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Abstract: In the energy sector, decisions and technology implementations often necessitate a mid- to
long-term perspective. Thus, reliable assessments of future resource availability are needed to support
the decision-making process. In Switzerland, similarly to other countries, only a limited part of the
available wet biomass feedstock is currently used for anaerobic digestion. Understanding potential
future trajectories of the available biomass amount is therefore essential to facilitate its deployment for
energetic use and to establish adequate bioenergy strategies. Here, we utilized extensive government
data, historical trends, and data from academic literature to identify relevant drivers and their
trends. Starting with current biomass potential, the future availability and variation of resources was
estimated by taking into account selected drivers and their projected future development. Our results
indicated an increase of over 6% in available wet bioenergy resources by 2050 (from 43.4 petajoules
(PJ) of primary energy currently to 44.3 PJ in 2035 and 45.4 PJ in 2050), where a Monte Carlo analysis
showed that this projection is linked to high uncertainty. Manure remains by far the biomass with the
largest additional potential. Possible consequences regarding the country’s pool of biogas facilities
and their development are discussed.
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1. Introduction

Transforming the current energy system to achieve a sustainable energy transition is crucial
for mitigating climate change [1]. In this context, bioenergy is the most versatile form of renewable
energy. It can be used to generate electricity, supply heat, and provide liquid fuel for transport [2].
Moreover, the efficient use of locally available biomass resources can strengthen regional and
national added values [3]. These characteristics posit bioenergy as an important energy source
in energy transition.

Switzerland has set itself ambitious targets for optimizing both the material and energy use
of domestic biomass resources [4,5]. Similar targets have been set at the European level [6].
Previous studies have assessed current national biomass potential [7–9]. Having good estimates
of the future availability of biomass enables stakeholders to better plan the infrastructure needed to
use biomass for energy [10].

The complexity of long-term energy planning originates in numerous uncertainties and incomplete
knowledge [11,12]. Scenarios portray plausible future realities. They are widely used for considering
uncertainty and describing a range of possible developments [12–15]. Understanding available
energy resources forms the core of strategic decision-making and allows for quantitative, long-term
energy planning.

Energies 2019, 12, 3585; doi:10.3390/en12183585 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-7902-6523
http://dx.doi.org/10.3390/en12183585
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/12/18/3585?type=check_update&version=2


Energies 2019, 12, 3585 2 of 21

Regarding bioenergy, several studies have indicated that the use of biomass [16–18] and the
production of biogas worldwide will largely increase by 2050 [14]. Strategies to foster bioenergy
projects have been adopted at many levels [11–15]. The infrastructure to produce biogas nowadays
in Switzerland, however, is very limited. Around 400 biogas facilities—about 100 agricultural,
30 industrial, and 270 from wastewater treatment plants [19]—are processing only one-third of
available fermentable biomass [9]. In contrast to other types of renewable energies, costs are not
expected to decrease significantly [20] and are a major obstacle to biogas development.

This paper focuses on the availability of domestic wet biomass feedstock for energy in the
mid- (2035) to long term (2050). In Switzerland, these two years have particular relevance, as the
Federal Council has developed targets for these two time horizons in its Energy Strategy 2050 [21].
Current biomass potential has already been determined [9,22]. This study aims to explore the drivers
of biomass availability and indicate possible future developments and uncertainties.

To reach this aim, we determined the decisive explanatory variables (drivers) for each biomass
type [23] and quantified the correlations between them. We then assessed their respective trends in
2035 and 2050 based on an analysis of past data and consolidation through literature research. We then
used a Monte Carlo approach to estimate biomass potential and uncertainties.

2. Methodology

2.1. Overview

In a previous study, we determined the current potential of biomass for energy [9]. The focus of
this paper lies in the future availability of wet biomass. We divided wet biomass into six types based on
two main categories: agricultural residues (including animal manure and agricultural crop byproducts)
and anthropogenic wastes (including the organic fraction of household garbage, green waste from
household and landscape maintenance, commercial and industrial organic waste, and sewage sludge).
This classification allowed for a better comparison to our previous study [9]. Scenarios of the future
availability of dry biomass (wood), which was also part of our previous study [9], are described
elsewhere [24]. Since wet (nonwoody) biomass is mostly treated through anaerobic digestion to produce
biogas, and dry (woody) biomass is either used for material production or thermally treated, the value
chains are clearly separated, and treatment facility units can accordingly be planned separately.

In accordance with previous studies [7,9], we distinguished different levels of biomass availability:
(i) the theoretical potential, which refers to the maximum amount of biomass that could theoretically
be collected, and (ii) the sustainable potential, which refers to the biomass actually available for
energy after deducting losses due to environmental, technical, economic, and social restrictions.
Therefore, the sustainable potential represents the part of the resources that can sustainably be mobilized
for energy (not, for example, manure dropped by cattle during grazing that is not collected) [9].

2.2. Procedure

We used a mechanistic approach, trying to understand this complex system by examining the
workings of its individual parts and how they are coupled. Biomass resource amounts for 2035
and 2050 were estimated following the procedure outlined below. The current biomass availabilities
needed to be estimated as well, because they have not been assessed through surveys or measurements
elsewhere:

1. First, we identified the variables that were used to calculate current biomass resources [9,22],
such as livestock units (LSU), agricultural area, and number of inhabitants;

