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Abstract: In this paper, we present numerical modelling for the investigation of dynamic responses
of a floating offshore wind turbine subject to focused waves. The modelling was carried out
using a Computational Fluid Dynamics (CFD) tool. We started with the generation of a focused
wave in a numerical wave tank based on a first-order irregular wave theory, then validated the
developed numerical method for wave-structure interaction via a study of floating production storage
and offloading (FPSO) to focused wave. Subsequently, we investigated the wave-/wind-structure
interaction of a fixed semi-submersible platform, a floating semi-submersible platform and a parked
National Renewable Energy Laboratory (NREL) 5 MW floating offshore wind turbine. To understand
the nonlinear effect, which usually occurs under severe sea states, we carried out a systematic
study of the motion responses, hydrodynamic and mooring tension loads of floating offshore wind
turbine (FOWT) over a range of wave steepness, and compared the results obtained from two
potential flow theory tools with each other, i.e., Électricité de France (EDF) in-house code and NREL
Fatigue, Aerodynamics, Structures, and Turbulence (FAST). We found that the nonlinearity of the
hydrodynamic loading and motion responses increase with wave steepness, revealed by higher-order
frequency response, leading to the appearance of discrepancies among different tools.

Keywords: floating offshore wind turbine; computational fluid dynamics (CFD); focused wave;
nonlinear hydrodynamic response

1. Introduction

One of the main challenges for floating offshore wind turbines (FOWT) installed in moderate
depth and deep-water sites is the increased maintenance and operation costs due to the structural
damage of the FOWT system under severe environmental conditions. The most critical issue for the
design is how to accurately predict the hydrodynamic loading and structural dynamic response of
the floating platform, the tension loads of the mooring system and aerodynamic responses of the
wind turbine.

Several experimental campaigns examining the responses of FOWT to wave loads have been
carried out [1–3]. However, the scaling effect becomes one of the main issues when laboratory test data
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are applied to practical FOWT design, due to the difficulty of retaining all relevant non-dimensional
similarity parameters the same between the scaled model test and full-scale prototype. Most existing
experimental FOWT models are designed and manufactured by keeping the Froude number the same,
in which the ratio between the inertial and the gravity force is identical between the scaled model and
full-scale prototype. However, in this situation, the Reynolds number is not the same. Muller et al. [4]
mentioned in his study that, as most of the scaling laws applied to the FOWT are based on the Froude
scaling, the prediction of the flow conditions over the wind turbine varies between the scaled model
and full-scale prototype, as the Reynolds number is different.

Parallel to the experimental investigation, some simplified analysis tools have been developed, e.g.,
Fatigue, Aerodynamics, Structures, and Turbulence (FAST) [5], developed at the National Renewable
Energy Laboratory (NREL) in the USA [6], the Wind Atlas Analysis and Application Program (WAsP) [7],
and the Horizontal Axis Wind turbine simulation Code 2nd generation (HAWC2) [8], developed
by the Technical University of Denmark (DTU). These tools use time-domain analysis to study the
FOWT, in which the hydrodynamic loads are usually estimated by using the Morrison’s equations
in combination with a potential flow theory approach. Associated with these potential flow models,
the viscous term is excluded. To account for the viscous loss, a derived drag coefficient is introduced
into these models. Such models underestimate the nonlinear forces, which are usually the results
of the dynamic responses of the floating structures in severe sea conditions, including wave-current
interaction. In addition, the damping model in potential theory is unable to consider the transverse or
lift forces associated with vortex shedding, which significantly affects the accuracy of the predicted
motion responses of a system in the transverse direction.

To completely account for viscous effects in the FOWT modelling, one needs to use the high-fidelity
Computational Fluid Dynamics (CFD) method, where the viscous effects are taken into account by
directly solving Navier-Stokes equations in CFD [9–12]. This becomes extremely important when
FOWT operates in harsh environmental conditions when the nonlinear hydrodynamic wave loading
applied to the FOWT structure should be accurately predicted. In addition, CFD simulation also
allows an accurate prediction for large free-surface elevations, which is impossible to achieve using
low-order methods.

At present, the studies on the hydrodynamic, structural and aerodynamic response of FOWT using
a CFD tool are limited, and most of them primarily focus on regular waves. For example, Tran and
Kim [13] investigated a semi-submersible platform dynamic response and tension loads by using a
commercial CFD software STAR-CCM+. Their results showed a good agreement with the data from
the experiments and NREL FAST. Liu et al. [9,11,14] developed a fully coupled CFD tool to simulate
the complex fluid-structure interaction between wind/wave flow and the FOWT by using OpenFOAM.
In addition, in order to obtain data comparable with potential flow theory tools, their CFD numerical
modelling results provided more detailed wave-/wind- structure interaction.

However, as mentioned above, an FOWT operates in irregular wave conditions, and thus,
strong wave-structure interactions occur. To address this, Nematbakhsh et al. [15] developed a
nonlinear computational model to investigate the performance of a spar-type FOWT, where irregular
waves are considered via solving unsteady Navier-Stokes equations with a level-set method to predict
the free-surface. Two sea state conditions are studied, with significant wave heights Hs of 8.0 m,
wave peak period Tp = 10.0 s and Hs = 14.0 m, Tp = 16.0 s. The CFD modelling in the time domain
considers a sample time of 500 s, which corresponds to 30 to 50 wave peak periods. Although a
reduced-order model is used to represent the impact of wind turbine onto the floating spar platform
via imposing a specified force and thrust, the CFD results showed large responses in the surge, heave
and pitch motions and also the large tension loads in the mooring system.

The term extreme wave is usually used to refer to an ocean wave with an extremely high amplitude
which may cause FOWT sub-structure potential damages due to the large, unpredictable unsteady
hydrodynamic force [16,17]. The survivability of an FOWT depends very much on how well it is able
to withstand the very large wave and wind loadings which occur under unexpected extreme wave
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conditions. However, to analyse a FOWT subject to a train of extreme waves long enough to find a
reliable estimation of extreme values requires a large computational resource. Some numerical analysis
work has attempted to deal with extreme waves with either a linear or nonlinear theory [18]. With a
nonlinear different phase-resolving deterministic wave models, Khait et al. [19] generated a 2D deep
water extreme wave. Unfortunately, the above work is limited to a pure numerical wave generation
without any interaction with offshore structures. Due to the requirement for long computational time,
a full-scale CFD modelling of extreme waves in a numerical wave tank with nonlinear wave theories is
rarely used.

One effective way to model the extreme wave loading with a reasonable computational time is
to use the concept of linear focused wave technique [20]. A focused wave is a wave consisting of a
series of regular waves generated from a prescribed wave spectrum. Compared to the modelling of the
extreme wave using the irregular waves approach, the numerical computational time for a study based
on a focused wave approach is dramatically reduced, as the desired peak can be reached in a very
short time, on the level of a few tens of seconds or so. In contrast, the time for irregular wave normally
takes a time window of typically three hours. Because of this reason, the focused wave approach has
been used by several researchers to study the wave-structure interaction to replicate extreme wave
conditions under severe sea states.

