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Abstract: Electromagnetic transients are responsible for overvoltages and overcurrents that can
have a negative impact on the insulating elements of the electrical transmission system. In order
to reduce the damage caused by these phenomena, it is essential to accurately simulate the effect
of transients along transmission lines. Nonuniformities of transmission line parameters can affect
the magnitude of voltage transients, thus it is important to include such nonuniformities correctly.
In this paper, a frequency domain method to compute transient voltage and current profiles along
nonuniform multiconductor transmission lines is described, including the effect of time-varying and
nonlinear elements. The model described here utilizes the cascade connection of chain matrices in
order to take into consideration the nonuniformities along the line. This technique incorporates the
change of parameters along the line by subdividing the transmission line into several line segments,
where each one can have different electrical parameters. The proposed method can include the effect
of time-dependent elements by means of the principle of superposition. The numerical Laplace
transform is applied to the frequency-domain solution in order to transform it to the corresponding
time-domain response. The results obtained with the proposed method were validated by means
of comparisons with results computed with ATP (Alternative Transients Program) simulations,
presenting a high level of agreement.

Keywords: electromagnetic transients; nonuniform transmission line; numerical Laplace transform;
time-dependent elements; transmission line modeling

1. Introduction

Electromagnetic transients can produce overvoltages and overcurrents that can have a negative
impact on electric power systems. In order to reduce the potential deterioration or damage due
to this condition, accurate transient simulations are needed [1]. Typically, the transient analysis of
electrical systems is performed by means of two-port models of uniform transmission lines, thus the
voltage/current measurements are available at certain nodes of the network. However, the maximum
transient overvoltages and overcurrents may appear at interior points of the transmission line [2].
In such cases, the traditional simulation methods may not be well suited to correctly analyze this
kind of phenomena. Additionally, nonuniformities can be present along the transmission line in the
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form of parameter variations such as the height of the line or the properties of the terrain; if these
nonuniformities are too prominent, the distribution and magnitude of the voltage and currents can
drastically be affected along the transmission line in comparison with uniform transmission lines (lines
with space-independent per-unit-length parameters) [3,4].

There has been a considerable interest in developing methods to accurately model nonuniform
transmission lines during electromagnetic transients. Previous works have presented line models
applying different techniques such as the numerical Laplace transform, the method of characteristics,
rational approximations, among others, with good results [5–12]. However, in general, these methods
are only able to provide voltage and current information at the ends of the line, which in some cases
may not be enough to correctly analyze the transient behavior of a transmission line [2], such as for
insulation design or protection purposes.

A frequency domain method for the computation of transient voltage and current profiles along
transmission lines was reported in [13,14], and later extended to include time-varying and nonlinear
elements [15]. However, this method cannot be applied to nonuniform transmission lines. In [16],
Laplace-domain and time-domain methods were tested in the computation of transient profiles on
a nonuniform electronic system. It was found that the line model that used the inverse numerical
Laplace transform (INLT) provided the most accurate results. However, the method described in [16]
can only be applied to time-invariant linear systems.

Expanding upon the aforementioned publications, the main contribution of the present paper is
the complete description and verification of a method for the computation of transient voltage and
current profiles along nonuniform transmission lines. This method utilizes a modeling approach
defined in the frequency domain and based on the cascaded connection of chain matrices. Furthermore,
using the superposition technique, the proposed method can include time-dependent and nonlinear
elements (such as switching devices and surge arresters) in the computation of transient profiles along
nonuniform lines, something that has not been conducted in any previously reported research. Since
the line model is defined in the frequency domain, it can take into account the frequency dependence
of electrical parameters in a straightforward manner, providing more accurate results in comparison
with existing methods defined in the time domain.

The method presented here makes use of the inverse numerical Laplace transform [17,18] to
convert the computed frequency domain solution to a time-domain transient response. This method
has strong potential for application in fault location and insulation coordination, with particular
accuracy benefits for lines with prominent nonuniformities, such as river crossings, hilly terrains, and
other substantial sagging conditions, which are commonly encountered in large countries such as
China, Canada, India, Russia, and Brazil. For example, very challenging river crossings are found in
Brazil for overhead lines constructed to connect the power generation in the Amazon Basin to the main
load centers of the country. These river crossings are in the order of 2 km leading to very tall towers
and wide line spans [19]. Accurate fault location under these circumstances requires an appropriate
consideration of wave propagation along nonuniform lines, which can be achieved with the method
described here. Additionally, the proposed method can be expanded to the modeling of other power
system nonuniform elements, such as transmission towers [20] and rotating machines [21].