2. Then, we tried to understand the broader context of generating biomass. We searched for further
possible explanatory variables that could influence biomass development using international
literature and expert knowledge. Furthermore, available national databases (time series) from the
Swiss Federal Offices of Statistics, Energy, the Environment, and Agriculture were searched for
information that could be linked to any of the six biomass types;
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3. We analyzed possible pairwise correlations between variables using time series (up to 20 years)
from the databases and tested them using Pearson’s coefficient. In total, we tested pairwise
correlations between 49 potential explanatory variables. The number of tested variables varied
depending on the biomass type. Some drivers could not be tested due to a lack of historical time
series data but were chosen based on evidence in the literature (e.g., amount and characteristics
of the produced manure per animal or technological change). The resulting correlations were
included in the uncertainty analysis when appropriate to perform correlated sampling in the
Monte Carlo simulation (see below). For five variables (number of animals, agricultural area,
number of inhabitants, GDP, and industrial production), enough historical data were available to
forecast their trends and uncertainties into the future. For the other drivers, projections were
based on literature data or expert knowledge;

4. We chose the relevant explanatory variables (drivers) from among the previously described
variables. Whenever possible, an overlap in information was avoided. For instance,
meat production and animal numbers are correlated, so it was sufficient to consider only
one of the two parameters. In this case, animal number was chosen because it is more directly
linked to manure production. The drivers may vary according to the biomass, but some (such
as population growth) influence several types of anthropogenic wastes. Table 1 presents the
16 key drivers selected for our projections. These key drivers are described in Section 2.3 for each
biomass type and are summarized in Figures 1 and 2. More details regarding all of the possible
explanatory variables considered and their correlations, as well as the collected base time data
series, can be found in the appended Supplementary Materials (S) in Section S1;

5. In the next step, we estimated each driver trend and uncertainty, which were quantified as
the standard deviation (SD), for 2035 and 2050. Moreover, we analyzed the available time
series (five of the identified variables) to quantify their evolution until 2035 and 2050. To do
so, we tested different autoregressive integrated moving average models (ARIMAs) for these
five variables. ARIMA is a forecasting technique that projects the future values of a time series
based on its own inertia and has been used in the biomass context before [25]. In this model,
the “autoregressive” (AR) component shows a dependent relationship between an observation and
a number of lagged observations; “integrated” (I) enables differentiation between raw observations
(e.g., by subtracting an observation from an observation at the previous time step) to make the
time series stationary; and “moving average” (MA) allows for the observation of the dependency
between an observation and a residual error from a moving average model applied to lagged
observations. Each of these components is explicitly given as a parameter, noted as ARIMA(p,d,q).
Considering the residuals from the autocorrelation function (ACF) and the partial autocorrelation
function (PACF), the most appropriate model was chosen. This enabled us to extrapolate the data
into the future to obtain a forecast and its SD. We used the R-Package “Forecast”. More details
about the time-series analysis can be found in the Supplementary Materials (Section S2).
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Table 1. Description of the selected drivers for all biomass types. Note that the drivers of the theoretical
potential also apply to the sustainable potential.

Biomass Drivers of Theoretical Potential Drivers of Sustainable Potential

Animal manure

Number of animals (customer demand,
subsidies)

Proportion of animals with access to pastures/meadows
(customer demand, legal constraints), combined with the
number of days per year and the hours per day of grazing
(climate conditions, agricultural practices)

Quantity of manure produced per animal
(depending on stabling or feeding practices,
animal type)

Basic conditions for individual and joint biogas facilities
(available technology, substrate collection limitations, legal
constraints, subsidies)

Manure characteristics (feeding practices,
stabling system, animal type)

Agricultural crop byproducts

Agricultural area (land use, customer demand,
subsidies) Proportion of the byproducts possible to mobilize for energy

(e.g., new harvesting technology, subsidies, legal constraints)Average byproducts per area, including
intermediate crops (climate conditions and
agricultural practices such as fertilizer,
pesticide use)

Composition of byproducts (e.g., plantation type)

Organic fraction of household
garbage

Total private consumption Biogenic waste (not yet collected separately) and
nonsustainable part of theoretical are transferred to green
waste: sustainable = theoretical by 2050Waste mitigation policies and strategies (overall

reduction, improved recycling)

Green waste from households
and landscape

Total private consumption Part of the mixed garbage not yet collected separately, but
feasible: added after the simulation

Green waste mitigation measures (e.g., food
waste strategies)

Part to be preferably composted in as decentralized a way as
possible (structural and economic reasons)

Area/management of the green space

Commercial and industrial
organic waste

Industrial production Waste mitigation policies, social acceptance regarding food
waste (e.g., reuse as animal feed, food donation)Technology (optimized industrial processes)

Relocation of industries

Sewage sludge

Amount of wastewater treated expressed as
population equivalents (here using number of
inhabitants)

Assumed to be equal to the theoretical potential. In
Switzerland, all sewage sludge currently has to be
incinerated (thermal treatment). All sewage sludge could be
used for biogas production compared to only around
two-thirds today.

Sewage sludge load and characteristics (e.g., new
wastewater treatment processes)
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Figure 2. Key drivers for anthropogenic wastes (organic fraction of household garbage, green waste
from households and landscape, commercial and industrial organic waste, and sewage sludge).

Finally, we used these drivers, their trends, and uncertainties (always indicated as SD unless
stated otherwise) to conduct the Monte Carlo simulation, which provided the amount of each of the
six biomass types for 2035 and 2050. Base-year values (calculated biomass amount in petajoules (PJ)
in 2014 [9]) were used as a starting point, with an SD of 1.5% to reflect uncertainty. The simulation
demands a percentage of change for each factor affecting the biomass to calculate the new value as well
as a variance–covariance matrix (with variance on the diagonal and covariance whenever the factors
are correlated) to calculate the uncertainty. Each factor value was estimated according to historical data,
projections found in the literature, or our own estimations (point 5). When “current value” is stated,
the trend is expected to be 0, and only the SDs for 2035 and 2050 are given. Starting with the value in
PJ for each biomass, we applied each factor influencing this particular biomass to estimate the value
in PJ in 2035 and 2050. The simulation was performed per time horizon and biomass type for 1000
runs using the software R [26]. The standard models assumed a normal distribution. This distribution
typically approaches common patterns in nature, such as yield or size, which arise from the summing
up of many small-scale processes [27]. This distribution seemed appropriate here, as we modeled
mostly natural phenomena with symmetric uncertainties relative to the mean. Both the theoretical and
sustainable potentials were calculated in the same simulation, and thus the sustainable potential also
took the theoretical potential uncertainties into account. The pairwise correlations between drivers
were considered whenever possible in the covariance matrix. These factors and the equation are
provided for each biomass type (see below). The results for future trajectories of biomass amounts
indicated expected values (mean and median) and an estimated spread (95% confidence interval,
as well as minimum and maximum). The covariance matrices and an example R-script are provided in
the Supplementary Materials.