At a very early stage, Baldock et al. [21] designed a focused wave through the superposition of
a group of regular wave trains. With that model, they investigated the nonlinearity of wave-wave
interaction without offshore structures. Recently, their study has been extended to the focused wave
impact on fixed and floating offshore structures with simple geometry. For example, Gao et al. [16]
investigated the nonlinear effects for a semi-submerged horizontal cylinder column under focused
waves using a CFD tool. The predicted numerical data were compared with the results obtained in a
regular wave condition, in which the trough-to-trough period is selected to be the same as the regular
wave parameters. The comparisons indicated that, with a focused wave, the vertical force and the
horizontal velocity exerted on a cylinder are more significant. By generating a focused wave with a
Joint North Sea Wave Project (JONSWAP) spectrum, Mai et al. [22] reported a wave tank test for a
wave-structure interaction for a series of floating production storage and offloading (FPSO). With the
use of a constrained interpolation profile method to capture the nonlinear wave-structure interactions,
Zhao et al. [23] modelled a 2D simple floating body under three types of wave, e.g., a regular, a focused
and a combined regular and focused wave to reveal the highly nonlinear effects with different incident
wave parameters (wave amplitude, focused position). The numerical computations are in good
agreement with the experimental results.

As a brief review of the above indicates, the early focused wave studies have either been limited
to a fixed offshore structure like FPSO or simple floaters such as a cylindrical column, and less attention
has been devoted to the floating platforms that are used to support floating offshore wind turbines.
To bridge this gap, in the present paper, we use a high-fidelity CFD numerical modelling tool to
investigate the dynamic response and the hydrodynamic loading of a FOWT. Unlike our previous
work [9,11,14], which was focused on regular waves, here, we extend the study to focused waves and
engage in a range of wave parameters. In addition, to better understand the nonlinearity associated
with extreme waves, we compare our CFD results with the data obtained from the potential flow
theory, which were calculated using the Électricité de France (EDF) [24] and NREL FAST codes.

The rest of this paper is organized as follows: in Section 2, the geometry and properties of
the platform and FOWT are described; the governing equations and numerical algorithms used in
the present study are briefly reviewed (details are included in our previous publications [9,11,14]).
In Section 3, the verification cases are presented which include a focused wave generation in a
numerical wave tank; a wave-structure interaction study on a fixed FPSO subject to a focused wave.
In Section 4, the numerical results for the study on an Offshore Code Comparison Collaboration
Continuation (OC4) floating semi-submersible platform and a parked floating wind turbine are
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presented. The results include the hydrodynamic motion response, the inline force, wave run-up and
tension loads. The conclusions are drawn in the final section.

2. Problem Statement and Numerical Methodologies

As a benchmark in the studies on floating offshore wind turbine, the NREL 5 MW OC4
semi-submersible floating wind turbine is adopted in the present simulations [6,11,12]. Figure 1a
shows a 1/50 scale model of the DeepCwind semi-submersible platform, and Figure 1b displays an
entire FOWT. The design parameters and system properties, for the platform, mooring line, and NREL
5 MW wind turbine are listed in Table 1.
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Figure 1. Definition of the semi-submersible floating offshore wind system [12]: (a) OC4 DeepCwind
semi-submersible platform; (b) NREL 5 MW semi-submersible floating offshore wind turbine.

The key modules in the present floating offshore wind turbine modelling are
a wave-structure/wind-structure interaction CFD solver based on solving the Unsteady
Reynolds-Averaged Navier-Stokes (URANS) equations using a finite volume method. The two-phase
free surface between wave and air is captured using the Volume of Fraction (VOF) method. For the
numerical wave generation, the “waves2Foam” module based on the multiphase solver “interFoam” in
OpenFOAM [21,22] is utilized. In this CFD work, the mooring lines are not directly simulated. Instead,
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its impact on the floating structure is considered via a dynamic mooring line model [14]. The present
CFD solver has been successfully applied to study FOWT with the regular wave and aero-elastic
response of the wind turbine blades as described in our previous work [9,11,14]. The detailed
explanations on the flow solver, the moving mesh strategy and the mooring system analysis can be
found in the above references. In the following sections, we will only provide brief descriptions of
some important points.

Table 1. Gross properties of semi-submersible platform including the mooring system.

Platform Gross Properties

Platform mass, including ballast 13,444,000 kg
Displacement 13,986.8 m3

Platform pitch inertia about centre of mass 8.011 × 109 kgm2

Platform yaw inertia about centre of mass 1.391 × 109 kgm2

Platform roll inertia about centre of mass 8.011 × 109 kgm2

Mooring Line Properties

Number of mooring lines 3
Angle between adjacent lines 120◦

Depth of anchors below SWL (water depth) 200 m
Upstretched mooring line length 835.5 m

Radius to anchors from platform centreline 837.6 m
Mooring line diameter 0.0766 m

Wind Turbine Properties

Rotor configuration 3 blades
Rotor, hub diameter 126.0 m, 3.0 m

Hub height about SWL 90.0 m
Total tower-top mass 397,160 kg

Blade mass 16,450 kg
Blade length 61.5 m

Cut in, rated, cut-off speed 3 m/s, 11.4 m/s, 25.0 m/s

2.1. Governing Equations of Fluid Flow

The continuity equations for a transient, incompressible and viscous fluid:

∇·U = 0 (1)

In addition, the Navier-Stokes equations are written as

∂ρU
∂t

+∇·
(
ρ
(
U −Ug

)
U
)
= −∇Pd − g·x∇ρ+∇

(
µe f f∇U

)
+ (∇U)·µe f f + fσ (2)

where U and Ug refer to the velocity of the flow field and grid nodes in Cartesian coordinates, ρ is
the mixed density of water and air, g is the gravity acceleration. Pd represents the dynamic pressure
instead of the total pressure. µe f f = ρ(v + vt) is the effective dynamic viscosity, in which v and vt

are the kinematic and eddy viscosity respectively. fσ is the surface tension, which is only taken into
consideration at the free surface.

To capture the water–air free surface, the Volume of Fluid (VOF) method [25] is adopted, using the
following transport equations to govern the volume fraction variable α,

∂α
αt

+∇·
[(

U −Ug
)
α
]
+∇·[Ur(1− α)α] = 0 (3)

To ensure the boundedness and conservativeness of the volume fraction α, the third compression
term on the left-hand side of the transport equations is introduced, where Ur is a velocity field to
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compress the interface as the compression velocity. The last term on the left-hand side is referred to the
interface compression term, which only functions near the free surface due to the inclusion of (1− α)α.
For a multiphase flow problem, the volume fraction of each liquid is used as the weighting factor to
obtain the mixture properties for the density and the viscosity,

ρ = αρw + (1− α)ρa (4)

µ = αµw + (1− α)µa (5)

where ρw and ρa are the density of water and air. Furthermore, µw and µa refer to the viscosity
coefficient of water and air, respectively.

2.2. Turbulence Model

The turbulence model is only utilized when the parked FOWT is studied, as under this condition,
the Reynolds number can be as high as 107. To deal with fully turbulent wind flow, it is necessary to
use a turbulence model in the simulation. OpenFOAM provides different types of turbulence models;
the two-equation k-ω shear stress transport (SST) turbulence model [26] is adopted as the closure for
the URANS equations. The k-ω SST turbulence model combines the standard k-ω and k-ε models by
adopting the standard k-ω model near the boundary layer and switching to the standard k-ε model in
the far-field.

