain more upward ramping capability. However, at t = 4 the net load turns out to be 2 MW more
than the forecasted value, resulting in an upward ramping capability demand of 16 MW instead of the
expected 14 MW. Therefore, in order to maintain the power balance, the ISO has to shed 2 MW user
load demand. A similar situation occurs at t = 5 when 5 MW upward ramping capability cannot meet
the 6 MW actual demand. Similarly, at t = 10 when the 13 MW downward ramping capability cannot
meet the 15 MW actual demand, which incurred IRESs curtailment. In total, 0.1667 MWh IRES power
output is curtailed, and 0.4167 MWh load demand is shed for the time duration considered.
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The actual power outputs of generating units and IL in the typical scenario where β = 0.9 and
Rac = $1500 are shown in Table 5. Taking the uncertainty into consideration, upward and downward
ramping products exceeding the forecasted variations in the net load are procured in order to contain
the operational risk. The actual demand and supply of FRUs and FRDs are displayed in Figure 4,
in which FRU is represented by the red curve in the positive domain and FRD is represented the red
curve in the negative domain. It should be clarified that G2 only provides FRP from t = 4 to t = 5,
though it provides ramping capabilities during its start-up or shut-down processes.

As can be seen from Figure 4, the outline of the demanded FRP capacity resembles the curve
of the net load. Based on the FRP demand calculated, it is decided to start the G2 with the highest
ramping rate at t = 2 and the start-up process ends at t = 4. The start-up of G2 endows the system
with adequate resources in response to the peak in the net load. Moreover, the upward ramping
capabilities of G2 used in the peak period can then be converted into downward ramping capabilities
in the valley period, which brings more flexibility in the real-time dispatch. The integration of FRP in
the RTUC/RTED enhances the flexibility of the system to avoid load shedding and IRESs curtailment.

Table 5. Actual power outputs of generating units and interruptible load (IL) where β = 0.9 and
Rac = 1500.

t 1 2 3 4 5 6 7 8 9 10 11 12

G1 (MW) 100.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 100.00
G2 (MW) 0.00 0.00 9.00 18.00 26.00 18.00 12.00 6.00 0.00 0.00 0.00 0.00
G3 (MW) 100.00 97.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.00 100.00 100.00
G4 (MW) 75.00 75.00 75.00 70.00 65.00 60.00 55.59 53.59 48.59 45.59 50.59 55.59
G5 (MW) 30.00 35.00 30.00 30.00 30.00 30.00 30.00 30.00 29.00 25.00 28.83 29.41
IL (MW) 0.00 0.00 0.00 12.00 15.00 13.00 12.41 9.41 6.41 3.41 10.59 15.00
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Although the procurement of FRPs aims at alleviating load shedding and IRESs curtailment
and both of them can be avoided in the typical scenario, the complete elimination of load shedding
and IRESs curtailment is not the primary goal. The FRP requirement calculated by the proposed
risk-limiting model allows load shedding or IRESs curtailment but tries to contain the operational
risk to an acceptable level, in terms of the compensation for load shedding and the penalty for IRESs
curtailment. For example, the required downward ramping capability at t = 9 is 14 MW, which is less
than the actual demand 15 MW at t = 10. However, the requirements of downward ramping capabilities
in the previous periods still maintain some flexibility, so as to cope with unexpected variation in the
net load.
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The requirements of ramping capabilities are determined by the tradeoff between risk and
cost. In the real-time dispatch, the ISO doesn’t maintain as many FRPs as possible. For example,
the maximum downward ramping capabilities that can be provided from t = 6 to t = 8 are 24 MW,
but the procured capacities are only 21 MW. In other words, the ISO chooses to save the cost of
procuring more ramping capabilities and bear the risk of not procuring them. This implies that the ISO
may be willing to take the risk of having insufficient ramping capabilities and paying the compensation
for load shedding and the penalty for IRESs curtailment, because the occurrence probability of an
extremely adverse event is at most 1-β. What’s more, procurement of ramping capabilities less than
the actual demand may not necessarily lead to load shedding or IRESs curtailment according to the
example of the typical scenario. In other words, the measurement of the operational risk considers
the worst-case scenario, i.e., the procured ramping capabilities are the only resources that the ISO can
utilize to cope with unexpected variation in the net load.

From the analyses above, it can be seen that a given amount of variability of the IRES power output
could amplify the fluctuation of the net load in the system, which requires the units to adjust frequently
and thus brings difficulties to the dispatch decisions. When the variability of IRES output is high,
the error of the net load forecast will be high, resulting in an insufficiency of system flexibility, which
may lead to IRESs curtailment or load shedding. If an appropriate amount of FRP is integrated into the
RTUC/RTED, the operational flexibility of the system can be enhanced with better accommodation of
IRESs. Further, the curtailment of IRESs or load shedding can be alleviated or avoided at the expense
of higher operation cost. The increase in operation cost of the system after incorporating FRPs into
the RTUC/RTED mainly comes from the output reduction of the units with lower marginal costs to
obtain the upward ramping capability, or the output increase of the units with higher marginal costs
(including starting offline units) to obtain downward ramping capabilities.