2.3. Biomass Types

2.3.1. Animal Manure

Animal manure refers to all excretions (both liquid and solid forms) from livestock farming.
Farm animal excrements (including urine) form the basic components of this biomass category.
Depending on the stable system, they are produced without any additional material (except eventually
water) as liquid manure or they are mixed with bedding material as solid manure.

The future availability of manure and cereal residues are the most important future contributions
of biomass to energy in agriculture [28]. After a decline at the end of the 1990s, the number of
agricultural biogas plants in Switzerland has been increasing since 2004, when new subsidies made
building anaerobic digesters more profitable. On the one hand, there is currently a great demand
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throughout Switzerland for the production of renewable energy from biomass. On the other hand,
limiting factors are, above all (despite financial assistance), the large investment expenditure and
limited economic efficiency. The uncertainty of the future of the subsidies themselves [29], similarly to
the effects of changes and cuts to support measures in Germany and Italy [30], makes any investment
even riskier.

Theoretic Potential

The theoretic potential includes all animal manure produced in Switzerland’s livestock farming
sector in one year [9,22,31]. Decisive drivers and their trends are the following:

1. The total animal number in livestock units (total animal number in LSUs 1996–2017 [32]).
According to our analyses of past data, we expected an overall light increase in Switzerland’s total
LSU (1%, SD ±5% by 2035; 1%, SD ±7% by 2050, see evolution in the Supplementary Materials);

2. The amount of manure produced per LSU (current value, no time series [33]). We assumed
a stable value [33] with uncertainty increasing with time (SD ±1.5% by 2035 and ±3% by 2050)
due to changed practices and adaptation to changing conditions (e.g., regulations, climate change,
consumers preferences);

3. The energetic content of the farmyard manure produced (current value, no time series [33], with an
SD ±2.5% by 2035 and ±5% by 2050, as it varies according to animal breed, stabling system,
and feed, which could change over time [31]).

Thus, the formula would be

ManureT2035, 2050, i = ManureT2014,i ·(LSU2035,2050,i·Qty2035,2050,i·Comp2035,2050,i) (1)

where ManureT2035,2050: manure theoretical potential in 2035/2050 in PJ; ManureT2014: manure theoretical
potential in 2014 in PJ [9]; LSU2035,2050: change in LSUs by 2035/2050; Qty2035,2050: change in the amount
of manure produced per LSU in 2035/2050; Comp2035,2050: change in the energetic content of the manure
in 2035/2050; i: iteration in the Monte Carlo analysis.

Sustainable Potential

The sustainable potential only includes farmyard manure collected centrally by the farmer.
The excrements of the animals that occur during grazing and remain on the meadow are deducted
from the theoretical potential, as they are not available for energetic use. Decisive influencing variables
are the following:

1. The proportion of animals with access to pasture, combined with the number of grazing days per
year and number of grazing hours per day (years 2002, 2007, and 2010 [34]). Due to the promotion
of animal-friendly housing systems and stricter requirements of animal protection legislation,
the proportion of animals with access to pasture as well as the grazing period has increased in
recent years for all animal categories [34,35]. As manure produced during grazing will not be
collected and used for biogas production, we assumed a decrease of 3% (±3.5%) by 2035 and 7%
(±7.5%) by 2050 linked to a decreased in stable time;

2. Changed basic conditions for biogas facilities (available technology such as mini-biogas,
legal constraints, and subsidies) can impact the amount of mobilizable manure for energetic use [9].
A minimum quantity of biomethane yield was assumed to be a prerequisite for the successful
operation of a biogas plant according to the current state of technology. The basis for the study
was the theoretical potential minus losses due to grazing. The lower limit assumed was 790 GJ
biomethane yield (or approximately 10 kilowatt electric (kWel)) for a single operation or 3160 GJ
(40 kWel) at a distance of 1 km for a joint operation [9,36]. Many new technologies are being
developed [37], but at the moment, only optimizations of the processes and costs are expected [18].
These developments were assessed more specifically for Switzerland, where increased efficiency of
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the technology is expected for secondary energy sources [38]. For the minimum limit, other aspects
that are based on purely technological innovations also play a role, such as economic or legal
boundary conditions (bans, incentives, CO2 emissions, etc.). Hence, no significant trend was
assumed with regard to the applicable technology (current values with an uncertainty ±5% by
2035 and ±10% by 2050).

Thus, the formula would be

ManureS2035,2050,i = ManureS2014,i·(LSU2035,2050,i·Qty2035,2050,i·Comp2035,2050,i·StableT2035,2050,i·Mobil2035,2050,i) (2)

where ManureS: manure sustainable potential (in 2014 or 2035/2050) in PJ; StableT2035,2050: change in
stable time by 2035/2050; Mobil2035,2050: change in the amount of manure mobilizable for an energetic
use in 2035/2050.

2.3.2. Agricultural Crop Byproducts

This category comprises the residues that are left on the fields after the main crop harvest, as well
as the intermediate crops sown to cover the soil between the main crop. Only byproducts occurring
after harvesting of a major crop under current practices were considered, for example, chaff and
residues from field vegetables. Nowadays, these are mostly left in the field and are incorporated into
the soil. Note that hay (pastures, meadows) and cereal straw, which are currently mainly used for
animal feed or as bedding, were not included [9].

