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Abstract: In recent years, although deep learning algorithms have been widely applied to various
fields, ranging from translation to time series forecasting, researchers paid limited attention to
modelling parameter optimization and the combination of the fuzzy time series. In this paper, a novel
hybrid forecasting system, named CFML (complementary ensemble empirical mode decomposition
(CEEMD)-fuzzy time series (FTS)-multi-objective grey wolf optimizer (MOGWO)-long short-term
memory (LSTM)), is proposed and tested. This model is based on the LSTM model with parameters
optimized by MOGWO, before which a fuzzy time series method involving the LEM2 (learning from
examples module version two) algorithm is adopted to generate the final input data of the optimized
LSTM model. In addition, the CEEMD algorithm is also used to de-noise and decompose the raw
data. The CFML model successfully overcomes the nonstationary and irregular features of wind
speed data and electrical power load series. Several experimental results covering four wind speed
datasets and two electrical power load datasets indicate that our hybrid forecasting system achieves
average improvements of 49% and 70% in wind speed and electrical power load, respectively, under
the metric MAPE (mean absolute percentage error).

Keywords: multi-objective grey wolf optimizer; long short-term memory; fuzzy time series; LEM2;
combination forecasting; wind speed; electrical power load

1. Introduction

Effective forecasting plays an essential role in various aspects, such as energy application, economic
risk management, standardized management, policy making, and so on. Forecasting helps corporations,
governments, and other organizations and institutions to evaluate the market and to make relative
predictions to better understand potential relations among entities and to plan for the future, which is
a useful way to make policies on both the private and the social levels. As a result, many forecasting
methods have been proposed during the past decades. Among these, there are two different categories:
time series forecasting and causal forecasting. Since causal forecasting has some inherent limitations,
including the reliability and availability of independent variables, time series forecasting has been
applied much more widely due to its convenience for data collection and its high accuracy as well as
stability. Time series forecasting methods presume that history will repeat itself, which means that the
forecasting of future values is based on present values and past observations. Nowadays, time series
forecasting has achieved great success in many industries, especially in the energy industry.

With the rapid development of the energy industry and increasing demand for high-level
management and application, its infrastructure has been upgraded by a great extent, as a result of
which the prices, supply, as well as demand have oscillated to a greater extent and have become more
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unpredictable than ever before. This has posed a great challenge to the forecasting method in terms of
accuracy and stability, since forecasting plays an essential role in qualifying those unfortune features
by which people are able to gain more accurate forecasts that can be applied to risk management,
energy planning, industry configuration, and so on. In previous years, electrical power load forecasting
has been an important part of power system planning and the basis of the economic operation of
power systems. Unfortunately, we have to confront several difficulties, such as meteorological factors,
development speed, and some cases of unpredictable natural devastation, if we want to take good
advantage of power load data. Researchers have focused on exploring nonsymmetrical faults [1],
ground faults [2], microgrid distributions [3], etc. For instance, Qu et al. [4] explored and developed
an intelligent damping controller which can reduce power fluctuations in hybrid power systems.
Ye et al. [5] studied long-term load forecasting based on support vector regression (SVR) and explored
nonlinear relationships between economic growth in terms of GDP and power load requirements.
On the other hand, with the inadequate implementation of corresponding emission and environmental
protection policies [6], wind power has attracted many scientists and researchers [7]. Currently, wind
power accounts for roughly 10% of the total consumption of energy in Europe—15% more than
that of Spain and Germany [8]. To utilize the wind more effectively and efficiently, we need to get
accurate forecasts of the wind speed. Nevertheless, as for wind speed, it has an inherently volatile and
irregular quality and is considered a fairly tricky weather element to predict accurately as a result of its
randomness and nonlinearity [9]. Numerous researchers and scientists have made great contributions
to the development of effective and robust wind speed forecasting models, which can also be used
to forecast electrical power load data. According to time horizons, there are four different types of
forecasting methods: long-range forecasting, medium-range forecasting, short-time-period forecasting,
and very-short-term forecasting. Moreover, it can also be divided into the following four types: artificial
intelligence methods, statistical methods, spatial correlation methods, and physical methods [10].

Physical models containing parameters ranging from temperature to topography to pressure
are usually used on a massive scale for long-term wind speed prediction with multiple weather
parameters [11]. On the contrary, statistical models, such as the autoregressive (AR) model,
Auto-Regressive Average (ARMA) [12], Autoregressive Integrated Moving Average (ARIMA) [13],
fractional ARIMA (FARIMA) [14], exponential smoothing (ES) [15], and grey prediction (GP) [16],
are developed on the basis of the relationships among variables through mathematical statistics to
illustrate the potential correlations within the historical data sampled from the observed wind speed
data. Spatial correlation methods mainly take into account the other factors, such as the direction of
the wind, the terrain roughness, and the height above the horizon. Sometimes, this kind of method
achieves high accuracy [17].

With the rapid development of and increasing research on computer science, the performance
of complex calculations in less time has become possible. Consequently, in the past few years, a
large number of statistical learning models have been recorded, which eventually formed a mature
theoretical system. The renowned ANN (artificial neurol network) is widely utilized for wind speed
forecasting fields, which have the ability to carry on the parallel processing and to deliver nonlinear
maps. This mainly includes back propagation (BP) [18], the radial basis function (RBF) [19], the Elman
neural network (ENN) [20], the wavelet neural network (WNN) [21,22], and others. In addition, during
the past twenty years, the neural network field has experienced some innovations which have resulted
in well-known deep learning (DL) models [23]. Particularly, the large computational cost has been the
largest drawback of conventional neural network algorithms. However, greedy layer-wise pretraining
is able to train the so-called deep belief network (DBN) more efficiently [24,25]. Following pertinent
progresses, scientists are now able to create and train neural networks with not only one hidden layer,
which, in turn, has increased generalization capabilities and allowed better outcomes. This field has also
been renamed “in-depth learning” to assess the depth of progress made [26]. The success of DL models
can be seen in computer science applications, such as image recognition [27], speech recognition [28],
and machine translation [29]. Moreover, the benefits have also spread to energy-related fields, such
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as wind power forecasting, which especially refers to wind speed forecasting. In the same field,
Wang et al. [30] proposed the convolutional neural networks (CNNs) to acquire precise probability
prediction of wind power. However, there is still relatively less research about the DL-related models
being applied in wind speed forecasting fields compared with the most active part of this technology.
In Reference [31], a deep autoencoder (DAC) combined with extreme gradient boosting (XGB) was
proposed to forecast the building cooling load; A deep neural network (DNN) was also applied to
get the forecasting results; this method was more accurate than the other methods presented in the
same paper. In Reference [32], the DL model was also shown to discern the islanding highly accurately.
Therefore, regarding this point, we considered the application of these kinds of technologies in wind
speed forecasting in an effort to get a higher accuracy. Furthermore, the authors of Reference [33]
proposed a DL strategy applied to time series forecasting and demonstrated how it can be successfully
used in electricity consumption forecasting, which correlates with the wind speed data to some extent.
Except for ANNs, fuzzy logic methods [34] as well as support vector machine (SVM) [35]-related
methods, such as least-squares support vector machines (LSSVMs) [36], Gaussian processes [37], and
others, are also commonly applied in the forecasting of wind speed.