It should be noted that a model considering varied FRP demands can also achieve a satisfactory
result as the proposed risk-limiting model. For example, if Ut in Equations (7) and (8) is calculated by

Ut = 0.67
√

V
(
Dnet

t+1 −Dnet
t

)
where the coefficient 0.67 stands for a 50% confidence level for the normal

distribution, then a decent result can also be obtained. This model is currently widely used and with
an appropriate confidence level it can greatly enhance the operational flexibility. It is conceivable
that the ISO will be inclined to adopt a high confidence level to avoid the load shedding or the IRESs
curtailment. However, adopting a large confidence level to cover more uncertainties of the net load
is uneconomical with diminishing marginal utility and may artificially cause insufficiency of system
flexibility in the case of limited resources. More importantly, it is difficult for the ISO to determine the
confidence level based on its preference for economy or aversion to risk, since the confidence level
is not directly linked with revenue or cost. In the risk-limiting model proposed in this paper, all the
parameters are in monetary value. The preference for economical performance or aversion to risk can
be represented by the acceptable extreme loss and the confidence level. The ISO can just determine the
Rac and the demand for FRPs will be automatically determined.

4.2. Effects of the Confidence Level in CVaR on the Operational Flexibility

As described above, CVaR can be used to measure the extreme loss. According to the definition of
CVaR, the probability that the loss is greater than CVaR is at most 1-β and there is a positive correlation
between the confidence level β and CVaR. For a fixed acceptable extreme loss for the ISO, adopting
a larger β represents an attempt of the ISO to contain the loss under Rac in more extreme situations.
In other words, a larger β indicates a stronger aversion to the risk. For a fixed confidence level, adopting
a smaller Rac also indicates a stronger aversion to the risk. On the contrary, adopting a small β or a
large Rac indicates a more neutral attitude towards the risk. In order to analyze the impact of the
confidence level β on the dispatch results, sensitivity analysis is conducted. The simulation results
under different β are presented in Figures 5 and 6, in which Rac = $1500. For the scale of the figure,
the total operation cost when β = 0.9 is not plotted in Figure 6.
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As can be seen from Figure 5, when β is less than 0.6, the probabilities and the quantity of IRESs
curtailment and load shedding (MWh) remain at a relatively constant level. The reason lies in that the
ISO focuses on economic performance and is willing to tolerate a higher risk. The total operational cost
therefore increases slowly, as presented in Figure 6. When β is equal to or greater than 0.6, the aversion
to risk begins to predominate such that the cost of maintaining FRPs increases much faster, and the
probability and the quantity of load shedding decline accordingly. The turning point appears when β
is greater than 0.7. Load shedding is completely avoided with β ≥ 0.8 and the IRESs curtailment is
close to zero with β = 0.9. A surge in the operation cost is accordingly incurred in order to control the
operational risk under the acceptable level.
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With a stronger aversion to the operational risk, although the operational flexibility of the system
is enhanced, the total operation cost increases. The increase in the operation cost of the system mainly
comes from the output reduction of the units with lower marginal costs to obtain the upward ramping
capabilities, or the output increase of the units with higher marginal costs to obtain downward ramping
capabilities. When β reaches 0.9, according to Table 3, the quick start unit G2 is started and the total
cost will be much higher due to its start-up and shut-down cost. What is more, a decreasing Rac with a
fixed β will have the same effect as an increasing β with a fixed Rac.

4.3. A Case Study on Guangdong Power Grid in China

In order to further demonstrate the potential for practical applications, the method proposed is
applied to a regional power system (on 220 kV and 500 kV level) in Guangdong Province in south
China in 24-h duration. The regional power system mainly comprises Guangzhou city, the capital of
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Guangdong Province, and consists of 130 buses, 162 (equivalent) branches, 40 (equivalent) generating
units and 92 loads. The total load demand in this regional system is above 22,000 MW in the peak
period, and more than half of the load demand is supplied by high voltage direct current (HVDC)
transmission lines from neighboring provinces (e.g., Yunnan Province), whose input power cannot be
adjusted quickly since it is not directly dispatched by the Power Dispatching Center in Guangdong
Province. A gas turbine with 780 MW capacity was just installed in 2018 in Guangzhou, acting as a
quick start unit. Considering the facts that the available photovoltaic power output is still a lot less
and the demand response is still on the pilot stage in Guangzhou, a wind farm with 2,000 MW capacity
and four agents with 125 MW IL capacity each (500 MW in total) are added into the system.