The governing equations for the turbulent kinetic energy k and the specific dissipation rate ω are
defined as follows:

∂ρk
αt

+∇·(ρUk) +∇·(Γk∇k) + P̃k −Dk = 0 (6)

∂ρω

αt
+∇·(ρUω) +∇·(Γω∇ω) + Pω −Dω + Yω = 0 (7)

where Γk and Γω refer to the effective diffusivity of the turbulent kinetic energy k and the specific
dissipation rate ω, respectively. P̃k and Pω are the turbulence production terms as Dk and Dω refer to
the turbulence dissipation terms. Yω is the cross-diffusion term introduced by blending the standard
k-ω and k-ε models.

To model the hydrodynamic responses of a semi-submersible platform in the absence of wind,
laminar flow is assumed. This is widely accepted by researchers, because it was found that there is no
apparent disparity between the results obtained from turbulence or laminar models when the flow is
wave dominant rather than current dominant [27].

2.3. Wave Generation and Absorption

An open-source toolbox “waves2Foam” [28] is used to generate and absorb free surface waves in
a numerical wave tank. The relaxation zone technique is adopted to provide better wave quality and
to avoid wave reflection in absorbing zone, which are applied at both inlet and outlet boundaries in
the numerical wave tank. The following equations specify the main function of the relaxation zones,

αR(χR) = 1−
exp

(
χR

3.5
)
− 1

exp(1) − 1
(8)

φR = ωRφ
computed
R + (1−ωR)φ

target
R (9)

where φR refers to either the velocity or volume fraction of water α. The definition of χR is that the
weighting functions αR is always equal to 1 at the interface between the non-relaxed computational
domain and the relaxation zones, and χR is a value between 0 and 1. The relations between χR and
αR are shown in Figure 2. The superscript computed and target represent the value calculated in the
computational domain and evaluated from the chosen wave model, respectively.
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2.4. Focused Wave Generation

The focused wave is generated based on the first-order irregular wave theory, which is a linear
superposition of individual regular wave components. The spectral shapes of irregular waves are
implemented by the JONSWAP spectrum [29]. The significant wave height Hs, peak angular frequency
ωp and shape factor γ are the main input parameters to the JONSWAP spectrum,

S j(ω) =
5

16
H2

sω
5
pω
−5
j (−

5
4
) exp ((

ω j

ωp
)
−4
)γr (10)

Based on the irregular wave theory, modulation of phase angle among individual wave components
can achieve a large amount of wave trains energy at a fixed time spot. The wave peak superposition at
a fixed time and position is mathematically represented as

cos(kix−ωit + τi) = 1 (11)

where ki is the wave number and ωi is the angular frequency of each regular wave component, and τi
is the phase angle of each regular wave. The phase angle of the wave component is written as

τi = kix−ωit− 2πn, n = 0, 1, 2, . . . (12)

The wave elevation of the wave train at a focused position xc and a focused time tc is expressed as

η(x, t) =
n∑

i=1

Hi
2
∗ cos(ki(x− xc) +ωi(t− tc)) (13)

2.5. Mooring System Analysis

The mooring system of floating offshore structures is essential to providing the restoring force
for motions in all degrees of freedom. An in-house dynamic mooring analysis module is developed,
which is able to predict better motion response than a quasi-static method [14]. A 3D lumped mass
method is utilized, which is based on the discretization of a mooring line into n segments and n + 1
concentrated nodes connected by adjacent segments as shown in Figure 3, which is sometimes also
referred to as a Spring-Mass model. In addition, for the mooring line of the catenary shape, a large
portion of the line lies on the seabed and a treatment is required to model the interaction between the
mooring line and the seabed by using a simplified kinematic constraint.



Energies 2019, 12, 3482 8 of 31Energies 2019, 12, 3482 8 of 30 

 

 
Figure 3. Sketch of the dynamic mooring line modelling. 

2.6. Numerical Method 

In the present study, flow equations are solved by using the open source software OpenFOAM 
[30]. PIMPLE (a combination of Pressure Implicit with Splitting of Operator (PISO) and Semi-Implicit 
Method for Pressure-Linked Equations (SIMPLE)) is utilized to solve the pressure-velocity coupling. 
The maximum allowed Courant number is set to 1 (wave only) and 75 (wind and wave) respectively. 
The time step is fixed as low as 0.002 s when a floating platform is simulated, whereas it is changed 
to 0.001 s for the modelling of a FOWT. 

2.7. Computational Domain 

The full-scale OC4 DeepCwind semi-submersible platform is analysed by using a built-in 
arbitrary mesh interface (AMI) method in OpenFOAM. The sketch of the numerical model is shown 
in Figure 4. The computational domain in the semi-submersible platform modelling extends in three 
dimensions, i.e.,−5𝐷 < 𝑥 < 10𝐷, −5𝐷 < 𝑦 < 5𝐷 and −4𝐷 < 𝑧 < 3𝐷, where 𝐷 refers to the spacing 
of offset columns (50 m). To simulate a FOWT, the domain size in the x- and y-axes remain the same 
as the platform case. However, due to the large size of the slender shape of the turbine blade, the 
computational domain along the z-direction is extended to −4𝐷 < 𝑧 < 8𝐷. The length extends from 
the blade tip to the top of the computational mesh is 3.7D (184 m). In all simulations, the platform is 
located at the origin of the coordinate system. The length of the inlet and outlet relaxation zones are 
3D and 6D respectively in order to provide a better wave quality and minimize the wave reflection 
of the outlet boundary. 

 
Figure 4. Sketch of the computational domain in XOY plane used in the present study. 

X (Surge)

Y (Sway)
Line 1

Line 3

Line 2

10D

6D

Wave/Wind Direction

Inlet Relaxation Outlet Relaxation

3D 6D

Inlet

= 0

Outlet

= 0
= (0, 0, 0)

–Wave only
= 0

–Wind & wave

= 0, = 0 

Figure 3. Sketch of the dynamic mooring line modelling.

2.6. Numerical Method

In the present study, flow equations are solved by using the open source software OpenFOAM [30].
PIMPLE (a combination of Pressure Implicit with Splitting of Operator (PISO) and Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE)) is utilized to solve the pressure-velocity coupling.
The maximum allowed Courant number is set to 1 (wave only) and 75 (wind and wave) respectively.
The time step is fixed as low as 0.002 s when a floating platform is simulated, whereas it is changed to
0.001 s for the modelling of a FOWT.