In order to validate the accuracy of the proposed method, the results obtained are compared with
those obtained from simulations performed with ATP (Alternative Transients Program) [22]. In the
ATP simulations, the J. Marti line model [23] was used, and the transmission line was subdivided into
several line segments to allow the connection of measuring probes at internal points of the line, as well
the inclusion of nonuniformities.

The computation of transient profiles along nonuniform transmission lines including nonlinear
and time-varying conditions has not been previously reported, providing an original contribution to
the current state of the art of the topic.
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2. Nonuniform Transmission Line Model for the Transients Profiles Computation

This section describes the transmission line model used to compute the transient profiles as well as
the technique used to include time-varying and nonlinear elements. Additionally, a brief explanation
for the implementation of the INLT algorithm is presented.

2.1. Nonuniform Transmission Line Model

This work introduces the nonuniformities along transmission lines by means of the technique of
cascade connection of chain matrices, as it has been previously shown to be an effective technique for the
simulation of electromagnetic transients when nonuniform transmission lines are considered [11,24].

Initially, the uniform transmission line of Figure 1 is considered. This line can be represented by a
two-port model known as transfer or ABCD matrix model:[

VL(s)
IL(s)

]
=

[
A B
C D

][
V0(s)
I0(s)

]
(1)

where
A = cosh(γL)

B = −Z0sinh(γL)

C = Y0sinh(γL)

D = − cosh(γL)

γ =
√

ZY

(2)

In Equation (2) Z0, Y0, Z, Y, and L are the line’s characteristic impedance, characteristic admittance,
series impedance, shunt admittance and length, respectively. Additionally, the Laplace variable is
defined as s = c + jω, where ω is given by 2π f .
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Figure 1. Uniform transmission line representation. V0 and VL are the voltages of the sending and
receiving node, and I0 and IL are the injected currents at the sending and receiving node, respectively,
and L is the line’s length.

By changing the direction of IL in Figure 1, Equation (1) is modified in the following manner:[
VL(s)
IL(s)

]
=

[
A B
−C −D

][
V0(s)
I0(s)

]
(3)

or in a compact form: [
VL(s)
IL(s)

]
= Φ

[
V0(s)
I0(s)

]
(4)

Matrix Φ in Equation (4) is the chain matrix of the transmission line. Due to the fact that
the currents at both ends of the line have the same direction, multiple transmission lines can be
cascade-connected by using their corresponding chain matrices, as it can be seen in Figure 2.
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Figure 2. Cascaded connection of chain matrices, where Φn, Vn, and In are the chain matrix, sending
voltage, and sending current of the n-th cascade-connected line, respectively.

Figure 2 can also be interpreted as one transmission line subdivided into several smaller line
segments, where each segment is represented by a unique chain matrix with its own independent
electrical properties. Using this approach, it is possible to build a transmission line model that includes
nonuniformities. With this consideration in mind, it can be deduced from Figure 2 that the voltage and
current at the beginning of each line segment and the chain matrix of the same segment can be used to
compute the voltage and current of the next segment:[

V1(s)
I1(s)

]
= Φ1

[
V0(s)
I0(s)

]
[

V2(s)
I2(s)

]
= Φ2

[
V1(s)
I1(s)

]
= Φ2Φ1

[
V0(s)
I0(s)

] (5)

or in a general way: [
VN(s)
IN(s)

]
= ΦNΦN−1 . . .Φ3Φ2Φ1

[
V0(s)
I0(s)

]
(6)

Equation (6) can be used to compute the voltage and current profiles along a nonuniform
transmission line. The transient profiles are computed in a sequential manner, obtaining the voltage
and current at the end of the first line segment from the chain matrix and from the voltages and currents
at the beginning of the same segment; this process is repeated until the voltage and current along the
whole line have been computed. It can also be observed in Equation (6) that V0 and I0 are required as
initial values of the algorithm; in order to compute such values, a two-port admittance representation
of the complete transmission line from the chain matrix ΦFL is defined as:

ΦFL = ΦNΦN−1 . . .Φ3Φ2Φ1 =

[
ΦFL11 ΦFL12

ΦFL21 ΦFL22

]
(7)

[
I0(s)
IL(s)

]
=

[
Yss −Ysr

−Yrs Yrr

][
V0(s)
VL(s)

]
(8)

where
Yss = −Φ−1

FL12ΦFL11

Ysr = −Φ−1
FL12

Yrs = ΦFL21 −ΦFL22Φ−1
FL12ΦFL11

Yrr = −ΦFL22Φ−1
FL12

(9)

V0(s) is obtained by solving (8) for the voltages vector. I0(s) is computed as follows:

I0(s) = YssV0(s) − YrrVL(s) (10)
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2.2. Modeling of Time-Varying Elements

It can be difficult to include time-varying conditions, such as switching maneuvers, when methods
defined in the frequency domain are used to simulate electromagnetic transients. However, the
principle of superposition has demonstrated to be an efficient method to include such conditions in the
frequency domain [25], as explained below.

The closing of a switch can be computed using the circuits presented in Figure 3, which represent
the state of the circuit before and after the closing maneuver. VE, VS, and VR are the voltage at the
source side, at the line’s sending node, and at the line’s receiving node, respectively. The nodal voltage
vector VNL(s) is formed by the three subvectors in Figure 3 as shown below:

VNL(s) =
[

VE(s) V0(s) VL(s)
]T

(11)

and can be obtained from the following expression [11]:

VNL(s) = Ybus−1
0 IN0 + Ybus−1

1 IN1 (12)

Energies 2019, 12, x FOR PEER REVIEW 5 of 16 

 

2.2. Modeling of Time-Varying Elements 

It can be difficult to include time-varying conditions, such as switching maneuvers, when 
methods defined in the frequency domain are used to simulate electromagnetic transients. However, 
the principle of superposition has demonstrated to be an efficient method to include such conditions 
in the frequency domain [25], as explained below. 

The closing of a switch can be computed using the circuits presented in Figure 3, which 
represent the state of the circuit before and after the closing maneuver. VE, VS, and VR are the voltage 
at the source side, at the line’s sending node, and at the line’s receiving node, respectively. The nodal 
voltage vector VNL(s) is formed by the three subvectors in Figure 3 as shown below: 𝑽 (𝑠) = 𝑽 (𝑠) 𝑽 (𝑠) 𝑽 (𝑠)     (11) 

and can be obtained from the following expression [11]: 𝑽 (𝑠) = 𝒀𝒃𝒖𝒔 𝑰 + 𝒀𝒃𝒖𝒔 𝑰    (12) 

  
Figure 3. (a) Transmission line before the closing operation of a switch connected at the sending 
node. (b) Transmission line after the closing operation of a switch connected at the sending node. 

In Equation (12), Ybus0 is the nodal admittance matrix before the switch closing (Figure 3a), 
Ybus1 is the admittance matrix modified by the closing operation (Figure 3b), IN0 contains the 
initially injected currents, and IN1 is the injection current vector due to the switch operation. An 
example of the construction of the nodal admittance matrices Ybus0 and Ybus1 for the transmission 
line in Figure 3 is presented below: 

                 𝒀𝒃𝒖𝒔 , 𝑌 −𝑌 −𝑌−𝑌 𝑌 −𝑌−𝑌 −𝑌 𝑌                   (13) 

If Ybus0 (Figure 3a) is to be built using (13), the elements 𝑌 , 𝑌 , 𝑌 , and 𝑌  would assume 
the following values: 𝑌 = 𝑌 = 𝑌 , where 𝑌  is the open switch’s admittance between 
its poles, ideally 𝑌 = 0. 𝑌 = 𝑌 + 𝑌 , with 𝑌  being the admittance connected at the 
sending node, and 𝑌 = 𝑌 + 𝑌  where 𝑌  represents the self-admittance of the transmission 
line. The matrix Ybus1 (Figure 3b) can be built in a similar way, but replacing 𝑌  by 𝑌 , 
that is, the admittance of the switch when closed. 