The clearing time period of the RTED adopted by the power dispatching center in Guangdong
Province is 15 min (i.e., ∆t = 15 min), and 96 dispatch results will therefore be generated in one day.
In the current UC/ED program, the objective is to minimize the total operation cost since the demand
side is only required to submit electricity demand to the dispatch center, but in the near future the
demand side will be allowed to bid quantities and prices in the electricity market and the objective will
become maximization of social surplus. The typical daily load demand of Guangdong in summer is
shown in Figure 7, with the typical daily power output from a wind farm in Guangdong included [33];
they are used to represent the forecasted overall load demand and the power output from IRESs after
scaling. Other assumptions specified for simulations are the same as before.

It can be observed from Figure 7 that the power outputs from wind turbines are very fluctuant
and are comparatively higher at night. On the contrary, the total load demand is at its valley in early
morning. At 6 am when people begin to get up, the load demand level reaches the valley and then
quickly climbs up when people start to work. The steep change in the load demand requires generation
units to reduce their power outputs, but at the same time to remain online for providing upward
ramping capabilities. The fluctuating wind power output within an hour also poses a challenge to the
regulation capabilities of generating units.
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Simulation results are presented in Table 6. The curtailment of IRESs mainly occurs during 4–6 am,
this is because most generating units have low power outputs (close to their minimum technical
outputs) and only a few units (the baseload units) have high power outputs in this period. Therefore,
the power system has abundant upward regulation capability but tight even insufficient downward
regulation capability. If there is a sudden increase in the wind power output at load valley periods,
the power system may have to curtail some wind power output, if the downward regulation capability
is insufficient. Moreover, the DR resources in the power system can help to cope with the rapid increase
in the net load but can hardly deal with the decrease in the net load.
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Table 6. Simulation results with and without FRP.

without FRP Risk-Limiting
(β = 0.9, Rac = 5000)

Risk-Limiting
(β = 0.9, Rac = 104)

Risk-Limiting
(β = 0.9, Rac = 5 × 104)

Total operation cost ($) 23.60 × 106 23.88 × 106 23.88 × 106 23.87 × 106

Social surplus ($) 48.20 × 106 47.82 × 106 47.82 × 106 47.92 × 106

Probability of IRESs curtailment
(counted in periods) 0.0729 0.0417 0.0521 0.0521

Quantity of curtailed IRES (MWh) 194.51 125.30 139.02 161.60
Probability of load shedding

(counted in periods) 0.0104 0 0 0

Quantity of shed load (MWh) 10.70 0 0 0

From the dispatching results with FRPs, it is shown that the load demand at night is allocated on
generating units more evenly. In other words, if generating units with higher production costs have
higher power outputs at night, then the power system will have more room for addressing the decrease
of the net load. It should be noted that the quick start unit is not started, and this means that the power
system is of insufficient downward capacities rather than downward ramping rates. Starting an extra
generating unit can increase the total ramping rate of the system but cannot provide extra room for
downward regulation. With FRPs considered in the RTUC/RTED, the curtailment of IRESs cannot
be fully avoided, although the problem is indeed alleviated. It can therefore be concluded that this
regional power system cannot completely accommodate 2,000 MW wind power output even with FRPs
integrated. To achieve complete accommodation of IRESs more flexibility resources are demanded.

5. Conclusions

The integration of a high proportion of IRESs into a power grid results in higher variability
and uncertainty to the power system, and FRPs provide a new alternative for accommodating the
high-proportion IRESs. This paper proposes a bi-level risk-limiting RTUC/RTED model considering
FRPs provided by different flexibility resources, whose objective is to maximize the social surplus
while minimizing the operational risk. The proposed model determines the FRP requirement based on
the ISO’s preference for operational efficiency as well as its aversion to the operational risk. Numerical
results demonstrated that the implementation of FRPs can help to cope with the unexpected variations
in the net load at the expense of higher operation cost. A dynamic FRP requirement can handle the
variations in the net load better than the static one, and the proposed risk-limiting model in this paper
may be adopted by the ISO to manage variabilities on both the supply and demand sides. In our future
work, this study will be extended to incorporate more flexibility resources such as battery energy
storages, electric vehicles, and power-to-gas facilities.
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Nomenclatures

Indexes
h Index for intermittent renewable energy generating units
i Index for buses
j Index for branches
k Index for generating units
m Index for user groups
n Index for the interruptible load agents
s Index for samples or scenarios
t Index for dispatch time periods
z Index reused in constraints
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Parameters
am The proportion of the load demand of user group m in the load demand of all the user groups
bk,t Bidding price of energy production of unit k at period t (in $/MWh)
dm,0 Initial load demand of user group m at the t = 0 period (in MW)
gk,0 Initial power output of generating unit k at the t = 0 period (in MW)
Ccom Compensation price for load shedding (in $/MWh)
Cfixed

k Fixed cost of generating unit k for a time period (in $)
Cshut

k Shut-down cost of generating unit k (in $)
Cstart

k Start-up cost of generating unit k (in $)
Cpen Penalty price for IRES curtailment (in $/MWh)
Dm,t Maximum power demand of user group m at period t (in MW)
Dnet

t Actual (when t = 1) or forecasted (when t > 1) net load demand of the power system at period t, Dnet
t = Dtotal

t − Ototal
t (in MW)