2.7. Computational Domain

The full-scale OC4 DeepCwind semi-submersible platform is analysed by using a built-in arbitrary
mesh interface (AMI) method in OpenFOAM. The sketch of the numerical model is shown in Figure 4.
The computational domain in the semi-submersible platform modelling extends in three dimensions,
i.e.,−5D < x < 10D, −5D < y < 5D and −4D < z < 3D, where D refers to the spacing of offset columns
(50 m). To simulate a FOWT, the domain size in the x- and y-axes remain the same as the platform case.
However, due to the large size of the slender shape of the turbine blade, the computational domain
along the z-direction is extended to −4D < z < 8D. The length extends from the blade tip to the top of
the computational mesh is 3.7D (184 m). In all simulations, the platform is located at the origin of the
coordinate system. The length of the inlet and outlet relaxation zones are 3D and 6D respectively in
order to provide a better wave quality and minimize the wave reflection of the outlet boundary.
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Figure 5a,b shows the partial mesh on the structure and AMI surfaces of the entire computational
mesh, which is generated with a built-in tool snappyHexMesh in OpenFOAM. Grid refinement is
applied near the free surface and the platform. In addition, eight layers of boundary layer mesh
with the first layer grid thickness of 0.012 m and 0.004 m and a progression rate of 1.2 is adopted in
the semi-sub platform and parked FOWT simulations. The total number of grids are 2,353,906 and
4,899,720 for the platform only and parked FOWT, respectively.
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2.8. Boundary Conditions

The boundary conditions are defined as follows. At the inlet boundary (left side of inlet relaxation
zone), the velocity is prescribed as the incident focused wave and wind, while the pressure gradient
is set as zero. Moreover, the boundary conditions at the outlet boundary vary in wave only and
wind-wave simulations which is annotated in Figure 4, the velocity is fixed as zero in wave only
simulations, while the gradient of the velocity is set as zero in wind-wave simulations. The boundary
condition of the upper part is set as the atmosphere. The gradient of velocity and pressure is set as zero
at the front and back boundary (the boundary with the maximum positive and minimum negative
value in the y-axis in Figure 4). The non-slip wall boundary condition with zero pressure gradient is
defined on the surfaces of the semi-submersible platform.

3. Verification and Validation

As indicated in Section 2, the present CFD solver has been validated via several FOWT cases in
our previous papers [9,11,14]. Specifically, the solver was examined by simulating the hydro/structural
responses and aerodynamic performance of OC4 NREL 5 MW floating wind turbine with a series of
regular waves. All these cases showed good agreement with the results from reduced-order NREL
FAST V8 tool. The discrepancies existed are due to the viscous effects which are dealt with differently
via two different methods. In the present paper, we carry out additional studies to justify the correctness
and accuracy of the methods we use to deal with the focused wave generation and the wave-structure
interaction under focused wave conditions.

3.1. Sensitivity Study of Focused Wave Generation

In the present study, a 2D mesh and time step convergence test is carried out for the focused wave
generation. The numerical wave tank has the length L of 680 m (−230 m < x < 450 m), the width of
2 m (−1 m < y < 1 m) and the height of 300 m (−200 m < z < 100 m). The water depth is set as 200 m.
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The significant wave height of the focused wave is Hs = 8.0 m and the wave peak period Tp = 15.0 s.
The focused position is set at x = 0.0 m, and the focused time is set at 50 s. To generate this focused
wave group, we used a frequency band between 0.035 to 0.085 Hz and 50 individual wave components.

Three meshes with different densities are generated, which are termed as Fine (20,060), Medium
(15,470) and Coarse (10,880). Similarly, four time steps (∆t = 0.01 s, 0.005 s, 0.002 s and 0.001 s) are
chosen for this sensitivity study as summarized in Tables 2–4.

Table 2. Mesh configuration of 3 mesh density under the focused wave.

Refinement Coarse Medium Fine

X axis ∆x = L/100 ∆x = L/125 ∆x = L/150

Z axis ∆z = Hs/10 ∆z = Hs/15 ∆z = Hs/20

Slenderness Ratio 4.375 5.250 5.830

(Hs = 8.0 m Tp = 15.0 s) and ∆t = 0.005 s.

Table 3. Mesh sensitivity test under different mesh sizes.

Grid Coarse Medium Fine

Maximum wave height (m) 8.89 (+1.13%) 8.90 (+1.25%) 8.79
Trough to trough period (s) 10.71 (−0.10%) 10.72 (0.00%) 10.72

(Hs = 8.0 m Tp = 15.0 s) and ∆t = 0.005 s.

Table 4. Time step sensitivity study (medium mesh).

Time Step 0.01 s 0.005 s 0.002 s 0.001 s

Maximum wave height (m) 8.82 (−1.89%) 8.90 (−1.00%) 8.95 (−0.44%) 8.99
Trough to trough period (s) 10.71 (−0.10%) 10.72 (0.00%) 10.73 (+0.10%) 10.72

Figure 6 summarizes the time history of wave amplitude for different mesh densities and time
steps. It is seen that with sufficiently high mesh densities and sufficiently small time steps, the results
of the predicted wave elevation are not sensitive to numerical parameters. Taking the computational
cost into consideration, the medium size of the mesh and time step of 0.002 s is utilized for the
following simulations.
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3.2. Validation of Wave-Structure Interaction of Fixed FPSO to Focused Wave

In this case, the numerical verification for a focused wave-structure interaction problem is carried
out with a fixed Floating production storage and offloading (FPSO) structure. The predicted results
are compared with the wave tank data [22] obtained in the Ocean Basin at Plymouth University’s
COAST Laboratory and other CFD results [31]. The significant wave height is given as 0.103 m, and
the wave peak period is 1.456 s. The components of the wave group and the frequency band are set to
be identical to the experimental test [22] and other CFD simulations [31]. The focused position is set
at WG16, which is located upstream to the FPSO model. The layout of the FPSO model is shown in
Figure 7. The length, width and depth of the numerical wave tank are 16 m (−8 m, 8 m), 5 m (−2.5 m,
2.5 m) and 5 m (−3 m, 2 m), respectively. The centre of the FPSO model is located at the origin of the
coordinate system. The total mesh is 442,490, which is refined near the free surface and around the
FPSO model. The relaxation zones of the wave generation and wave damping are set as 4.5 m and 6 m
away from the inlet and outlet boundaries.
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In Figure 8, the numerical wave elevation data at WG16) is plotted to compare with other CFD [31]
and experimental results. As can be seen, the present CFD results are comparable to the wave tank data
and other CFD simulation results. However, disparities in predicting the maximum wave elevation
could be observed. The difference might be due to the different length of relaxation zones to generate
and absorb waves. Moreover, the local instantaneous wave elevation contour is displayed in Figure 9b
along with experiment results in Figure 9a. By comparing the CFD result together with the experimental
picture, it is clear that the flow field around the FPSO is very similar when the wave propagates
through the FPSO structure. This case demonstrates the capability and accuracy of the present CFD
modelling tool.