The procedure presented above can be extended to any number of changes in the circuit 
topology using the following expression: 

          𝑽 (𝑠) = 𝒀𝒃𝒖𝒔 𝑰 + 𝒀𝒃𝒖𝒔 𝑰  (14) 

where Ybusi and INi are the modified admittance matrix and the injection current vector 
corresponding to the n-th switch operation, respectively. A comprehensive explanation of this 
procedure can be found in [11]. 

V0(s) in (11) is the voltage at the sending node of the line needed in (6) to compute the transient 
voltage and current profiles. Meanwhile, the current at the beginning of the line is computed with 
(10) using V0(s) and VL(s) from (11). 
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(b) Transmission line after the closing operation of a switch connected at the sending node.

In Equation (12), Ybus0 is the nodal admittance matrix before the switch closing (Figure 3a),
Ybus1 is the admittance matrix modified by the closing operation (Figure 3b), IN0 contains the initially
injected currents, and IN1 is the injection current vector due to the switch operation. An example of the
construction of the nodal admittance matrices Ybus0 and Ybus1 for the transmission line in Figure 3 is
presented below:

Ybus0,1


Y11 −Y12 −Y13

−Y21 Y22 −Y23

−Y31 −Y32 Y33

 (13)

If Ybus0 (Figure 3a) is to be built using (13), the elements Y11, Y12, Y21, and Y22 would assume the
following values: Y12 = Y21 = Yswitcho, where Yswitcho is the open switch’s admittance between its poles,
ideally Yswitcho = 0. Y11 = Ys + Yswtcho, with Ys being the admittance connected at the sending node,
and Y22 = YLL + Yswitcho where YLL represents the self-admittance of the transmission line. The matrix
Ybus1 (Figure 3b) can be built in a similar way, but replacing Yswitcho by Yswitchc, that is, the admittance
of the switch when closed.

The procedure presented above can be extended to any number of changes in the circuit topology
using the following expression:

VNL(s) = Ybus−1
0 IN0 +

m∑
i=1

Ybus−1
i INi (14)

where Ybusi and INi are the modified admittance matrix and the injection current vector corresponding
to the n-th switch operation, respectively. A comprehensive explanation of this procedure can be found
in [11].
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V0(s) in (11) is the voltage at the sending node of the line needed in (6) to compute the transient
voltage and current profiles. Meanwhile, the current at the beginning of the line is computed with (10)
using V0(s) and VL(s) from (11).

2.3. Inclusion of Nonlinear Elements

It has been demonstrated that the principle of superposition can be used to overcome the difficulties
of the inclusion of nonlinear components in the frequency domain [25]. This is achieved by means of a
sequence of switching operations.

In order to include a nonlinear element in a simulation performed using a method based in the
frequency domain, first, its nonlinear characteristic curve must be approximated by a piece-wise curve,
as illustrated in Figure 4.
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The element Rn of the n-th linear element from Figure 4 and the voltage Vn are computed as follows:

Rn =
Vre f n+1 −Vre f n

Ire f n+1 − Ire f n
(15)

Vn =
(
−Rn+1Ire f n

)
+ Vre f n+1 (16)

By approximating the v-i characteristic of a nonlinear element as shown above, such an element
can be represented as a network of N parallel-connected branches, as shown in Figure 5.
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In the circuit presented in Figure 5, the switch in the n-th branch operates according to the reference
voltage; it closes when the voltage across nodes j and k goes above Vrefn and it opens when the voltage
drops below Vrefn. It is important to mention that the switches must operate in a successive manner,
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meaning that a switch can only close when the one in the preceding branch is closed, and a switch can
only open when the one in the following branch is open.