However, each method has different drawbacks and disadvantages as a result of its inherent
nature. The drawbacks of the aforementioned models are summarized as follows:

(1) Because physical algorithms are very sensitive to market information, they need a long run time
and a large amount of computing resources. In addition, these models have shortcomings in
dealing with short-term forecasting problems and they do not have high accuracy and validity in
short-term forecasting.

(2) Traditional statistical arithmetic methods fail to manage forecasting with fluctuations and high
levels of noise, nonlinear and irregular trends, or other inherent characteristics of wind speed
data that are primarily confined by the premise of a linear pattern along a time series. Moreover,
oftentimes, these methods require a large amount of historical data on which they deeply depend
in realistic cases. This means that once there is an abrupt and unexpected change in the original
data as a result of social or environmental factors, prediction errors will proliferate all at once [38].

(3) Spatial correlation arithmetic methods based on vast quantities of information, for example,
the wind speed information of many spatially correlated sites which is difficult to collect and
analyze, makes it hard to perform perfect wind speed forecasting [39].

(4) Artificial intelligence arithmetic methods, different from other approaches, are able to deal with
nonlinear features which are hidden among historical wind speed data. Although many studies
have been carried out and the methods have been successfully applied to address complex
data patterns, there are also some defects and drawbacks within artificial intelligence methods,
such as showing a relatively low convergence rate and over-fitting, easily getting into a local
optimum, etc.

(5) Individual forecasting models are good at forecasting to some extent, but they rarely focus on the
importance and necessity of data preprocessing; therefore, these approaches cannot always get a
good forecasting outcome.

Hence, with the objective of combining all the advantages and of avoiding the weaknesses, a
number of combined forecasting methods have been proposed [40]. Bates and Granger proposed the
combination prediction theory and showed promising outcomes in 1969 [41]. Since then, research
on combinatorial forecasting theory has attracted extensive attention [42]. Xiao et al. developed two
combined models for wind speed sequence prediction: the AI combination model [43–45] and NNCT
(no negative constraint theory). The results indicate that more reliable and accurate forecasts are
attained when the combined models are applied.
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In addition, with the purpose of achieving highly accurate forecasting, some types of time series
preprocessing techniques, such as wavelet packet decomposition (WPD) [46], fast ensemble empirical
mode decomposition (FEEMD) [47], and singular spectrum analysis (SSA) [48] techniques, have been
effectively applied in the data preprocessing stages of time series forecasting fields in an effort to
decrease the random disturbance traits of the original windspeed data. Similarly, techniques have been
widely used in such hybrid models to get a higher forecasting accuracy. Thus, the complementary
ensemble empirical mode decomposition (CEEMD) that is modified from the ensemble empirical mode
decomposition (EEMD) is applied in this paper.

Thus, in this study, the CEEMD-FTS (fuzzy time series)-MOGWO (multi-objective grey wolf
optimizer)-long short-term memory (LSTM), a combined model with CEEMD as the preprocessing
part, is based on LSTM, which belongs to the RNNs (recurrent neurol networks) within the DL field,
but a modified version with less disadvantages and more powerful memorizing capability and the
meritorious multi-objective optimization algorithm MOGWO is developed. Subsequently, to deal with
the uncertain forecasting problems and to dig out more useful and constructive information hidden
within the history data to get a better forecasting result, we also combine the aforementioned model
with the fuzzy time series analyzing method based on rough set rule induction which contains the
LEM2 (learning from examples module version two).

Generally, the innovations of this study can be summarized as follows:

(1). This study proposes a hybrid forecasting model which can take advantage of deep learning
networks as well as the fuzzy time analysis technique based on the LEM2 rule-generating
algorithm, which increases the forecasting accuracy obviously. To our knowledge, it has not
been found that deep leaning neural networks are combined with the rough set induction
theory. Hence, our study develops a hybrid model combining LSTM with the fuzzy time
series analysis technique that uses rough sets to generate rules as a replacement for traditional
rule-generating methods.

(2). This study improves the forecasting stability and accuracy simultaneously with the deep
learning neural network through the weight-determining method called MOGWO based on the
leave-one-out strategy and swarm intelligence, which helps to find best weighting parameters
for the LSTM neural network. Most previous studies just paid attention to one aim (stability
or accuracy). Therefore, to achieve high accuracy and stability, a multi-objective optimization
algorithm, MOGWO, is successfully applied in this study.

(3). This study provides a scientific and reasonable evaluation of the new hybrid forecasting model
made to verify the forecasting performance of the combined forecasting model proposed in this
paper. Three experiments are carried out in this paper, including comparisons between different
deep learning neutral networks, efficiency and effectiveness tests among various models in four
different wind sites, and a contrast experiment in which the proposed hybrid forecasting system
is applied to electrical load forecasting with two different electrical power load data series on
Wednesday and Sunday. The outcome illustrates that this proposed system performs well.

(4). This study delivers an insightful discussion about the developed forecasting system, illustrating
the improvements brought about by different parts of the proposed forecasting model as well
as the multistep forecasting ability. Five discussion topics are presented in this paper, namely
statistical significance, association strength, improvement percentage, multistep ahead forecasting,
and sensitivity analysis. Through these discussions, the effectiveness of the hybrid forecasting
framework is verified.
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The remainder of this paper is organized as follows:
Section 2 gives the profile of principles of methods corresponding to the proposed hybrid models,

namely the CFML model (CEEMD-FTS-MOGWO-LSTM). Relevant methodology is shown Also, in this
section, including the data preprocessing method, the fuzzy time series technique with LEM2, the MOGWO,
and the long short-term memory algorithm. Moreover, several evaluations and experiments that help to
demonstrate the performance of the CFML model are presented in Section 3. Moreover, Section 4 gives a
discussion about different comparison outcomes. Finally, Section 5 concludes this study.