Theoretic Potential

The theoretic potential includes all byproducts from agricultural crop production that, in addition
to the harvest of the main product, are produced in Switzerland in one year, including integrated
intermediate crops [9,22]. The decisive influencing variables are the following:

1. The agricultural area (without summer pasture). Over the last 15 years, the total agricultural
area decreased by 2% [32]. Extrapolating from the data of recent years [32], a further reduction of
about 2% (±2%) in total agricultural land was expected by 2035 (4% ± 4% by 2050). In the case of
intermediate crops, no significant change was expected;

2. The quantity of arising byproducts per area (linked to the main crop yield). Crop yield (main and
byproduct) is estimated to increase throughout the world (from 16.8 GJ per hectare in 2010 to
21.5 GJ in 2050 [14]) due to general agricultural progress [39]. Similarly, in Switzerland, the area
planted with cereals has fallen by 22% over the last 30 years, while the harvest has decreased by
only 13% [40,41]. Data on crop yields are readily available, while data on the residue-to-yield
ratio are very limited. Since there is a large annual variation in crop production, the amount
of agricultural crop residues varies significantly [42]. The data found in the literature on the
residue-to-yield ratios do not show a clear trend for the future [42,43]. Hence, in this paper,
we assumed a constant ratio between crop yield and byproducts, in spite of the variability of this
parameter [42,43]. The quantity of arising byproducts per area was thus assumed to increase by
a further 3% (±1.5%) by 2035 and 5% (±2.5%) by 2050;

3. The energetic content of the byproducts (current value, no time series [33], with an SD of ±1.5%
by 2035 and ±2.5% by 2050).

Thus, the formula would be

AgriT2035,2050, i = AgriT2014, i·(Area2035,2050, i·Qty2035,2050, i·Comp2035,2050, i) (3)

where AgriT2035,2050: agricultural theoretical potential in 2035/2050 in PJ; AgriT2014: agricultural
theoretical potential in 2014 in PJ (previous study); Area2035,2050: change in total area by 2035/2050;
Qty2035,2050: change in the amount of residues produced per hectare in 2035/2050; Comp2035,2050: change
in the energetic content of the residues in 2035/2050; i: iteration in the Monte Carlo analysis.
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Sustainable Potential

Due to current harvesting technology, competing uses, logistics, and costs, agricultural byproducts
are barely used for energy purposes. Today, the majority of agricultural crop residue remains on the
field and is plowed directly into the soil. The decisive driving variables here change basic conditions
for collecting the byproducts (available technology). Indeed, new machines are needed to make the
collection of crop residues efficient and cost-effective, as the traditional harvester only removes the
main crop itself. Under current conditions, it was estimated that about 18% of the overall byproducts
could be used for energy purposes [9]. Regarding resource mobilization, no significant trend was
assumed with regard to the applicable technology [44] (current values with an uncertainty ±5% by
2035 and ±10% by 2050):

AgriS2035,2050, i = AgriS2014, i·(Area2035,2050, i·Qty2035,2050, i·Comp2035,2050, i·Mobil2035,2050, i) (4)

where AgriS: agricultural sustainable potential (in 2014 or 2035/2050) in PJ; Mobil2035,2050: change in the
amount of manure mobilizable for an energetic use in 2035/2050.

2.3.3. Organic Fraction of Household Garbage

Theoretic Potential

Household garbage comprises all municipal waste from households that is not separately collected
or further used as material. The characteristics of Swiss household garbage were analyzed through
garbage bags from 33 municipalities [45]. Note that the organic fraction of household garbage is not
only composed of wet biomass (two-thirds) but also includes other organic sources such as paper,
cardboard, and leather. The wet organic portion investigated here included all materials of plant,
animal, or microbial origin (e.g., food leftovers, vegetable peels, flowers). This fraction would be
best collected separately and digested with green waste, whereas paper-like material and nonorganic
products, for example, should be recycled or burned. Although household garbage and green waste
are closely linked, they are collected and treated separately, and thus it was more adequate to keep
their quantification separated.

The theoretic potential includes the total wet organic portion of household garbage currently
occurring in Switzerland in one year. Due to its high standard of living, Switzerland has one of the
highest waste generation levels in the world (716 kg of total waste per person per year, 200 kg above
the Organisation for Economic Co-operation and Development (OECD) average [46]). The peak of
waste production is expected in OECD countries in 2050, but it is only expected globally in the coming
century [47]. The decisive explanatory variables are the following:

1. Total private consumption [48], which is expected to continue growing (+37% (±5.5%) by 2035,
+60% (±10%) by 2050) [49];

2. Waste mitigation policies and strategies (overall reduction, improved separation). The government
is taking preventive measures to reduce waste generation using a combination of regulation [50],
political and economic instruments [51], and voluntary agreements [52]. Hence, despite an
increased private consumption of over +26% in the last 20 years, the overall waste amount per
inhabitant has only increased by 15% [46]. Moreover, on account of the ever-increasing rates of
separately collected material (+10% in the last 20 years), the amount of mixed municipal waste
(which has to be incinerated) could be stabilized [46]. Further waste mitigation measures are
still expected in the future [51] and were accounted for (−25% (±5%) by 2035, −50% (±10%) by
2050, with relatively high uncertainty). This decrease is largely linked to improved separate
collection [45] and overall societal measures to reduce waste generation [50–52].