3.3. Validation of DeepCwind Semi-Submersible Floating Offshore Wind Turbine

For the purpose of model validation and calibration, the hydrodynamic response and
aerodynamic performance of a DeepCwind semi-submersible floating wind turbine under regular
waves was investigated and published in our previous paper [11]. In that paper, a fully coupled
hydro-aero-mooring FOWT was modelled under different working conditions by using a self-developed
high-fidelity CFD tool. The results, in terms of free decay test, hydrodynamic response of floating
platform, the tension loads of mooring lines and aerodynamics of wind turbine, were carefully
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examined and compared with wave tank data and other potential flow-based tools like NREL FAST.
Good agreements were achieved, which provided evidence for the success of our CFD model.
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4. Potential Flow Theory (EDF)

The results based on a potential flow theory presented in this paper have been obtained using the
EDF R&D floating wind turbine aero-hydro-elastic solver CALHYPSO [24]. In this paper, only the
hydrodynamic part of the code is used. The floater is regarded as a rigid body; only the 6 rigid body
motions are solved in the time domain, using a Newmark time marching scheme. For the present paper,
mooring lines are regarded as quasi-static, and the catenary equation is used to capture their response
to floater motion. As shown in [32], this assumption is not expected to influence the motions of the
floater, but only the tension level in the lines, which are not studied in the paper. The hydrodynamic
loads are computed in the frequency domain using the potential flow solver NEMOH, developed by
Ecole Centrale de Nantes [33], which solves the diffraction and radiation problems. Then the Cummins
approach is applied for the time domain resolution. The convolution integral is used to account for
radiation effects with a time window of 60 s, which is enough regarding the typical RIRF of the floater.
Forces are computed up to second order (QTF), and are applied in the time domain without bandwidth
limitation. Even if not presented, it has been verified that the sum-frequency QTF has almost no
influence on the floater motions, and thus only difference-frequency loads are included in the present
model. This result was expected for semi-submersibles. The viscous part of the hydrodynamic force
is accounted for using strip theory on all columns and bracings, with homogeneous drag coefficient
Cd = 1. A sensitivity study was carried out on this value, but the motions showed little variations
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when using Cd = 0.6 or Cd = 2. Regarding the wave theory, first-order Stokes waves (Airy theory)
have been used to compute the focused wave elevation. FFT is applied on the 200 s long free wave
elevation time series obtained with the CFD solver at a reference point (centre of the floater at t = 0) in
order to get the wave components of the focused wave. About 200 significant wave components are
extracted for the cases considered here. Amplitudes and phases are then applied as imposed spectrum
into CALHYPSO, and it is verified that the free wave elevation is consistent with the inputs. Finally,
the modified Wheeler stretching model is applied to compute the undisturbed wave kinematics in the
fluid domain. It is noted that wave kinematics are only used for viscous forces, as all other forces are
included in the hydrodynamic database computed by NEMOH. The EDF CPU time is 40 s for the 200 s
calculations performed in this study.

5. Results

5.1. Fixed DeepCwind Semi-Submersible Platform

In this section, a study on the wave-structure interaction problem is carried out for a fixed
semi-submersible platform (Figure 1a) with both focused and regular waves. The main wave
parameters are summarized in Tables 5 and 6 for the focused and regular wave conditions with
reference to the sea states from the North Sea. In all cases, the wave period (T or Tp) is fixed at 15 s,
the significant wave height (Hs) for the focused wave and the wave height (H) for the regular wave are
systematically increased from 6.0 to 14.7 m. The main aim is to examine the wave steepness impact on
the hydrodynamic forces exerted on the semi-sub and to illustrate whether nonlinearity occurs.

Table 5. Focused wave parameters with incident wave peak period Tp = 15.0 s.

1 2 3 4 5

Hs (m) 6.0 8.0 10.0 12.0 14.7
Tp (s) 15.0 15.0 15.0 15.0 15.0

Hmax (m) 6.77 8.89 11.14 13.29 15.72
THmax (s) 10.72 10.72 10.72 10.72 10.72

Steepness (H/λ) 0.0377 0.0496 0.0622 0.0742 0.0878

Table 6. Regular wave parameters with incident wave period T = 15.0 s.

Case 6 7 8 9 10

H (m) 6.0 8.0 10.0 12.0 14.7
T (s) 15.0 15.0 15.0 15.0 15.0

Steepness (H/λ) 0.0171 0.0228 0.0285 0.0343 0.0420

It should be pointed out that the inline forces along the wave propagation direction are the most
important forces in the study of wave-structure interaction as compared to the forces along y and z
directions [16,34]. This can be seen in Figure 10, where the force components in x, y, and z directions
are displayed for a regular wave case (H = 8.0 m, T = 15.0 s). As can be seen from Figure 10, Fx is much
larger than Fy and Fz, its impact on the structure is large. Therefore, only the inline forces are deeply
investigated in detail in the following sections.

Apart from the load analysis, the wave run-up is another crucial parameter that is widely adopted
in the design of offshore structures or to investigate the occurring of wave over-topping especially
under severe sea states. It is well accepted that the rapid rise of wave surface can cause large wave
impacts on offshore structures [35,36]. Therefore, in this section, the predicted wave run-up from CFD
analysis will be also discussed.
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Figure 10. Force comparison in x, y, z directions for a fixed semi-submersible platform to regular wave
(H = 6.0 m, T = 15.0 s).

The typical wave elevations as a function of time for five designed focused wave cases defined in
Table 5 are plotted in Figure 11. As can be seen, the focused time is pre-designated at 50 s, this value
is determined considering the computational costs and also the limitation for the shortest focused
time which must be large enough (see τi in Equation (12)). The focused position is set at the centre of
the coordinate system, where the centreline of the DeepCwind semi-submersible platform is located.
These five focused waves will be adopted for the following FOWT analysis.
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Figure 11. Time history of wave elevation under focused wave with wave peak period Tp =15.0 s.

5.1.1. Inline Forces

The discussion on inline forces is given with its non-dimensional form for the analysis of wave
steepness impact on the loads of a structure. With recommendations from [37,38], the inline force Fx is
related to the following non-dimensional parameters

Fx
ρgdD2 = f

(
D
L

,
H
D

,
d
D

,
h
D

, υ/
√

gL3

)
(14)
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where ρ is the water density, g is gravitational acceleration, h refers to the water depth, υ represents the
kinematic viscosity, H is the wave height and D is the characteristic length of the model. d refers to the
water depth while the L denotes the wave length of the incident wave.

To account for the wave loads due to per-unit incident wave height, the first term is divided by
(H/D), where D is the characteristic length of the floater, leading to a non-dimensional force F’.

F′ =
Fx

ρgdD2 ∗
D
H

(15)

The dimensionless inline force for the focused wave, displayed in Figure 12a, shows that only
peak values of F’ before the focused time (t = 50 s) profoundly increase when the wave steepness is
lower than 0.074, the peak value remain in the similar value as the wave steepness is larger than 0.074.
This may be largely due to the fact that the occurrence of wave overtopping does not cause extra loads
along the wave direction. A sharper crest and broader trough around focused time are also observed as
the wave goes steeper, implying the nonlinearity becomes remarkable as the wave steepness increases.
Moreover, a secondary load cycle is captured near t = 52 s, which is caused by the wave diffraction in
the opposite surge direction near the structure, suggesting again the nonlinearity of wave-structure
interactions under focused wave conditions [16,39]. Figure 12b summarizes the time history of the
dimensionless inline force F’ due to regular waves in one non-dimensional wave period. As can be
seen, an increase of wave steepness leads to an increase of F’ amplitude and also the non-harmonic
variations of F’, indicating that a strong nonlinear wave-structure interaction appears.
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Figure 12. Dimensionless inline force under different wave steepness: (a) Focused wave (Cases 1 to
Case 5 in Table 5) (b) Regular wave (Case 6 to Case 10 in Table 6).