2. Methodology

An innovative hybrid forecasting model is successfully developed and the corresponding
components are introduced briefly in this section, including the data preprocessing technique named
complementary ensemble empirical mode decomposition (CEEMD), the fuzzy analyzing part based
on rough sets induction theory, the forecasting algorithm named LSTM, and the multi-objective
optimization algorithm MOGWO.

2.1. Hybrid Forecasting Framework

Figures 1 and 2 shows combined the CFML forecasting model, from which the CFML system can
be expounded as follows:

1. The original wind speed data is decomposed by applying the CEEMD method into several
subseries named Intrinsic Mode Functions (IMFs).

2. The fuzzy analysis method is applied using the rough set induction LEM2 algorithm to generate the
forecasting rules, and raw data are applied to these rules to generate preliminary forecasts. These
forecasts obtained by fuzzy time series forecasting are not precise enough, but the difference between
these forecasts and the actual values can demonstrate potential forecasting biases that are useful for
modifying the learning process of the following neural network, namely the LSTM model optimized
with MOGWO. As for the raw input data, we accept five dimensions for each forecast, including lag1,
lag2, lag3, slope, and the present data, in order to forecast the following one for each subseries (Figure 2).

3. The output data generated from the previous steps is used as the input data for the LSTM forecasting
module, which is optimized by the multi-objective optimization algorithm called MOGWO for each
subseries. Specifically, real values of Xt lag1, and lag2 and their differences, including D1, D2, and
D3, are adopted as input data of the LSTM model modified by MOGWO (Table 1).

4. The forecasting outcomes of each subseries generated from the preprocessing part named CEEMD
are aggregated to obtain the eventual forecasting results of CFML.



Energies 2019, 12, 3588 6 of 38

Figure 1. Explicit processes of data input and complementary ensemble empirical mode decomposition
(CEEMD) parts of the CEEMD-fuzzy time series (FTS) multi-objective grey wolf optimizer (MOGWO)-LSTM
(CFML) model.

Table 1. The selected input variables for long short-term memory (LSTM).

Factors Explanation

Xt The present value
LAG1 first-order lagged period Xt−1
LAG2 second-order lagged period Xt−2

D1 difference 1: Dt = Xt − f orecasted Xt
D2 difference 2: Dt−1 = Xt−1 − f orecasted Xt−1
D2 difference 3: Dt−2 = Xt−2 − f orecasted Xt−2
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Figure 2. Flowchart of the paper and the input data of the first forecasting.

2.2. Data Preprocessing Module

The CEEMD algorithm, proposed by Yeh et al. [49], is the modified version of the EEMD and
EMD. According to Anbazhagan et al. [50], the primary steps of this algorithm are as follows:

Step 1: Add white noise pairwise with the identical amplitude and the opposite phase to the raw data
sequence v(t), after which we can obtain a pair of polluted signals:

{
Pni = v(t) + Wni(t)
Nni = v(t) −Wni(t)

(1)

where Pni denotes the positive noise of i-th trial, Nni is the negative noise of i-th trial, and Wni represents
the noise with identical amplitude and phase.

Step 2: Decompose the polluted signal pairs (Pni, Nni) into a finite set including IMF components:


Pni(t) =

M∑
j=1

u+
i j (t)

Nni(t) =
M∑

j=1
u−i j(t)

(2)

where u−i j and u+
i j are the j-th intrinsic mode functions of the i-th trial with negative and positive noise.

Furthermore, M signifies the number of IMFs.
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Step 3: Two sets of IMF components, i.e., the negative noise set of the first IMF component
{
u−i j(t)

}T,M

i=1, j=1

and positive noises
{
u+

i j (t)
}T,M

i=1, j=1
, are obtained by performing the above two steps T times

with different amounts of white noise.
Step 4: The component of the j-th IMF u j(t) can be calculated as follows in order to get the ensemble

means of whole IMFs:

u j(t) =
1

2T

T∑
i=1

(
u+

i j (t) + u−i j(t)
)

(3)

2.3. Rough Set Theory (RST) and LEM2

In this part, the fuzzy forecasting module of the proposed new hybrid model CFML which contains
the rough set theory and the more detailed rule induction algorithm called LEM2 is introduced in brief.

Pawlak and Skoworn proposed RST [51], and it has been acknowledged as one of the most
effective mathematical techniques for dealing with uncertainty as well as vagueness. The premise of
Rough Set Philosophy is that, due to the lack of information in the discourse space related to each
object, the few information objects distinguished by the same information cannot be distinguished.
The set of all indistinguishable objects is regarded as the basic set and creates the basic particles of
cosmic knowledge. Any union of elementary sets is accepted as an exact set; otherwise, the set is
called a rough set. RST includes the utilization of indiscernibility relations to approximately approach
the sets of objects by upper and lower approximations [52]. This rough set theory is widely used to
acquire more accurate rules to predict objects, and the LEM2 algorithm is usually adopted as a way of
applying rough set theory to the induction of rules.

LEM2 [53], a rough set rule induction algorithm, is most frequently adopted as it has better results
in most cases. In this study, the formed rules are generated in an “if-then” manner through composing
several fuzzy decision values as well as fuzzy conditional values. Moreover, “supports” indicate how
many records are archived in the dataset that matches the generated decision rules. LEM2 computes
a local covering and then converts it into a rule set. LEM2 learns a discriminant rule set; it learns
the smallest set of minimal rules describing a concept. This algorithm can generate both certain and
possible rules from a decision table. The rough set induction LEM2 algorithm has several advantages
because of the application of rough set theory, as follows:

1. Rough sets can discern hidden facts and make it possible for us to understand these facts in
natural language, which contributes a great deal to decision making;

2. Rough sets take the background information of decision makers into account;
3. Rough sets can deal with both qualitative and quantitative attributes;
4. Rough sets enable machines to extract certain rules in a relatively short time, which means it

reduces the time cost of discovering hidden rules.

The detailed process of how LEM2 works is briefly demonstrated as follows: For an attribute–value
pair (e; u) = o, a block of n which is signified by [o], is a set of instances belonging to H so that, for an
attribute, e has a value u. For a concept represented by the decision–value pair (n; p), B is a nonempty
upper or lower approximation of it. Set K consists of a set of attribute–value pairs o = (e; u), which is
called set T only under the condition that ∅ , [T] = ∩o∈T[o] ⊆ K, where set T is a minimal complex of K
only under the condition that K depends on set T and that there are no subsets of T such that K depends
on the subset. Symbol C is a nonempty collection of nonempty attribute–value pair sets, and L is the
local covering of K. A more detailed explanation can be found in the work of Grzymala-Busse [53].