When the switch connected to the n-th branch is closed, the equivalent Thevenin resistance of the
circuit in Figure 5 must be equal to the value of Rn, that is, the slope of the n-th linear segment in the
approximation of Figure 4:

Rn =
Rn−1Rxn

Rn−1 + Rxn
(17)

Finally, by solving (17) for Rxn, the value of such resistance can be computed:

Rxn =
Rn−1Rn

Rn−1 −Rn
(18)

Vxn is computed as:

Vxn =
Rn−1Vn −Vn−1Rn

Rn−1 −Rn
(19)

With this approach, it is possible to compute the transient profiles along nonuniform transmission
lines with nonlinear and/or time-varying elements using (6), calculating the voltage and current at
the sending node with (10) and (14), and implementing the nonlinear element model presented in
this section.

2.4. Inverse Numerical Laplace Transform

As the last step, the INLT is applied to the computed transient profiles in the frequency domain
with (6); this is done in order to transform the results to the time domain. This method has proven
to be very accurate for the study of electromagnetic transients [11,24,25]. The implementation of
the INLT algorithm is described below in a brief manner; references [17,18] can be consulted for a
thorough explanation. Considering a time function f (t) as a real and causal function, the inverse
Laplace transform can be written as:

f (t) = Re

 ect

2π

∞∫
0

F(s)e jωtdω

 (20)

In this work, the numerical evaluation of (20) is done considering an odd sampling in the
frequency spectrum (using a spacing of 2∆ω), and normal time steps ∆t in the time domain. With these
considerations in mind, the following definitions for the discrete functions in the time and frequency
domain for N equally spaced samples are made:

fn = f (n∆t)Fm = F(c + j(2m + 1)∆ω) (21)

where n, m = 0, 1, 2, . . . , N − 1 and chat reduces the aliasing errors of the algorithm; in this work, c is
defined as c = 2∆ω.

Additionally, it is necessary to establish finite integration limits for the numerical evaluation of (20),
that is, the maximum frequency Ω and the observation time T. The observation time is computed from:

T =
π

∆ω
(22)

and the following relations can be established:

∆t =
T
N

∆ω =
Ω
2N

=
π
T

(23)
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Finally, by implementing the odd sampling presented in (21) and including a window function
σm, the Laplace transform in (20) can be numerically approximated by:

fn = Re

Cn

N−1∑
m=0

Fmσmexp
(

j2πm
N

)
for n, m = 0, 1, 2, . . . , N – 1 (24)

where:

Cn =
2∆ω
π

exp
(
cn∆t +

jπn
N

)
(25)

In Equation (24), the term inside the brackets corresponds to the fast Fourier transform algorithm;
this allows computing time savings if N is equal to an integer power of two.

3. Test Cases

Three test cases are presented in order to validate the proposed method. The frequency
dependence of the line’s electrical parameters was taken into account by means of the application
of the complex image method to introduce the earth-return impedance, as well as the complex
penetration depth to include the skin effect in the line conductors [26]. The accuracy of the method
was validated through comparisons with measurements from simulations performed with ATP, where
the frequency-dependent J. Marti line model was discretized in several smaller segments to allow the
introduction of nonuniformities and the connection of measuring probes at interior points. The length
of the simulated lines in the test cases was kept short in order to reduce the implementation burden in
ATP; with the proposed method, the length and discretization of the line did not represent a problem.

3.1. Highly Nonuniform Transmission Line

A highly nonuniform three-phase transmission line was considered. The nonuniformity was
included by the sagging of the conductors as shown in Figure 6. The line was excited by an ideal unit
step voltage source (1 p.u.) connected at phase A of the sending node, while all of the other nodes
were left open.
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Figure 6. Three-phase non-uniform transmission line used in the example in Section 3.1. A second-degree
polynomial equation was utilized to approximate the conductors’ height, as presented in [23]. There was
a 10 m separation between the conductors.