Thus, the formula would be

GarbageT2035,2050, i = GarbageT2014, i·(Cons2035,2050, i·Qty2035,2050, i) (5)
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where GarbageT2035,2050: household garbage theoretical potential in 2035/2050 in PJ; GarbageT2014:
household garbage theoretical potential in 2014 in PJ (previous study); Cons2035,2050: change in total
private consumption by 2035/2050; Qty2035,2050: change in the quantity of waste produced per capita in
2035/2050; i: iteration in the Monte Carlo analysis.

Sustainable Potential

The sustainable potential includes the total proportion of wet organic waste in household garbage
that cannot practically be composted or fermented to close the nutrient cycles. Today, garden and
kitchen waste account for about 30% of household garbage, of which about 80% could be collected
separately together with green waste [45,53,54]. We assumed that this amount will be collected and
recycled with green waste from households and landscape by 2050 (−80% (±10%)) and that by 2035,
about half of this goal would be achieved (−40% (±5%)). Thus, by 2050, the theoretical potential will be
equal to the sustainable potential. This is not an absolute reduction in the quantity of overall biomass,
but a shift from the biomass type “household garbage” to the separately collected “green waste from
households and landscape” (see Section 2.3.4.).

Thus, the formula would be

GarbageS2035,2050, i = GarbageS2014, i·(Cons2035,2050, i·Qty2035,2050, i·Collect2035,2050, i) (6)

where GarbageS: household garbage sustainable potential (in 2014 or 2035/2050) in PJ; Collect2035,2050:
change in the quantity of biowaste separately collected in 2035/2050.

2.3.4. Green Waste from Households and Landscape

This category refers to all nonligneous waste collected separately by local authorities from
households and during landscape maintenance. Currently, separately collected green waste in
Switzerland is either treated by composting or anaerobic digestion. Similarly to household garbage,
the quantity of green waste from households and landscape could be estimated for each Swiss
municipality [9].

Theoretic Potential

The theoretic potential includes all green waste from households and landscape maintenance
separately collected in Switzerland in one year [9]. The amount of green waste collected separately
has continuously increased over the past 20 years (+63%) [55], partly due to the improved collection
system. The decisive explanatory variables are the following:

1. Total private consumption (see Section 2.3.3, “Organic Fraction of Household Garbage”);
2. Green waste mitigation measures (e.g., food waste strategies). Around 15% of household waste is

estimated to be still edible food waste [56]. Due to the government’s efforts to reduce avoidable
food waste [51,57], a trend of −10% by 2050 (±5%) was accounted for. This considered that part
of green waste comes from landscape maintenance, which is not impacted by food waste;

3. Area/management of green space. No clear trend could be identified in the area or management
of green space (current conditions with an uncertainty ±1% by 2035 and ±2.5% by 2050).

Thus, the formula would be

GreenwasteT2035,2050, i = GreenwasteT2014, i·(Cons2035,2050, i·Qty2035,2050, i·Space2035,2050, i) (7)

where GreenwasteT2035,2050: green waste theoretical potential in 2035/2050 in PJ; GreenwasteT2014:
green waste theoretical potential in 2014 in PJ (previous study); Cons2035,2050: change in total private
consumption by 2035/2050; Qty2035,2050: change in the quantity of waste produced per capita in
2035/2050; Space2035,2050: change in the area or management of green spaces in 2035/2050; i: iteration in
the Monte Carlo analysis.
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Sustainable Potential

In addition to the already separately collected green waste (which is the theoretical potential),
we added the quantity of organic waste, which currently ends up in the household garbage but
which could be collected separately and either be digested or composted to close the nutrient
cycles (Federal Waste Regulation, Art. 13 [50]). The reduction linked to food waste is particularly
important. This quantity is, therefore, a resource shift from the mixed biomass type “household
garbage” to separately collected green waste (see Section 2.3.3). For structural reasons (isolated areas,
societal preferences) and economic reasons (collection costs), we assumed that a small proportion of
about 10% is best composted in a decentralized way in private gardens [9,58]. We did not expect any
major changes in this proportion (current conditions with an uncertainty ±2.5% by 2035 and ±5% by
2050):

GreenwasteS2035,2050, i = GreenwasteS2014, i·(Cons2035,2050, i·Qty2035,2050, i·Space2035,2050, i·(1−Compost2035,2050, i)) (8)

where GreenwasteS: green waste sustainable potential (in 2014 or 2035/2050) in PJ; Compost2035,2050:
quantity to be composted locally in 2035/2050.

2.3.5. Commercial and Industrial Organic Waste

This category refers to all organic, nonwoody commercial and industrial wastes. Six main
industrial and commercial sectors were identified that produce a significant quantity of organic waste
in Switzerland: catering, retailers, and paper manufacturing (industry sludge); and the tobacco,
food processing, and phyto-pharma industries. The resulting theoretic potential of commercial and
industrial organic waste was calculated for 2035 and 2050 as the sum of these six sectors.

Theoretic Potential

The theoretic potential includes all produced organic waste from industry, retailers,
and restoration [9].

The decisive explanatory variables are the following:

1. Industrial production is the total production account for all branches at current prices (in millions
of Swiss francs), and it considers production, turnover, sales volumes, and stock inventory
statistics from the secondary sector without the construction industry [59]. It applies to all sectors.
We extrapolated the values from the past 20 years, and we expected industrial production to
continue growing (+37% (±12%) by 2035, +49% (±16%) by 2050) [60];

2. Industry relocation, for example to lower-cost countries, in all processing industries. We assumed
a −2% (±1%) reduction by 2035 and −5% (±2.5%) by 2050 (own estimates);

3. Technical and organizational changes in all processing industries (food, tobacco, paper production
(sludge), phyto-pharmacy). Here, we assumed that slightly less waste will occur per produced
unit through optimized processes (−5% (±2.5%) by 2035 and −10% (±5%) by 2050) (based on our
own estimates).