Figure 3 demonstrates the pseudocode of LEM2 based on the study of Liu et al. [54].

Step 1. Compute all attribute–value pair blocks.
Step 2. Identify attribute–value pairs with the largest

∣∣∣[(e; u)] ∩G
∣∣∣.
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Step 3. If the cardinality of the set
∣∣∣[(e; u)] ∩G

∣∣∣ is equal to another one, then select the attribute pair
with the smallest block size.

Step 4. If necessary, we have to go through an additional internal loop in order to find the candidates
for the minimal complex.

Step 5. Then, the following steps are used to find the second minimal complex and so on.
Step 6. Finally, we can get the local covering of a hidden fact, which may reveal the

decision-making process.

Figure 3. Flowchart of fuzzy time series forecasting.

2.4. Multi-Objective Grey Wolf Optimizer (MOGWO)

To get more accurate forecasts, we adopt the GWO (grey wolf optimizer) algorithm which is
modified to deal with the multi-objective problems to optimize the main forecasting model LSTM.
By using the multi-objective optimization theory, we can achieve both an accurate and a stable
forecasting quality.

Mirjalili et al. proposed the grey wolf optimization algorithm [55], which was based on grey
wolves’ social leadership and hunting skills. In addition, the hunting process is led by three wolves (α,
β, and δ). The rest of the wolves follow these three leaders throughout the whole search process to
approach the global best solution.

The following formulas were proposed in an effort to emulate the encircling behaviors of
grey wolves:

K =
∣∣∣B×Rp(ite) −R(ite)

∣∣∣ (4)

R(ite + 1) = Rp(ite) −M×K (5)

where K denotes the distance between the prey and the predator, ite refers to the current iteration, R
denotes the position vector of wolves, Rp is the prey’s position vector, and M and B are coefficient vectors:

M = 2c× e1 − c (6)

B = 2c× e2 − c (7)
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where e1 and e2 are random vectors in [0, 1] and the elements of c decrease linearly from 2 to 0 across
all iterations.

The GWO algorithm archives the first three best results gained so far in each iteration and then
imposes other agents, namely the rest of the wolves, to update the positions with respect to them.
The following formulas are calculated constantly for each search agent [55] in order to mimic the
hunting process, and the promising regions of the search space are also found in this process:

Kα =|B1 ×Rα −R| (8)

Kβ =
∣∣∣B2 ×Rβ −R

∣∣∣ (9)

Kδ =|B3 ×Rδ −R| (10)

R1 = Rα −M1 × (Kα) (11)

R2 = Rβ −M2 × (Kβ) (12)

R3 = Rδ −M3 × (Kδ) (13)

R(t + 1) =
R1 + R2 + R3

3
(14)

The B vector produces random values in [0, 2]. This will help the GWO algorithm show increased
behavior in the whole optimization process and help to avoid and explore the local optimum. All these
steps are illustrated in Figure 4. Ri is the position of wolf i, which also represents the initial weight and
threshold of the LSTM model. That is to say, Ri is a vector and its dimension is determined by the
number of initial weights and thresholds of the LSTM model and each element in this vector is a value
of a threshold or a weight of LSTM.

Figure 4. Position updating mechanism of search agents and the effects of A on it.
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Attacking is the final stage of hunting, in which the wolf pack catches the prey and the prey stops
moving. The process is determined by D. Grey wolves will continue to hunt when |D| < 1, and the
wolves are obliged to leave the prey when |D| > 1.

2.5. Long Short-Term Memory (LSTM)

The LSTM model was developed by Schmidhuber and Horchreiter [56]. The harmless gradient
in the network is truncated by forcing constant error flow through the constant error turntable in a
special multiplication unit. In order to cope with these constant error flows, all of the nonlinear units
are able to learn to close or open gates in this network.

The cell state is the key part of the LSTM structure. It runs directly along the entire chain, deleting
or adding information to the cell state, carefully adjusted by structures called gates. These gates serve
as optional entry points for this information. They consist of a pointwise multiplication operation and
a sigmoid neural net layer (Figure 5).

Figure 5. LSTM (long-short-term memory) structure.

An input at time i is (Xi), and the following formulas are used to compute the hidden state (Si):

1. In the LSTM module, the first step is to determine which information will be discarded from the
cell state. The forget gate ( fi) is in charge of making decisions, as follows:

f = σ(Xi × T f + Si−1 × Vi + bi) (15)

where σ is the sigmoid function which turns the input value into an outcome between 0 and 1.
T signifies weight parameters, and b denotes bias parameters (i.e., T f , T j, Tc, and To and bii,b j,
bc, and bo). In this part, the exponents of T and V are not power values; they are just notations
used to illustrate which gate the parameters belong to. For instance, T f represents the weight
parameters belonging to the forget gate, namely gate f.

2. The next step is to determine which new information will be selected and stored in the cell state.
This step has two sub-steps: The first one is the input gate (Inputi) layer that helps to determine
which value is going to be updated. A tanh layer is the second one, which produces a vector
composed of new candidate values Ci. Calculations are demonstrated as follows:

Inputi = σ(Xi · Tinput + Si−1 ·Vinput + b j) (16)
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C̃i = tanh(Xi · Tc + Si−1 ·Vc + bc) (17)

where C̃i is a candidate memory cell, which is similar to a memory cell, but uses a tanh function.
3. The next step is to update the old cell state Ci−1 into the new cell state Ci, which can be described

as follows:
Ci = Ci−1 ⊗ fi ⊗ Inputi ⊗ C̃i (18)

In Equation (26), the symbol ⊗ represents pointwise multiplication.
4. The final step is to determine what is about to be generated and selected as the output. This

output is a filtered version which is predicated on the cell state, during which the output gate (oi)
determines which final output will consist of a specific part of the cell state. After, the cell state
runs through the tanh layer, which is multiplied by the output gate as follows:

oi = σ(Xi · To + Si−1 ·Vo + bo) (19)

Si = oi ⊗ tanh(Ci) (20)

Algorithm: MOGWO-LSTM

Objective function

min
{

f itness1 =
∣∣∣Bias(x̂)

∣∣∣
f itness2 = Std(x− x̂)

Input:

Training data: x(0)t =
(
x(0)(1), x(0)(2), . . . , x(0)(p)

)
Testing data: x(0)f =

(
x(0)(p + 1), x(0)(p + 2), . . . , x(0)(p + l)

)
Output:

ŷ(0)f =
(
ŷ(0)f (p + 1), ŷ(0)f (p + 2), . . . , ŷ(0)f (p + l)

)
—a series of forecasting data

Parameters of MOGWO:
Iter—the maximum number of iterations n—the number of grey wolves
t—the current iteration number Ri—the position of wolf i
e1—the random vector in [0, 1] c—the constant vector in [0, 2]
Parameters of LSTM:
Iteration—the maximum number of iterations Bias_input—the bias vector of the input gate in [0, 1]
Input_num—the knots of the input Bias_forget—the bias vector of the forget gate in [0, 1]
Cell_num—the knots of the cell Bias_output—the bias vector of the output gate in [0, 1]

Output_num—the knots of the output
Cost_gate—the termination error cost

yita—the rate of adjustment for the weight at each
time
data_num-the number of columns of training data.