Figure 7 presents the transient voltage profile along phase A computed with the proposed method;
in order to include the nonuniformities along the transmission line, it was subdivided into 80 chain
matrices. This figure illustrates the propagation of the traveling waves along the line and how these
waves were reflected when they reached the receiving end. It can also be observed in the transient
profiles that there were periods where negative voltages appeared at some points along the line, which
is not a commonly observed phenomenon when similar simulations with uniform lines are performed.
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Additionally, a comparison at the middle of the line between the transient voltage waveforms obtained
with the proposed method and results from ATP simulations is presented (Figure 8). The simulations
performed with ATP required a time step 10 times smaller than the proposed method to achieve
similar results.Energies 2019, 12, x FOR PEER REVIEW 9 of 16 
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Figure 8. Comparison of transient voltage waveforms at two specific distances between the computed
results with the proposed method (solid lines) and results obtained with ATP simulations (dashed
lines). The solid blue and dashed red lines correspond to voltage measurements at 150 m from the
sending node; the solid green and the dashed orange lines were obtained at 450 m. The oscillations
observed in the results from the ATP simulations are attributed to the error accumulation due to the
discretization of the transmission line [2].

This example was simulated with the proposed method considering 20 and 40 chain matrices.
Figure 9 presents a comparison of voltage measurements at the middle point of the transmission line
from simulations considering 20, 40, and 80 chain matrices. From this comparison, it can be observed
that the curves from the three simulations, in general, have the same shape (curves for 40 and 80
chain matrices are overlapped). However, the curve corresponding to the simulation performed with
20 chain matrices presents some oscillations in comparison with the other two. As it can be seen
with the curves corresponding to 40 and 80 chain matrices, with an increase in the number of chain
matrices used in the simulations, the curves become smoother; however, a further increase in the
number of chain matrices used is barely noticeable. This indicates that although the method’s accuracy
is dependent on the number of chain matrices considered, it does not require a large number of chain
matrices to achieve good results.
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Figure 9. Comparison of transient voltage waveforms at the middle point of the line computed with
different numbers of chain matrices. The curve computed with 20 chain matrices is not as smooth as
the ones computed with 40 and 80.

3.2. Sequential Energization

A 5 km transmission line was used in this case. The nonuniformity was introduced by means of
the line’s sag: there was a transmission tower every 500 m, the conductors’ height was maximum at the
towers (20 m), and the height was minimum at the midspan between towers (15 m). The consideration
for the height’s variation as well as the horizontal separation between conductors was the same as in
the previous example. The line was connected to an AC voltage source (1 p.u.) at the sending node
through a three-phase switch. The switch’s poles operated in a sequential manner with closing times
of 3, 6, and 9 ms in an ABC sequence. The line’s receiving node was left open.

The transient voltage profiles of phases A and B are presented in Figures 10 and 11, respectively.
The comparison with ATP simulations is shown in Figure 12.
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Figure 12. Comparison between the transient voltage computed with the proposed method (blue and
green lines) and those obtained with ATP simulations (red and orange lines) in example 3.2. The
comparisons are made at the middle of the transmission line (2500 m from the sending node) in phases
A and B. A good level of agreement can be observed, but the ATP simulations needed a time step 50
times smaller than the proposed method in order to achieve such results.

3.3. Surge Arrester Operation

This example presents the operation of surge arresters during a direct lightning strike; due to
their v-i characteristic, the arresters were modeled as nonlinear elements as described in Section 2.3.
The same line configuration presented in Section 3.1 was considered. The line was excited by a direct
lightning strike (1.2/50 µs), the impact point was at the phase A of the sending node, and the line was
impedance-matched at both ends in order to avoid reflections. The injected current to the line was
approximated by a double exponential current source defined as:

i(t) = I0

(
e−

t
τ1 − e−

t
τ2

)
(26)

where τ1 = 68.199 µs, τ2 = 0.405 µs, and I0 = 10.37 kA.
Surge arresters were connected to the three phases at the receiving node. The nonlinear

characteristic of the arresters was simulated by means of a five-segment piecewise-linear approximation.
Table 1 presents the v-i coordinates of this representation.
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Table 1. Nonlinear v-i characteristic of the arresters [27].