Thus, the formula would be

IndustryT2035,2050, i = IndustryT2014 , i·(Prod2035,2050, i·Reloc2035,2050, i·Tech2035,2050, i) (9)

where IndustryT2035,2050: industrial theoretical potential in 2035/2050 in PJ; IndustryT2014: industrial
theoretical potential in 2014 in PJ (previous study); Reloc2035,2050: relocation of industries in 2035/2050;
Prod2035,2050: change in total Swiss production in 2035/2050; i: iteration in the Monte Carlo analysis.



Energies 2019, 12, 3585 11 of 21

Sustainable Potential

The sustainable potential is much lower than the theoretical potential, as a large quantity
of industrial waste is better recycled, and thus used nonenergetically, whenever possible
(e.g., feeding animals food processing waste). The most decisive driver influencing the development of
sustainable potential is associated with the management of generated food waste (e.g., retailers’ food
waste donations). Switzerland will strive for a 50% decrease in edible food waste by 2030 [57]. Due to
the government’s efforts to reduce avoidable wastes [51], a trend of −50% by 2050 (±20%) was therefore
accounted for, which is similar to the Sustainable Development Goals (Agenda 2030 from the United
Nation Organization) [61] (−50% in 2030). Thus, the formula would be

IndustryS2035,2050,i = IndustryS2014, i·(Prod2035,2050, i·Reloc2035,2050, i·Tech2035,2050, i·FoodWaste2035,2050, i·Collect2035,2050, i) (10)

where IndustryS: industrial sustainable potential (in 2014 or 2035/2050) in PJ; Foodwaste2035,2050: social
and legal changes impacting food waste in 2035/2050; Collect2035,2050: percent of biomass that can be
collected in 2035/2050.

2.3.6. Sewage Sludge

Sewage sludge generally describes all organic matter derived from central water treatment.
Here, we examine the potential of fresh sludge, which refers to untreated sewage sludge, in more detail.
Subsequently, organic substances from the fresh sludge that decompose rapidly can be degraded under
controlled conditions. Anaerobic digestion is a proven and common process for stabilizing fresh sludge
and converting it into digested sludge while producing biogas [9].

Theoretic Potential

The theoretic potential includes all the fresh sludge currently produced in Switzerland’s central
wastewater treatment plants in one year. The wastewater load is usually expressed in population
equivalents. This value corresponds to the quantity of pollutants of a “typical inhabitant” that is
directed to the wastewater treatment plant, including households and small businesses. In 2010,
10.5 million population equivalents were cleaned throughout Switzerland [62]. Around 70% came
from domestic wastewater and 30% from industrial wastewater. The key drivers are the following:

1. The number of inhabitants of Switzerland [28]. Switzerland’s population has more than doubled
since 1900 [63], from 3.3 million to 8.4 million today. Since 2007, the average population growth
has been just over 1% and is expected to continue growing. Based on past data, we calculated
a strong increase in the years to come (+18% (±3.5%) by 2035, +22% (±6.5%) by 2050), similar to the
expectations of the government [64]. The organic load in domestic wastewater comes mainly from
sanitary facilities, bathing, laundering, and cooking activities. Thus, population development is
expected to have a direct impact on the produced sewage sludge amount;

2. Wastewater technology (which could impact the produced sewage sludge). New technologies
could reduce the load at the central treatment plant (e.g., urine separation), and current
installations could be extended (e.g., integrative consideration of network and purification) [65].
However, the wastewater infrastructure in Switzerland is already built, and fundamental changes
are not expected. The main focus at the moment is the elimination of micropollutants and
phosphorus recycling from sewage sludge [62,66]. Hence, it was assumed that the sewage sludge
load per population equivalent will remain similar in the future (the same value as today, with an
SD of ±1% by 2035 and ±2.5% by 2050).

Thus, the formula would be

SewageT2035,2050, i = SewageT2014, i·(Pop2035,2050, i·Load2035,2050, i) (11)
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where SewageT2035,2050: sewage sludge theoretical potential in 2035/2050 in PJ; SewageT2014: sewage
sludge theoretical potential in 2014 in PJ (previous study); Pop2035,2050: change in number of inhabitants
by 2035/2050; Load2035,2050: change in the energetic content of the sewage sludge in 2035/2050; i:
iteration in the Monte Carlo analysis.

Sustainable Potential

As sewage sludge in Switzerland must be treated thermally in suitable plants (Federal Waste
Regulation, Art. 10 and 12 [50]), all sewage sludge produced is used for energy purposes. At the
resource level, the theoretical potential is equal to the sustainable potential.

3. Results

3.1. Future Theoretical and Sustainable Potential

As shown in Figure 3, agricultural residues remained fairly stable, whereas anthropogenic
wastes increased at first (due mostly to population and consumption growth) and then stabilized
or slightly decreased in 2050 (mostly due to improved waste management practices)—apart from
green waste, which kept increasing until 2050. Uncertainty, however, increased for all types of waste
over the years, especially for the sustainable potentials (see also table in the Supplementary Materials,
Section S3). The results of the respective biomass types are described in the following sections
(Sections 3.1.1–3.1.6). Figure 4 shows the cumulative expected development of the total wet biomass
potentials for 2035 and 2050. Animal manure remained by far the biomass with the largest additional
potential, representing about half of the total wet bioenergy potential.
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3.1.1. Animal Manure

By 2050, the theoretical amount of manure is expected to be similar to the current values
(49.4 PJ, or 1% more than today). Indeed, overall animal number, amount of produced manure per
animal, and energetic characteristics of the produced manure are not expected to change significantly,
although a decrease in meat consumption has been observed [67]. With regard to the sustainable
potential, a slight decrease of less than 1 PJ is expected (reaching 25 PJ in 2050) due to higher amounts
of time spent in pastures, where manure cannot be collected. Farmyard manure has only been used as
an energy source to a very limited extent in Switzerland to date [68].