1:/*Set the parameters of MOGWO and LSTM*/
2:/*Initialize the grey wolf population Ri (i = 1, 2, ..., n) randomly*/
3:/*Initialize c, M, and B*/
4:/*Define the archive size*/
5: FOR EACH i: 1 ≤ i ≤ n DO
6: Evaluate the corresponding fitness function Fi for each search agent
7: END FOR
8: /*Find the non-dominated solutions and initialize the archive with them*/
9: Rα, Rβ, Rδ= SelectLeader(archive)
10: WHILE (t < Iter) DO
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11: FOR EACH i: 1 ≤ i ≤ n DO
12: /*Update the position of the current search agent*/
13: Kj = |Bi · Rj−R|, i = 1, 2, 3; j = α, β, δ
14: Ri = Rj−Mi · Kj, i = 1, 2, 3; j = α, β, δ
15: R(t + 1) = (R1 + R2 + R3)/3
16: END FOR
17: /*Update c, M, and B*/
18: M = 2 · c · e1−c; B = 2 · c · e2−c
19: /*Evaluate the corresponding fitness function Fi for each search agent*/
20: /*Find the non-dominated solutions*/
21: /*Update the archive with regard to the obtained non-dominated solutions*/
22: IF the archive is full DO
23: /*Delete one solution from the current archive members*/
24: /*Add the new solution to the archive*/
25: END IF
26: IF any newly added solutions to the archive are outside the hypercubes DO
27: /*Update the grids to cover the new solution(s)*/
28: END IF
29: Rα, Rβ, Rδ = SelectLeader(archive)
30: t = t + 1
31: END WHILE
32: RETURN archive
33: OBTAIN R* = SelectLeader(archive)
34: Set R* as the initial weight and threshold of LSTM
35: /*Standardize the training data and testing data*/
36: /*Initialize the structure of the LSTM network*/
37:/*Initialize cost_gate, bias_input, bias_forget, bias_output and the weight of the LSTM network*/
38: FOR EACH i: 1 ≤ i ≤ Iteration DO
39: yita=0.01
40: FOR EACH m: 1 ≤ m ≤ data_num DO
41: Equation (15) to Equation (20)
42: /*Calculate the error cost of this round*/

43: error cost =
l∑

t=1
( f orecasted x̂t − actual xt)

2, l is the dimension of testing data

44: IF error cost < cost_gate DO
45: Break
46: END IF
47: /*Update the weight of all gates*/
48: END FOR
49: IF error cost < cost_gate DO
50: Break
51: END IF
52: END FOR
53: /* Learning process has been done/

54: Input the standardized historical data into LSTM to forecast the future changes
55: De-normalize the obtained forecasting outcomes and generate the final forecasting results
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There are two commonly adopted criteria for verifying forecasting effectiveness, accuracy and
stability. Also, we should not just focus on one objective. Both objectives—high accuracy and
stability—should be studied simultaneously and implemented in the optimization part. Therefore,
based on bias-variance framework, the fitness function should be defined as follows:

E(x̂− x)2 = E[x̂− E(x̂) + E(x̂) − x]2

= E[x̂− E(x̂)]2 + [E(x̂) − E(x)]2

= Var(x̂) + Bias2(x̂)
(21)

where x is the actual value, x̂ is the forecasted value, and E is the expectation value of the
corresponding variable.

The bias equals the average difference between the actual and forecasted values, which represents
forecasting accuracy. A smaller absolute value of the bias demonstrates a more accurate forecasting
accuracy. A smaller variance value indicates a more stable forecasting performance. However, in the
conduct of most experiments, it was found that the criteria are not suitable for issues that this paper
seeks to address. Thus, the standard deviation of forecasting errors is selected as a substitute for fitness
2. Therefore, the fitness function in this paper is formulated as follows:

min
{

f itness1 =
∣∣∣Bias(x̂)

∣∣∣
f itness2 = Std(x− x̂)

(22)

Hence, the objectives of multi-objective optimization problems are usually conflicting. In that
regard, the Pareto optimal solution set provides an answer since it represents the best trade-offs
between different objectives. Our optimization problem in this study is a minimization issue, so the
way we choose suitable solutions can be formulated as follows:

Minimize the following:
F(x) =

{
f1(x), f2(x), · · ·, fo(x)

}
(23)

Subject to the following:
gi(x) ≥ 0, i = 1, 2, · · ·, m (24)

hi(x) ≥ 0, i = 1, 2, · · ·, p (25)

Li ≤ xi ≤ Ui, i = 1, 2, · · ·, n (26)

where o denotes the number of objectives, m is the number of inequality constraints, p is the number of
equality constraints, and Li and Ui are the lower and upper boundaries of the i-th variables, respectively.

Also, several definitions regarding this problem is listed as follows:

Definition 1. Pareto dominance.

Suppose that there are two vectors: x = (x1, x2, · · ·, xk) and y = (y1, y2, · · ·, yk). Vector x dominates
y, denoted as x � y, if

∀i{1, 2, · · ·, k}, [ fi(x) ≥ fi(y)] ∧ [i ∈ 1, 2, · · ·, k : fi(x)] (27)

Definition 2. Pareto optimality.

The solution x ∈ X is named a Pareto optimal if

@y ∈ X
∣∣∣F(y) � F(x) (28)

Two solutions are non-dominated with respect to each other if neither of them dominates the other.



Energies 2019, 12, 3588 15 of 38

Definition 3. Pareto optimal set.

The set including all non-dominated solutions is named a Pareto set as follows:

Ps :=
{
x, y ∈ X

∣∣∣∃F(y) � F(x)
}

(29)

Definition 4. Pareto optimal front.