The Power Spectral Density (PSD) results are presented in Figure 13, together with the inline force
Fx used for PSDs. Here, in all PSDs plots, a dimensionless (f /fp) is used to better reflect the linear and
nonlinear results, where the fp indicates the incident wave frequency. As can be seen from Figure 13b,c),
the first peak, where f /fp is close to 1, is well captured, which is within the incident wave energy range.
The second peak is also noted, which might be induced via the second-order sum-frequency wave
loading. The peak values of f /fp = 1 and 2 increase as the wave steepness increases. The PSDs results for
regular wave cases are presented in Figure 13e,f). The peak value of f /fp = 1 and 2, which correspond
to the linear and second-order forces, increase with wave steepness. The second-order forces appear
due to the second-order terms in the second-order Stokes wave equations. This may also be induced
via the wave diffraction around the fixed offshore structures.
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Figure 13. Power spectral density analysis (PSD) and the dimensional inline force Fx under different
wave steepness: (a) Fx under focused wave (Cases 1 to Case 5) (b) PSDs under focused wave (Case 1 to
Case 5) (c) PSDs of higher-order under focused wave (Cases 1 to Case 5) (d) Fx under regular wave
(Cases 6 to Case 10) (e) PSDs under regular wave (Case 6 to Case 10) (f) PSDs of higher-order under
regular wave (Case 6 to Case 10).
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To quantify the linearity and nonlinearity of the above forces in regular waves, the peak value for
1st and 2nd order forces (P1 & P2) are summarized in Table 7. As shown in Table 7, the ratio of P2 over
P1 increases rapidly as the wave steepness increases, revealing the nonlinearity is getting stronger as
the wave steepness increases. As it is hard to identify the frequency range of linear and nonlinear,
thus, the afore-mentioned PSD integral method for regular wave analysis is not applicable to focused
wave results.

Table 7. Nonlinearity of regular wave.

Wave Height H (m) 6.0 8.0 10.0 12.0 14.7

P1 Linear (1016) N2/Hz 1.64 2.82 4.21 6.07 9.31

P2 2nd Order (1014) N2/Hz 1.03 4.35 10.33 21.48 33.57

P2/P1 10−2 0.62 1.54 2.44 3.52 3.59

5.1.2. Wave Run-Up

In this section, wave run-up is analysed to assist a better understanding of the flow field around
the platform, and thus provide more insights for the wave steepness impact on the hydrodynamics
of structures. To this end, three wave gauges are selected, as shown in Figure 14, e.g., WG1, 2 and 3.
WG1 and WG2 are at the location of the upstream column, and WG3 is set near the starboard column.Energies 2019, 12, 3482 17 of 30 
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Figure 14. Sketch of wave gauge settings for a fixed semi-submersible platform.

Figure 15a–d presents the wave elevation in time series at WG1-3 for focused wave condition
together with the amplitude of wave elevation. The wave overtopping, indicated by the maximum
wave elevation over 10 m (free board is 10.0 m high), can be observed at WG3 when the wave steepness
(H/λ) is larger than 0.062 (see Figure 15c). Such wave overtopping has an obvious impact on the
platform dynamic responses via imposing unsteady loadings. It should also be mentioned that the
amplitude of wave elevation for WG3 (Figure 15d) reveals a sudden jump.

As soon as the wave overtopping occurs, such green water loading may result in the potential
damage of offshore structures as also found in [40].
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Figure 15e–g shows the wave elevation variations at WG1-3 under regular wave conditions
within one wave period, the amplitude of wave elevation (maximum minus minimum) is displayed in
Figure 15h. In general, for all regular waves, the wave elevation at WG1 and WG3 is relatively larger
than the wave elevation at WG2, as the wave diffraction near the WG1 and WG3 is stronger than WG2.
It is also noted that the maximum wave run-up is less than 10.0 m for WG1 to 3 (see Figure 1a for SWL),
indicating that no overtopping occurs associated with regular waves.

To better visualize wave-structure interaction, Figures 16 and 17 present our CFD predicted wave
elevation contours under focused (Hs = 14.7 m, Tp = 15.0 s) and regular wave (H = 14.7 m, T = 15.0 s)
conditions, respectively. The contour plots clearly reflect the nature of wave elevation variations
indicated by Figure 16. For example, at three specific instantaneous times of t/T = 0.4, 0.6 and 0.8,
shown in Figure 17, it is expected to see the maximum negative elevation, the near zero elevation for
WG1 and 2 and the maximum positive elevation. A comparison between the two figures demonstrates
that the wave overtopping phenomenon is well captured when it is associated with focused wave
cases; whereas they do not appear under regular wave conditions. In addition, the green water above
the platform can easily be recognized in Figure 16. In this respect, we can conclude that a focused
wave can better reflect the nonlinearity of extreme sea states than regular waves.
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Figure 15. Wave elevation around a semi-submersible platform: (a) WG1 wave elevation under focused
wave (Cases 1 to Case 5) (b) WG2 wave elevation under focused wave (Case 1 to Case 5) (c) WG3 wave
elevation under focused wave (Cases 1 to Case 5) (d) Amplitude of wave run up under focused wave
(Cases 1 to Case 5) (e) WG1 wave elevation under regular wave (Cases 6 to Case 10) (f) WG2 wave
elevation under regular wave (Case 6 to Case 10) (g) WG3 wave elevation under regular wave (Case 6
to Case 10) (h) Amplitude of wave run up under regular wave (Cases 6 to Case 10).Energies 2019, 12, 3482 19 of 30 

 

 

 
Figure 16. Wave elevation contour plots around a fixed semi-submersible platform under focused 
wave (Hs = 14.7 m Tp = 15.0 s). 

 

 
Figure 17. Wave elevation contour plots around a fixed semi-submersible platform under regular wave 
(H = 14.7 m, T = 15.0 s). 

5.2. Floating DeepCwind Semi-Submersible Platform 

This section describes the CFD results for a floating semi-submersible platform to focused waves 
and regular waves. The platform is modelled by adding the masses/inertia of the tower and turbine 
by using parallel axis theorem while there is no aerodynamic effect applied. The platform geometry 
is the same as the fixed one presented in Section 5.1; other relevant properties are summarized in 
Table 1. The discussions on the results will be focused on the platform motion response, the inline 
forces exerted on the platform, and the tension loads associated with three mooring lines (see Figure 
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5.2. Floating DeepCwind Semi-Submersible Platform

This section describes the CFD results for a floating semi-submersible platform to focused waves
and regular waves. The platform is modelled by adding the masses/inertia of the tower and turbine
by using parallel axis theorem while there is no aerodynamic effect applied. The platform geometry
is the same as the fixed one presented in Section 5.1; other relevant properties are summarized in
Table 1. The discussions on the results will be focused on the platform motion response, the inline
forces exerted on the platform, and the tension loads associated with three mooring lines (see Figure 4).