Dtotal
t

Actual (when t = 1) or forecasted (when t > 1) total load demand of all users (including interruptible load participants) in the

power system at period t, Dtotal
t =

Nug∑
m=1

Dm,t +
Na∑

n=1
Qn,t (in MW)

Fup
t /Fdn

t Demanded upward/downward ramping capability for period t (in MW)
Fmax(Fjmax) Rated flow limit matrix of branches with elements Fjmax (in MW)
H(Hji) Power transfer distribution factor matrix of the system with elements Hji
M A big number used in constraints, e.g., M = 999,999
Na Number of the interruptible load agents
Nb Number of buses
Nbr Number of branches
Ng Number of generating units
Nres Number of intermittent renewable energy generating units
Nscen Number of generated scenarios
Nsam Number of samples in the approximation of the CVaR integral
Nug Numbers of user groups

Ototal
t Overall available power output from all intermittent renewable energy generating units in period t, Ototal

t =
Nres∑
h=1

Oh,t (in MW)

Oh,t Available power output of intermittent renewable energy generating unit h in period t (in MW)
Pkmax/Pkmin Maximum/minimum technical output of generating unit k (in MW)
Pstart

k,z /Pshut
k,z Power output at the beginning of the zth period of the start-up/shutdown process (in MW)

Qn,t Available capacity of interruptible load agent n in period t, normally determined in the day-ahead electricity market (in MW)
Rac Acceptable extreme loss for ISO (in $)
Rup

k /Rdn
k Maximum ramping up/down rate of unit k during the dispatchable state (in MW/h)

T Number of dispatch time periods
Tstart

k /Tshut
k Minimum number of time periods required for start-up/shut-down of generating unit k

Vup
n /Vdn

n Maximum upward/downward changing rate of the interruptible load agent n (in MW/h)

Ut
An uncertainty factor considered in the calculation of demanded ramping capability at period t, whose value is related to the
confidence level

β Confidence level in the conditional value-at-risk
γ

up
k,t /γdn

k,t Bidding price of the upward/downward ramping products provided by generating unit k at period t (in $/MW)
λn,t Bidding price of the virtual power output provided by interruptible load agent n in period t (in $/MW)
λ

up
n,t Bidding price of the upward ramping products provided by interruptible load agent n in period t (in $/MW)
πm,t Willingness-to-pay for electricity by user group m (in $/MWh)
ρs Probability of scenario s
∆Dnet

t , ∆Dnet
t,s Variation in Dnet

t and a sample of ∆Dnet
t respectively (in MW)

∆t Duration of a dispatch time period (in h)
Variables
cenergy

k,t Energy production cost of generating unit k in period t (in $)
dm,t Load demand of user group m in period t (in MW)

ek,t
Energy scheduled for generating unit k in period t, excluding the energy production during the start-up or shut-down process
(in MWh)

f up
t / f dn

t Demanded upward/downward ramping capability for period t (in MW)

gk,t
Total power output of generating unit k at the end of period t, including the power trajectories during the start-up or shut-down
process (in MW)

lt,s Auxiliary variable used in the lower level problem
oh,t Dispatched power output of intermittent renewable energy generating unit h in period t (in MW)
pk,t Power output over the minimum technical output of generating unit k at the end of period t (in MW)
pnode

t (pnode
i,t ) Vector of nodal power injection with elements pnode

i,t (in MW)
qn,t Virtual generation output of the interruptible load agent n in period t (in MW)
qup

n,t Upward ramping products provided by the interruptible load agent n in period t (in MW)
rup

k,t /rdn
k,t Upward/downward ramping products provided by generating unit k in period t (in MW)

udisp
k,t

Binary operating state variable of generating unit k in period t, with 1 standing for dispatchable (with power output exceeding the
minimum level in the whole period) and 0 otherwise

ushut
k,t Shut-down variable, with 1 marking the beginning of the shut-down process of generating unit k in period t

ustart
k,t Start-up variable, with 1 marking the completion of the start-up process of generating unit k in period t
αt Value-at-risk at period t (in $)
κ

up
t,s , κdn

t,s , κt,s, µ
up
t ,

µdn
t , τup

t , τdn
t , ε

Lagrange multipliers for constraints
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Functions
E(·) Expectation of a random variable
Gk(ek,t) Bidding function as well as the energy production cost of generating unit k in period t (in $)
P{·} Probability of an event
V(·) Variance of a random variable
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