A set containing the corresponding values of Pareto optimal solutions in a Pareto optimal set is
defined as a Pareto optimal front:

P f :=
{
F(x)|x ∈ Ps

}
(30)

2.6. Evaluation Module

This section illustrates reasonable and scientific evaluating modules. In addition, some typical
evaluation metric rules that are usually adopted in the relevant research are adopted to verify the
forecasting performance; R2 (Pearson’s correlation coefficient) and DM test methods are also exploited
in this paper.

2.6.1. Typical Performance Metric

As far as we know, there are no uniform and consistent criteria to test the validity of the prediction
results or to compare the results with those of other models. In this study, we adopt lots of multifarious
methods and metrics, which are all shown in Table 2. Here, N is the length of the dataset, A denotes
the actual value, whereas F represents the forecasting value.

Table 2. Performance metric rules.

Metric Definition Equation

AE Average error of N forecasting results AE = 1
N

N∑
i=1

(Ai−Fi)

MAE Mean absolute error of N forecasting results MAE = 1
N

N∑
i=1
|Ai−Fi|

RMSE Square root of average of the error squares RMSE =

√
1
N

N∑
i=1

(Ai−Fi)
2

NMSE The normalized average of the squares of
the errors NMSE = 1

N

N∑
i=1

(Ai−Fi)
2

FiAi

MAPE Average of N absolute percentage error 0MAPE = 1
N

N∑
i=1

∣∣∣∣Ai−Fi
Ai

∣∣∣∣× 100%

IA Index of agreement of the forecasting results IA = 1−
∑N

i=1(Ai−Fi)
2∑N

i=1(
∣∣∣Fi−A

∣∣∣+∣∣∣Ai+A
∣∣∣)2

FB Fractional bias of N forecasting results FB = 2× A−F
A+F

U1 Theil U statistics 1 of forecasting results U1 =

√
1
N

∑N
i=1(Ai−Fi)

2√
1
N

∑N
i=1 Ai2+

√
1
N

∑N
i=1 Fi2

U2 Theil U statistics 2 of forecasting results U2 =

√
1
N

∑N
i=1

(
Ai+1−Fi+1

Ai

)2

√
1
N

∑N
i=1

(
Ai+1−Fi

Ai

)2

DA Direction accuracy of the forecasting results
DA = 1

l

l∑
i=1

wi, wi ={
1,i f (Ai+1−Ai)·(Fi+1−Ai)>0
0,otherwise

INDEX Improvement ratio of the index among
different models INDEX =

|Fi−Ai |compared−|Fi−Ai |proposed

|Fi−Ai |proposed

R Pearson’s correlation coefficient R =
∑N

i (Ai−A)(Fi−F)√∑N
i (Ai−A)

2 ∑N
i (Fi−F)

2
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2.6.2. Diebold–Mariano Test

Considering α as the significance level, the null hypothesis H0 indicates that there are no significant
differences between the two different forecasting models. Otherwise, H1 denotes the disagreement
with H0. The following formulas indicate the related hypotheses:

H0 : E
[
Loss

(
e1

i

)]
= E

[
Loss

(
e2

i

)]
(31)

H1 : E
[
Loss

(
e1

i

)]
, E

[
Loss

(
e2

i

)]
(32)

where Loss represents the loss function of forecasting errors and ep
i (p = 1, 2) are the forecasting errors

of two comparison models.
Furthermore, the DM test statistics can be calculated as follows:

DM value =

∑n
i=1

(
Loss

(
e1

i

)
− Loss

(
e2

i

))
/n√

S2/n
s2 (33)

where s2 is an estimation for the variance of di = Loss
(
e1

i

)
− Loss

(
e2

i

)
.

The DM test value is compared with Zα/2. H0 will be rejected under the circumstance that the DM
statistic falls outside the acceptance interval [−Zα/2, Zα/2], which indicates that there is a significant
difference between the comparison models and the forecasting performances of the proposed model,
meaning we accept H1.

3. Analysis and Experiments

In this part, three different experiments using four different wind speed datasets acquired from
Liaotung peninsula and two different electrical power load datasets collected from QLD (Queensland)
are carried out to test the proposed hybrid system.

3.1. Raw Data Description

In this study, four different 10-min wind speed datasets were collected from four sites (Figure 6),
namely the four wind pour plants in the Liaotung peninsula: the Hengshan site (40◦, 120◦), Xianren
island (40◦, 122.5◦), the Donggang site (42.5◦, 122.5◦), and the Danton site (40◦, 125◦).

Also, two additional electrical load datasets were applied to demonstrate the efficiency of the
hybrid forecasting model. The total number of data points in each wind speed dataset was 9488,
and that of the electrical load was 2544. Only the first 1000 observations were adopted to verify the
model. Of the total 1000 observations, the first 900 observations were used as the training set, while
the testing set contained the remaining 100 observations (Figure 6). Furthermore, some basic statistical
information, i.e., minimum, average values, as well as maximum values, etc. of the dataset referred to
above are demonstrated in Table 3.
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Figure 6. Four wind speed datasets with 10-min time intervals.

Table 3. Statistical values of each experiment dataset.

Data Set
Statistical Indicator

Data Set
Statistical Indicator

Mid. Max. Min. Std Mean Mid. Max. Min. Std Mean

Dataset A Dataset D
All samples 4.9391 17.200 0.1000 2.7072 4.6000 All samples 4.8754 17.700 0.1000 2.6413 4.6000

Training 5.7401 11.800 1.2000 2.0136 5.8000 Training 5.6011 12.500 0.9000 1.8937 5.8000
Testing 4.9750 7.1000 2.8000 0.7774 5.0000 Testing 5.1120 6.7000 3.1000 0.7983 5.2500

Dataset B Dataset E
All samples 5.2674 28.800 0.1000 2.9040 4.9000 All samples 6043.4 8180.7 4488.0 841.07 6189.2

Training 6.1190 12.700 1.3000 2.0481 6.2000 Training 6065.9 8180.7 4488.0 849.28 6214.1
Testing 5.6190 7.1000 3.1000 0.8237 5.7000 Testing 5840.7 7221.2 4515.0 736.47 5981.9

Dataset C Dataset F
All samples 5.0718 22.100 0.1000 2.9000 4.6000 All samples 5515.5 7780.5 4357.8 684.29 5444.2

Training 5.8262 12.300 1.3000 2.0946 5.8000 Training 5542.3 7780.5 4357.8 693.79 5472.0
Testing 5.0920 6.5000 2.9000 0.7108 5.1000 Testing 5273.9 6416.3 4447.3 537.19 5170.9

3.2. Experiment I: Tests of MOGWO and LSTM

In this experiment, we present two subparts to verify the superiority of the MOGWO and LSTM
forecasting algorithm, respectively.