Extrapolating from the current trend, we expect fewer but larger farms in Switzerland
(e.g., 40,000 livestock farms in 2035 and 33,000 in 2050). Their spatial distribution should not
show any significant development. They will remain mostly located in the central lowlands, like today,
where only a few small farms exist in the mountainous regions.

3.1.2. Agricultural Crop Byproducts

With regard to the amount of agricultural crop byproducts, no significant developments are
expected (from 2.6 PJ available today to 2.7 PJ by 2050), although local changes are possible due
to changed crops. Other important influences are the weather or harvesting techniques. These are
associated with great uncertainty.

Until now, agricultural byproducts from crop production in Switzerland have only been used as
an energy source to a very limited extent. They are mostly fermented as a cosubstrate together with
animal manure, so their future energetic use will be shaped by the overall development of the use of
animal manure.

Changes in agricultural policy and the market economy in recent decades have led to a structural
change in agriculture, leading to a slow reduction in the number of farms and an increase in the average
area of farms. This trend is likely to continue in the future [69], with further homogenization of the
open cultural landscape [70]. This could allow for a higher portion of resources to be mobilized, as it
simplifies the logistics of gathering manure and agricultural byproducts.

3.1.3. Organic Fraction of Household Garbage

The volume of wet organic household garbage steadily decreased from 2.1 PJ today to 1.1 PJ in
2050. As the uncertainty of the drivers was set to increase over the years, the development uncertainty
of the organic household garbage amount increased over the years. Overall, these forecasts agree
with the report of the Federal Council [71], which assumed that the amount of waste in the waste
incineration plants will not decrease in the future due to general consumer behavior and population
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growth. Since mixed household garbage in Switzerland cannot be landfilled and must be incinerated
in suitable plants (Federal Waste Regulation, Art. 10) [50], the total theoretic potential is already used
for energy even though not always in an optimized way. This obligation is also expected to remain in
place until 2035 and 2050.

The spatial distribution of household garbage and green waste is closely linked to population
demographics. Matter et al. [72] expected the population to increase in the metropolitan areas of large
settlements and along transport axes and to decrease in rural areas without direct access to a city [64].
This can also have an impact on the amount of organic household waste produced. Household waste
and green waste produced by the Swiss population will therefore be concentrated in the catchment
areas of the largest cities.

3.1.4. Green Waste from Households and Landscape

By 2050, the sustainable potential of green waste should reach 7.8 PJ, 50% more than today.
Separately recycled biogenic waste is currently fermented (52%) or composted (48%). The importance
of fermentation has increased considerably in recent years [73]. By 2050, the sustainable potential of
green waste should be largely fermented and used for energy production.

3.1.5. Commercial and Industrial Organic Waste

Due to industrial production processes improving and the relocation of industrial activities to
other countries, a decrease in this potential is to be expected (1.8 PJ sustainable potential by 2050).
This consists of two-thirds of waste from the food processing industry, followed by catering and
retailers. The uncertainty is due to diverse and unpredictable changes in general conditions (e.g.,
changes in legislation, industrial processes, and the relocation of operations).

3.1.6. Sewage Sludge

Overall, an increase in Switzerland’s total sewage sludge volume was expected (18% by 2035, 22%
by 2050), in line with the expected population growth, with an overall uncertainty of ±5% (2035) and
±8.5% (2050). Thus, the energy potential increased to 6.0 PJ (±0.6 PJ) in 2050.

In Switzerland, sewage sludge counts as waste and must be thermally treated [50]. This is mostly
done in specialized monocombustion plants, municipal waste incinerators, and cement works [22].
Today, the potential already used is 4.9 PJ. Before incineration, the sludge is treated to decrease
the high organic matter and water content. This is done to improve its stability, transportability,
and recoverability. One of the applicable treatment steps is to subject the raw sludge to digestion
processes (thus producing biogas, which can be used as a renewable energy source). An energetic
increase of about 1.4 PJ would be possible if anaerobic digestion and subsequent biogas utilization
for energy were systematically integrated into sewage sludge treatment [9]. Similarly, an additional
energy potential from sewage sludge of 1.7 PJ could be expected in 2050.

Sewage sludge is also closely linked to the spatial distribution of the population. In order to treat the
larger wastewater quantities expected in 2035 and 2050 (mostly from larger cities), infrastructure should
be installed to handle about 20% more capacity.

4. Discussion

The long-term estimation of the wet biomass resource potential of this paper facilitates the planning
of infrastructures to exploit it [10]. This study suggests that there will be enough biomass waste
available in the future, especially manure, to run a much higher number of (especially agricultural)
facilities than today. However, the results also show the limited availability of valuable cosubstrates
(e.g., from industry or gastronomy), and hence point out the relevance of making efficient and
coordinated use of them. The time frame adopted in this paper was longer than the 20-year life
expectancy of a biogas installation [74]. We estimated previously that, to valorize the sustainable
potential of manure for energy alone, up to 1500 agricultural biogas facilities could be necessary [31],
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15 times more than today [19]. Considering the future availability of wet biomass resources estimated
in this paper, a lot of resources are available. An increase in both agricultural and industrial biogas
facilities would be needed to exploit the remaining potential today and in the future.