5.2.1. Dynamic Motions

Figure 18a–c illustrates the time series of the surge, heave and pitch motion with different wave
steepness under focused wave conditions. It can be seen that an increase of wave steepness leads to the
increase in the motion responses in all three DoF. An interesting phenomenon is that the pitch bounce
near t = 53 s to t = 57 s becomes inapparent as the wave steepness increases, which may be induced by
the occurrence of overtopping.

The wave elevation CFD contour plots are shown in Figure 20. The nonlinear wave-structure
interactions phenomena can be revealed via the wave overtopping, wave radiation and wave diffraction.
As can clearly be seen from Figure 20, they are very well predicted using our CFD simulation. Based on
a comparison between Figures 16 and 20, where the contours for a fixed platform are presented, we can
see that the duration of wave overtopping is much longer for a floating platform than a fixed one.
This is mainly due to the fact that a floating platform drifts downstream along positive surge direction
when the incident wave is coming, leading to a longer time period for wave-structure interaction.
Figure 18d–f displays the time history for motion response of the platform under two regular wave
conditions, i.e., (Case6 and Case10 in Table 6). A non-dimensional time period is used, which is the
same for 3 motions. For the translational motions, i.e., surge and heave, the response is similar to the
results under the focused wave condition in Figure 18a–c. However, the pitch response is significantly
smaller than the one subject to a focused wave. Our previous study also shows a similar trend [41].
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Figure 18. 3 DOF motions under different focused waves and regular waves: (a) Surge motion under
focused wave (Cases 1 to Case 5) (b) Pitch motion under focused wave (Case 1 to Case 5) (c) Heave
motion under focused wave (Cases 1 to Case 5) (d) Surge motion under regular wave (Cases 6 and
Case 10) (e) Pitch motion under regular wave (Case 6 and Case 10) (f) Heave motion under regular
wave (Case 6 and Case 10). To complement the study of wave steepness and platform dynamic motion
responses, the peak values of three DoF motions are analysed from t = 35 s to 65 s (e.g., ±15 s near
focused time); the results are summarized in Figure 19. Before the wave steepness H/λ = 0.074, we can
see a linear relationship between H/λ vs. maximum motion response, revealing that floating platform
dynamic response follows a linear variation with the increase of wave steepness. However, above H/λ

= 0.074, the sudden changes of slop for H/λ vs. maximum motion lines can be observed, due to the
presence of nonlinear phenomena such as the extra excitation induced by wave overtopping.
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Figure 19. Maximum and minimum value of 3 DOF motion under different focused waves.
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Figure 20. Wave elevation contour plots around a floating semi-submersible platform under focused
wave (Hs = 14.7 m, Tp = 15.0 s).

A study is also conducted of the dynamic response under focused waves via different modelling
approaches; the present CFD results are compared with the potential flow-based results provided
by EDF and using NREL FAST tool. Since the changes among three sets of results are similar for all
focused waves cases, a detailed discussion will be centred on Cases 1 and 5.

Figure 21a–d presents the platform motion responses in pitch and surge directions. As can be
seen, the platform responses are comparable among three results before the focused time (i.e., t < 50 s).
However, the discrepancy becomes obvious after the focused time. In addition, the disagreement
grows as the wave steepness increases, i.e., from Case 1 to Case 5. The reason behind is the different
treatments for the viscous effect for two potential flow tools (i.e., FAST v8 and EDF) and our CFD
modelling. As expected, as the nonlinearity increases, which usually caused by the viscous effects or
the high order wave loadings, the differences become more significant.
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Figure 21. Surge and pitch motion comparison between CFD and potential flow theory tools: (a) Surge
motion (Hs = 6.0 m, Tp = 15.0 s) (b) Pitch motion (Hs = 6.0 m, Tp = 15.0 s) (c) Surge motion (Hs = 14.7 m,
Tp = 15.0 s) (d) Pitch motion (Hs = 14.7 m, Tp = 15.0 s).

5.2.2. Inline Forces

The dimensionless inline force F’ on the platform under different focused wave and regular waves
are plotted together with the power spectral analysis results and the dimensional force Fx used for PSD
analysis in Figure 22. The appearance of F’ for floating platforms is quite similar to the fixed ones,
see Figure 12a,b for comparison. However, the maximum F’ is relatively smaller due to the appearance
of wave radiation associated with a floating platform and the structure motions with the incident
waves. The results obtained from frequency domain analysis also indicate the existence of higher-order
wave loading, and they increase significantly as the wave steepness increases.
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Figure 22. Inline force and PSDs of semi-submersible platform under different focused waves (Case 1
to Case 5) in floating semi-submersible platform simulations: (a) Dimensionless inline force F’ under
focused wave (Cases 1 to Case 5) (b) Dimensional inline force Fx under focused wave (Case 1 to Case 5)
(c) PSDs under focused wave (Cases 1 to Case 5) (d) Dimensionless inline force F’ under regular wave
(Cases 6 and Case 10) (e) Dimensional inline force Fx under regular wave (Case 6 and Case 10) (f) PSDs
under regular wave (Case 6 and Case 10).

5.2.3. Tension Loads

To further assess the behaviour of floating platforms with different wave steepness, the tension
loads in mooring lines under focused waves are presented in Figure 23a,b. In general, the tension
loads in both lines increase as the wave steepness increases. However, some disparities between the
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two mooring lines can be observed. Firstly, the maximum positive load in Line 2 is larger than Line 1,
whereas it has a smaller minimum positive tension as compared to Line 1 due to the existence of drift
force. In addition, the occurrence of the peak load in Line 1 (around t = 45 s) takes place earlier than in
Line 2 (around t = 50 s). This is because the longest extension of Line 1 occurs at t = 45 s, when the
minimum platform surge motion takes place; whereas the longest extension of Line 2 occurs at t = 50 s,
when the maximum surge motion takes place. Apart from that, it is also noted that the tension loads
under the largest wave steepness experience more fluctuations than the lowest one, which can be
induced by the large forces from wave radiation, diffraction and viscous force.
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Figure 23. Tension loads of line 1 and line 2 under different focused waves (Case 1 to Case 5): (a) Tension
loads of Line 1 under focused wave (Cases 1 to Case 5) (b) Tension loads of Line 2 under focused wave
(Case 1 to Case 5) (c) Tension loads of Line 1 under focused wave (Cases 6 and Case 10) (d) Tension
loads of Line 2 under regular wave (Cases 6 and Case 10).

Figure 23c,d presents the mooring tension loads under two regular waves. In general, the tension
loads are strongly determined by the translational motion of the floating platform. The observations
from Figure 18 indicate that the response of translational motions are similar between regular waves
and focused waves; thus, in terms of magnitudes of load, there are no obvious disparities between a
regular and a focused wave. However, we can observe the different mean loads under two types of
waves, which are mainly caused by different magnitude of drift forces.