3.2.1. Test of MOGWO

The four typical test functions that are demonstrated in Table 4 are commonly used to
verify the superiority of the proposed optimizer and to deal with the multi-objective optimization
issues [57–59]. NSGA-II and multi-objective dragonfly (MODA) were used in this study for comparison.
The experimental parameters were as follows: the search agents’ total number was 50, the archive size
was 50, and the iteration number was 100. The inverted generational distance (IGD), a widely used
metric, was adopted in this paper for the evaluation. Each test function was tested fifty times, and
Table 5 shows the statistical values of the IGD. Moreover, Figure 7 demonstrates the Pareto optimal
solutions which were acquired by different algorithms.
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Table 4. Four test benchmark functions.

Kursawe ZDT1

Minimize f1(x) =
2∑

i=1

[
−10 exp

[
−0.2

√
x2

1 + x2
2

]]
Minimize f1(x) = xi

Minimize f2(x) =
3∑

i=1

[
|xi|

0.8 + 5 sin
(
x3

i

)]
Minimize f2(x) = g(x) × h( f1(x), g(x))

where −5 ≤ xi ≤ 5, 1 ≤ i ≤ 3 where

G(x) = 1 + 9
N−1

N∑
i=2

xi

h( f1(x), g(x)) = 1−

√
f1(x)
g(x)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT2 ZDT3

Minimize f1(x) = xi Minimize f1(x) = xi
Minimize f2(x) = g(x) × h( f1(x), g(x)) Minimize f2(x) = g(x) × h( f1(x), g(x))

where

G(x) = 1 + 9
N−1

N∑
i=2

xi

h( f1(x), g(x)) = 1−
(

f1(x)
g(x)

)2

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

where

G(x) = 1 + 9
29

N∑
i=2

xi

h( f1(x), g(x)) = 1−

√
f1(x)
g(x)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

Table 5. Statistical values of the inverted generational distance (IGD) for four test functions.

Test Functions
IGD Values

Mean Max. Min. Std. Med.

Kursawe
MODA 0.012500 0.021500 0.008500 0.003600 0.011500

NSGA-II 0.006500 0.015500 0.004500 0.002800 0.005900
MOGWO 0.005200 0.005800 0.004900 0.000251 0.005200

ZDT1
MODA 0.014600 0.022300 0.007900 0.004800 0.014400

NSGA-II 0.015800 0.036400 0.000375 0.008800 0.013500
MOGWO 0.006800 0.016400 0.002100 0.003800 0.005900

ZDT2
MODA 0.013900 0.022100 0.006900 0.004600 0.012100

NSGA-II 0.029200 0.060400 0.003300 0.013500 0.025600
MOGWO 0.009000 0.019400 0.001200 0.005500 0.008100

ZDT3
MODA 0.018700 0.025900 0.007000 0.005200 0.019300

NSGA-II 0.011500 0.021500 0.004700 0.004700 0.011000
MOGWO 0.005600 0.015000 0.001000 0.003000 0.005600

The values in bold indicate the best value of each benchmark function.
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Figure 7. Obtained Pareto optimal solutions by NSGA-II, MODA, and MOGWO for the test functions:
Kursawe, ZDT1, ZDT2, and ZDT3.

Based on the outcomes, two conclusions were made as follows:

1. The MOGWO algorithm obtained the best IGD outcomes among almost all optimizers for four
test functions (Kursawe, ZDT1, ZDT2, and ZDT3) while performing worse than the Kursawe as
well as ZDT1 algorithms in terms of the minimum value and worse than MODA regarding the
standard deviation. From a whole perspective, these outcomes are strong enough to demonstrate
the superior optimization ability of MOGWO algorithms compared with the others.

2. Figure 7 shows that the MOGWO algorithm was able to obtain more Pareto optimal solutions.
In addition, the solutions found by the MOGWO algorithm were more evenly distributed on the
true PF (pareto front) curve and were closer to the real Pareto optimal solutions.
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Remark: The optimizing ability of MOGWO has been proven through the results and discussions
of the aforementioned experiment comparison. Thus, MOGWO can be widely used to cope with
multi-objective problems, thus being adopted as the best optimization model in the proposed
CFML system.

3.2.2. Test of LSTM in CEEMD-FTS-MOGWO-LSTM

This subsection aims to compare LSTM, DBN, CNN, and SAE for the four wind speed datasets
collected from four different wind farms with 10-min data. We set the parameters for each model based
on the error and bias since there are no previous studies on how to set the optimal parameters. Also, to
reduce the impact of randomness, we took the mean value of the experiments performed 50 times.
The relative results and detailed values are listed in Table 6, and Figure 8 demonstrates the prediction
outcomes of the aforementioned four models at the four wind speed sites. From the forecasting data,
we drew several conclusions:

1. The LSTM model achieved almost the best results and the most accurate predictions of all
four wind speed datasets with roughly the same run time and identical training and testing
datasets. Namely, the adopted LSTM model outperformed the CNN, DBN, and SAE from a
whole perspective and provided fairly competitive results.

2. For the data collected from the four different wind farms, the LSTM model worked better than
the other three deep learning models, which means that the superiority of the LSTM forecasting
algorithm remained, regardless of the different geographical distribution, to some extent.

3. The forecasting performance of different models was adequately reflected by the error metrics
adopted by us in this part. That is to say, error measurement is effective and can be used to
accurately evaluate the ability of the prediction models.

Table 6. Forecasting results of the four deep learning algorithms at four sites.