Several other studies have looked at biomass potential, often using a few individual
scenarios [23,75]. These scenarios were used to show specific influences of policy measures
(subsidies, legislations) or societal will to implement renewable energies in general and biogas
in particular. Other studies have looked at the biomass quantities needed or wanted to increase
supplies accordingly [17] and have been mostly concerned with energy crops. In Switzerland, one of
the most important biomass future potential reference studies is from 2004 [76], and it was used
for the development of the Swiss Energy Strategy [77]. Differences in definitions and assumptions
led to some different estimates in 2014 [9]. Overall, our estimations are lower (2050: theoretical
potential 88 PJ primary energy, sustainable potential 45 PJ) than the potentials indicated in the study
(theoretical potential in 2040: 104 PJ; ecological potential in 2040: 39–50 PJ; see p. 80 in Reference [76]),
although there are variations within the different categories. In Switzerland, new waste regulations
stipulate that all recoverable anthropogenic wastes have to be separated before collection and recycled
as much as possible [50]. Similar resource-saving objectives are being pursued in EU waste policy
through new waste management hierarchies that prioritize material recovery above sole energetic
use [78]. From this perspective, anaerobic digestion allows for both material and energy recovery.
The produced biogas can be used for heat, power, and as transport fuel, while the digestate can
be applied to the land as organic fertilizer. Anaerobic digestion has also been identified as one of
the most promising practices for mitigating CH4 and N2O emissions from manure storage while
producing renewable bioenergy [79–81]. In Switzerland, manure could produce 15 PJ of gross biogas
yearly, while preventing the emission of 159 kT of CO2 equivalents compared to emissions under
current management practices [31]. Nowadays, manure is hardly used for energy production in
Switzerland and is directly applied to fields. The main financial obstacle lies in deploying biogas
technology, especially for low-energetic sources such as manure. Strategies to promote the fermentation
of manure could include the cofermentation of manure with higher-energetic sources or various
financial incentives (handing out subsidies, imposing feed-in tariffs, providing CO2 certificates, etc.).
However, this can only happen with broad social and political support, as the promotion of biogas will
require some form of subsidy.

Regarding overall sustainability, more biomass being available is not necessarily better.
For example, fewer animals would imply fewer environmental damages [80,82] but also less manure
for producing energy. Therefore, stakeholders should not try to increase the amount of waste resources
but rather optimize their use for energy.

To estimate the future potentials, we looked at the drivers that influence them. Some may
not be easily controlled by governments, but others could be influenced to achieve a better pool of
resources (e.g., by promoting green waste separation, favoring technological innovation, or setting
a favorable legal framework). Therefore, presenting both the potentials and their drivers is relevant.
We did not consider the possibility of a major disruptive change, such as new unforeseen technology,
waste mitigation measures, or massive diet shifts. For example, a recent trend to eat less meat [67],
especially among younger people, could increase the long-term uncertainty regarding animal numbers
and therefore the manure potential. Our method helps to capture possible outcomes with a large range
of estimated uncertainties, which is helpful for planning purposes. The method is dependent on the
quality and quantity of the drivers chosen, and we tried to focus only on the most relevant drivers
with the strongest possible effects.

Nowadays, energy crops are hardly cultivated in Switzerland due to the lack of subsidies because
they have not been considered a political priority. Various life cycle assessments have also shown that
the cultivation of common energy crops (such as maize and rapeseed) does not make sense from an
ecological point of view in Switzerland [83,84]. New research has indicated the potential of perennial
crops such as Miscanthus [85], Silphium perfoliatum L. [86], or wild plant mixtures [87], which have
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a better environmental performance, especially when grown on marginal land. However, there is
a lot of pressure on agricultural land in Switzerland due to the mountainous topography and high
population density. This leads to competition in feed and food crops. Hence, the cultivation of energy
crops on a large scale is not expected in the future, and biogas technology is expected to continue using
waste or byproducts as the main feedstock.

At the European level, the competition in food production is much smaller [88].
Currently, the potential of bioenergy to contribute to the reduction of greenhouse gas emissions
(GHGs) and demand-driven supply plays a significant role in the bioenergy and bioeconomy debate
in Switzerland and Europe. In 2017, biogas made up 0.1% (1.8 PJ) of the renewable-based final
energy supply in Switzerland [89]. According to our results, with current technology, wet biomass
could have produced a total of 21 PJ biogas in 2014, increasing up to 23 PJ in 2050. In 2015, the EU
produced 350 PJ, or 4% of the gas used in Europe (about one-third heat and two-thirds electricity) [90].
In comparison, the European Biogas Association’s strategy is based on reaching the full potential of
biogas and biomethane production, roughly 10% of the EU’s current natural gas consumption [91].
Utility companies in Switzerland are planning to cover 30% of household gas heating needs with
biogas [92]. This cannot be achieved just by using sustainable domestic biomass for energy, and other
technological pathways are needed to achieve this goal.

A major bioenergy potential in the electricity sector is system stabilization. This could be
encouraged with a flexibility premium, where installations produce energy on demand when it is most
needed (German Renewable Energy Act 2012 in Reference [30]). As a result of the many resources that
can potentially be used as feedstock (e.g., manure, organic waste, and crop byproducts), as well as the
numerous thermochemical, biochemical, and physicochemical conversion methods to generate and
produce it, wet biomass has the potential to support the generation of energy for all end-use applications
(electricity, heat, and transport). Furthermore, bioenergy conversion usually generates heat and power
simultaneously by using combined heat and power plants. The increased use of cogenerated heat
would increase overall efficiency. In addition, in the transport sector, alternative renewable-based fuels
will likely play an important role [93].

5. Conclusions

The estimation of future wet biomass amounts will enable better utilization of biomass resources
now and in the long term. Our analysis confirmed that resources are expected to stay stable enough
to justify long-term investments in infrastructures to convert all types of wet biomass into energy
(from a current total of 43 PJ of primary energy available toward 45 PJ in 2050). In particular,
agricultural biomass and conversion to biogas could be exploited to a much larger extent, calling for
an increase in bioenergy infrastructure. Using this information, energy from biomass can be
positioned to flexibly fill gaps in the future energetic system in Switzerland and other countries.
However, mobilizing these resources is still a challenge, and further studies are needed to identify
barriers and enablers in increasing the use of biomass for energy.
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