5.3. Parked Floating Offshore Wind Turbine Subject to Focused Waves and Steady Wind

Along with the above two sections on the study of a bottom-fixed and floating semi-submersible
platform (i.e., DeepWind semi-sub), in this section, the investigation will be extended to an analysis
on a floating NREL 5 MW semi-submersible wind turbine. The gross properties are listed in Table 1.
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To better illustrate the focused wave impact, only the steepest focused wave condition is examined in
this section (Case 5). To model the wind field, the wind speed is fixed as the operating cut-off value of
25 m/s [6]. Under such extreme wave and wind condition, the wind turbine is expected to be parked.
Therefore, no rotational motion of the rotor is modelled in the present simulation, the blade pitch angle
is set as 0◦. The main objective of this study is to examine the floating platform dynamic response,
the mooring system tension loads and wind turbine tower-base fore-aft bending moment under severe
weather conditions. A separate paper will be presented on the turbine aerodynamic performance
under a combined focused wave and wind condition.

5.3.1. Dynamic Motion

Figure 24a shows the time-sequence motion responses in heave, pitch and surge for a parked
FOWT. As can be seen clearly, the FOWT endures a tremendous motion response near focused time
around t = 50 s. After the focused time, the motions present a free decay trend in both translational
and rotational directions. Compared with the results without the tower, rotor and wind, as shown in
Figure 19, the maximum surge enlarges almost by 5 m due to the wind speed along the positive surge
direction. However, the pitch near the focused time is smaller due to the damper effect caused by the
incident wind when the FOWT moves along the negative pitch direction. The heave motions are not
significantly affected by the presence of wind and turbine.
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Figure 24. 3DoF motion response for a parked wind turbine under focused wave (Hs = 14.7 m,
Tp = 15.0 s) and wind (U = 25 m/s): (a) time history of surge, heave and pitch; (b) PSDs of surge
and pitch.

The power spectral analysis of the surge and pitch responses is illustrated in Figure 24b,
where several important peaks are well captured. Specifically, the first peak of surge provides
a value of f = 0.14 fp or f = 0.0093 Hz, representing structure surge natural frequency. The second peak,
which occurs between 0.5 fp–1.5 fp, accurately captures the response in wave energy range. Other peaks
observed after 1.5 fp may be caused by the high-order wave loadings. Since the natural frequency of
the structure in pitch is at f = 0.037 Hz, or f = 0.54 fp, the second peak response between 0.5 fp–1.0 fp
represents the second-order difference-frequency wave loading, indicating the nonlinearity feature in
pitch response.

The analysis of the inline force Fx on the floating platform with turbine and wind has also been
carried out. The pattern of the inline forces is similar to those without wind and turbine shown in
Figure 25.
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Figure 25. Inline force Fx and PSDs analysis for a parked wind turbine subject to focused wave:
(a) inline force Fx; (b) PSDs of inline force.

Figure 26 demonstrates the velocity component Ux on the XoZ plane and free surface elevation
contours around a parked FOWT under a focused wave. As can be clearly seen, a high-velocity regime
is observed in the vicinity of both blade tips and roots, whereas a very low-velocity field is found
immediately after the blades. In addition, the existence of the tower and blade causes a complicated
flow field in the wake of the FOWT. The free surface elevation contours near the floating platform are
similar to the plots without tower and blades as shown in Figure 20.
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Figure 26. Free surface elevation contours and Ux contour at XoZ plane around a parked FOWT near
focused time.

5.3.2. Tension Loads

The time sequence of tension loads together with the PSDs analysis of mooring lines is shown in
Figure 27a,b. With the addition of the turbine and positive wind speed into the modelling, the tension
loads in both Line 1 and Line 2 are larger than the loads without wind (see Figure 23). However,
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high-frequency loading does not change too much. The PSDs results for Line 1 and 2 are similar; thus,
only the data for Line 2 is displayed in Figure 27b. As can be seen, the first corresponds to the natural
surge frequency, while other higher peaks are within the wave energy range.
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Figure 27. Tension loads of Line 1 and Line 2 and PSDs analysis for a parked wind turbine subject to
focused wave: (a) tension loads of mooring lines; (b) PSDs of tension loads.

5.3.3. Tower-Base Bending Moment

It is well known that the structural damage of a wind turbine tower may occur under extreme
weather conditions. In this section, the CFD results on the tower bending moments are analysed.

The time history of tower-base bending moment and PSDs are shown in Figure 28. The bending
moment can be represented by the calculation of y component of the cross product of the distance vector
and the turbine aerodynamic force vector. In the time domain, the tower bending moment reaches
its lowest value near focused time, which is quite close to the appearance of surge motion. For the
PSDs, the second-order difference-frequency, wave energy range, second-order sum-frequency and
high-order results are clearly represented in the frequency domain PSDs. The present simulations also
accurately predict the responses associated with the natural pitch frequency, i.e., f = 0.5 fp. In addition,
as the entire FOWT system is regarded as rigid body, the peak of the tower eigenfrequencies can hardly
be observed, i.e., f = 0.37 Hz = 5.5 fp.
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Figure 28. Tower-base bending moment and PSDs analysis for a parked wind turbine subject to focused
wave: (a) tower bending moment; (b) PSDs of tower bending moment.
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6. Discussion and Conclusions

The ocean waves may induce complex and significant loads on floating offshore wind turbines; as
such, it is essential to investigate the hydrodynamic and structural dynamic response of the FOWT
under severe sea states. However, the complicated wave-/wind-structure interaction of FOWT subject
to harsh weather conditions pose great challenges for computational modelling. Most numerical
studies either idealize the wave as a regular wave or investigate simple geometry. The conclusions
obtained are believed to be inaccurate when they are applied to FOWT operating conditions.

In this study, we have developed a high-fidelity computational fluid dynamics (CFD) modelling
tool to study the NREL 5 MW floating offshore wind turbine under focused wave conditions. In this
tool, the flow field is modelled by a further developed OpenFOAM-based code, where unsteady
Navier-Stokes equation is solved based on a finite volume method. To elucidate the effects of various
wave steepness on the hydrodynamic response of the system, we numerically examine a fixed
semi-submersible platform, a floating platform with five consistently increased wave steepness for
both regular and focused waves.

For the results with different wave steepness, the nonlinearity of the motion responses and
hydrodynamic loadings becomes significant as the steepness increases, which is clearly indicated
through both time and frequency domain analysis. By examining the wave surface elevation CFD
contours and digital data, we observed the wave run-up at large wave steepness due to the wave
overtopping under focused wave conditions. This further leads to the enhanced peaks of floating
platform motion responses in surge, heave and pitch. A comparison between the results from focused
waves and regular waves illustrates that, a focused wave causes more violent platform dynamic
motions and larger loading than a regular wave. The examination of a parked NREL 5 MW with
a maximum wave steepness and a constant wind speed at cut-off condition illustrates a complex
unsteady flow field in the turbine wake. Both the tower bending moment and mooring tension loads
present dynamic responses at several frequencies, corresponding to the first-order structural nature
frequency, second-order and higher-order frequency, indicating the existence of system nonlinearity.

To justify the differences between the results obtained from a high fidelity CFD modelling and
that from the reduced-order potential flow theory tools, we compare our results with those using
EDF in-house potential flow code and NREL FAST. In general, the results are in agreement before
the focused time; the difference becomes obvious after the focused time, and increases as the wave
steepness increases. Again, this highlights the existence of disparities for the prediction of the high
order hydrodynamic loads and the viscous effect due to the different methods used.
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