Vref (kV) Iref (kA)

0 0
484 0.1760
616 0.3226
748 0.7626
836 1.6426
880 12.6426

First, a simulation was performed without surge arresters connected to the line. Figure 13 presents
the transient voltage profile along phase A computed in this simulation. On the other hand, Figure 14
shows the voltage profile along phase A when the arresters were connected at the receiving node of
the line. By comparing Figures 13 and 14, the influence that the surge arresters’ operation had on the
magnitude of the voltages along the line is easily observed. The voltage along the line in Figure 14 was
considerably lower in comparison with the transient profile in Figure 13. Additionally, a comparison is
presented with results obtained from ATP simulations (Figure 15). In a similar way to the example in
Section 3.1, the time step required by ATP was 10 times smaller than the proposed method in order to
obtain similar results.
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Figure 15. Voltage comparison between the results from the proposed method (solid lines) and those
obtained from ATP simulations (dashed lines) for example 3.3. The comparisons were made at the
middle point of the line (300 m from the sending node) for phases A, B, and C.

4. Discussion

Transient simulation of nonuniform transmission lines using traditional software (such as ATP in
this paper) is a challenging task. This difficulty is due to the fact that the nonuniformities are typically
approximated by cascade-connecting several small line segments. Such approximation requires the
use of a very small time step in the simulation (at least five times smaller than the traveling time of
the line segments [6]), which may translate into excessive simulation times and the saturation of the
software’s available memory, as was the case in this work. Additionally, the connection of several line
segments can introduce errors in the simulation results [2].

In contrast, the proposed method is able to accurately compute transient profiles along nonuniform
transmission lines with substantially larger time steps in comparison to ATP, resulting in a better
memory usage as expected from the findings reported in [16] with regards to the use of the INLT
algorithm. As it can be observed in Figures 7, 10, 11 and 14, the main advantage of the proposed
method is the fact that it allows visualizing the voltage and current transient behavior along the
line and not only at its ends, which can be advantageous when designing lines with a high level of
nonuniformities and cannot be easily done using traditional simulation software.

The precision of the proposed method was validated by comparisons with the results obtained
with ATP simulations. In general, there was a very good level of agreement between the results from
both methods, as it can be seen by the mean relative difference presented in Tables 2–4. There is a
slight difference in the comparison of results presented in Figure 12 corresponding to the simulation
of sequential pole closure. This is attributed to the previously mentioned ATP limitations and the
difference in the time step used in each method, which can result in deviations in the operation time of
the switch model, leading to the observed variations.

Table 2. Mean relative difference of transient voltage in example 3.1.

Measuring Point
Mean Relative Difference (%)

Phase A Phase B Phase C

150 m 0.0708 0.1837 0.2893
450 m 0.3839 0.3351 0.6832
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Table 3. Mean relative difference of transient voltage in example 3.2.

Measuring Point
Mean Relative Difference (%)

Phase A Phase B Phase C

2.5 km 0.3889 0.9861 1.2761

Table 4. Mean relative difference of transient voltage in example 3.3.

Measuring Point
Mean Relative Difference (%)

Phase A Phase B Phase C

300 m 0.0374 0.7738 1.9183

5. Conclusions

This paper describes a frequency domain method to compute transient voltage and current profiles
along nonuniform multiconductor transmission lines, where the nonuniformities along the line are
introduced in the model by means of the cascaded connection of chain matrices. The method can
incorporate nonlinear and time-dependent elements by using the superposition principle. The profiles
obtained provide useful information to locate possible overvoltages at interior points along the
transmission line, in contrast to traditional methods that only provide information at the line’s
ends. This information can be used as a helpful instrument in the insulation coordination design of
transmission lines, as well as an educational tool in electrical engineering courses.

The results computed with the described method were compared with time-domain simulations
using the well-known software ATP. In all of the comparisons, a high level of agreement was observed,
demonstrating that the proposed method has a high level of accuracy.

It is worth mentioning that, although the results from both methods were very similar, the
ATP simulations required substantially more time samples (10 to 50 times more samples) to achieve
such results, which can result in a large computational burden. Additionally, in order to obtain
measurements at interior points of the transmission line and to include nonuniformities along the
transmission line in the ATP simulations, it is necessary to subdivide the line into many line segments,
which can be a time-consuming process and can lead to error accumulation. Because of these issues,
the proposed frequency domain method is a superior alternative to analyze the transient behavior of a
transmission line when the voltage at interior points of the line is of interest.

The relevance of the proposed method lies in its strong potential for application in the accurate
fault location and insulation coordination of transmission systems with prominent nonuniformities,
which are commonly encountered in many power systems around the world.
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