Sites Models AE MAE RMSE NMSE MAPE IA FB r U1 U2

Dataset A CNN −0.1466 0.5558 0.6871 0.0215 0.1143 0.9958 0.0299 0.5871 0.0693 0.845
DBN −0.2578 0.4917 0.6105 0.0169 0.0988 0.9967 0.0528 0.7122 0.0618 0.8078
SAE −0.2431 0.4891 0.6084 0.0165 0.0982 0.9967 0.0501 0.7083 0.062 0.7952

LSTM 0.2706 0.4364 0.5462 0.0138 0.0948 0.9973 −0.0530 0.7915 0.0529 0.6470
Dataset B CNN 0.1251 0.5515 0.7198 0.0191 0.1063 0.9963 −0.0220 0.5558 0.0628 0.8427

DBN 0.2338 0.4853 0.6111 0.0115 0.0885 0.9974 −0.0402 0.7284 0.0521 0.8130
SAE −0.01814 0.5077 0.6337 0.0146 0.0947 0.9971 0.0032 0.6608 0.0560 0.7455

LSTM 0.2034 0.4448 0.5677 0.0122 0.0863 0.9977 −0.0356 0.7645 0.0492 0.6598
Dataset C CNN −0.1974 0.5585 0.7095 0.0221 0.1288 0.9957 0.0394 0.5892 0.0700 0.8672

DBN 0.1024 0.4765 0.6138 0.0154 0.0981 0.9968 −0.0197 0.5589 0.0587 0.7241
SAE −0.0451 0.4538 0.5808 0.0145 0.0936 0.9971 0.0089 0.6481 0.0568 0.6088

LSTM 0.0131 0.4419 0.5731 0.0146 0.0928 0.9971 −0.0026 0.6241 0.0557 0.6151
Dataset D CNN −0.1974 0.5585 0.7095 0.0221 0.1132 0.9957 0.0394 0.5892 0.0700 0.8672

DBN −0.3784 0.5490 0.6827 0.0202 0.1077 0.9960 0.0772 0.7419 0.0688 0.8875
SAE −0.1586 0.4776 0.6025 0.0154 0.0958 0.9969 0.0315 0.7227 0.0592 0.7510

LSTM −0.1168 0.4295 0.5565 0.0131 0.0868 0.9974 0.0231 0.7488 0.0544 0.7198

The values in bold indicate the best values of each benchmark function.
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Figure 8. Forecasting results of the four deep learning algorithms.

Remark: For all four datasets, although the LSTM model performed more poorly than the other
models on some metrics, the best values of the majority of error metrics, such as mean absolute error
(MAE), square root of average of the error squares (RMSE), mean absolute percentage error (MAPE),
index of agreement (IA), and so on, indicate that the adopted LSTM model can achieve excellent
forecasting accuracy. That is also the reason why we chose LSTM as the main forecasting model in our
proposed hybrid forecasting model.

3.3. Experiment II

The comparisons made in this experiment were conducted to demonstrate the specific
improvements brought by the fuzzy time series forecasting part and the optimizer algorithm as
well as the combination of MOGWO and FTS. Furthermore, an experiment to prove the enhancement
in the forecasting ability of the combined model brought by CEEMD was made as well. Moreover,
the comparisons between the proposed hybrid forecasting model and all the other models are also
listed and analyzed in this part. Table 7 and Figure 9 demonstrate the relevant error metric values of
the models mentioned above.
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(1) For the first comparison, WNN, GRNN, ARIMA, and the LSTM models were built and compared
with each other in order to determine the best one for performing wind speed forecasting, which
was found to be the ARIMA. However, of all the neural network algorithms, LSTM was shown to
be the best one, and Experiment I proved that LSTM is better than the other three deep learning
models as well. Hence, the following steps and comparisons are all based on the basic and regular
forecasting model—LSTM.

(2) In terms of R (Pearson’s correlation coefficient), ARIMA failed to outdo LSTM in datasets A and B.
In addition, we tried AR, MA, ARMA, and ARIMA with different parameters each, and we found
that of all these settings, ARMA(2,1), ARIMA(3,1,2), and ARIMA(3,2,2), achieved almost the same
forecasting accuracy at about 8% MAPE, which is apparently better than that of the other neural
networks. The reason for this phenomenon is that the moving-average model that includes AR
requires clear rhythm patterns and fairly linear data series trends, whereas wind speed datasets
are neither seasonal nor regular, so all of these irregular features were almost removed by the
moving-average method as a result of the differencing operation.

(3) From Table 7, for example, the MOGWO-LSTM achieved a MAPE value of 8.64%, while the basic
LSTM model only achieved a MAPE value of 9.48% in the case of site A. Moreover, we tested the
effectiveness of the fuzzy time series forecasting part. For example, in the case of site B, the MAPE
value of FTS-LSTM was 7.91%, 8.34% lower than that of the LSTM model.

(4) According to Figure 8, the FTS-MOGWO-LSTM model achieved 8.02% in MAPE and 75.34%
in r2 from a mean perspective, although it failed to reach the highest r2 value in datasets A
and B. Next, the separate improvement on the forecasting ability brought by FTS or MOGWO
varied in different datasets. For example, in the case of dataset A, FTS-LSTM was higher than
MOGWO-LSTM, which means that MOGWO contributes more to forecasting.

(5) Apart from these comparisons, the decomposition algorithm was also tested in this part. In this
paper, we tested several parameter configurations regarding the Nstd (signal noise ratio), NR
(noise addition number), Maxiter (maximum number of iterations), and modes (number of IMFs)
in the CEEMD algorithm. We tested the Nstd (0.05–0.4), NR (10–500), Maxiter (100–1000), and
modes (9–13) to find the best configuration. Detailed parameter settings vary from dataset to
dataset, so settings should be changed at any time when the dataset is changed. In this part,
for instance, the best settings for dataset A were as follows: an Nstd of 0.2, an NR of 50, and a
Maxiter of 500. The total IMF number was 12, and the best accuracy is acquired by 11 IMFs. Also,
Table 8 shows that the CFML model achieved the highest r2 value and the lowest MAPE in all
four data sites, which demonstrates the improvements brought by CEEMD.

Remark: Through the aforementioned comparisons and conclusions, it is apparent that the
proposed hybrid forecasting model achieves the best values in all the applied error metrics. Moreover,
the outcomes prove that the adopted multi-objective optimizer MOGWO, the data decomposition
approach CEEMD, and the fuzzy time series part can improve the forecasting ability of the original
forecasting model LSTM to a great extent.
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Table 7. Results of the developed forecasting framework and other models (Experiment II).

Sites Models AE MAE RMSE NMSE MAPE IA FB U1 U2 DA r2

Dataset A ARIMA 0.0019 0.3995 0.4941 0.0115 0.0837 0.9978 −0.0004 0.0491 0.6576 0.4242 0.7830
GRNN 0.1427 0.4650 0.5723 0.0154 0.1004 0.9970 −0.0283 0.0562 0.6984 0.4949 0.7057
WNN 0.0089 0.4678 0.5812 0.0161 0.0994 0.9969 −0.0018 0.0578 0.7621 0.5152 0.6738
LSTM 0.2706 0.4364 0.5462 0.0138 0.0948 0.9973 −0.0530 0.0529 0.6470 0.4343 0.7915

MOGWO-LSTM 0.1142 0.4069 0.5007 0.0117 0.0864 0.9978 −0.0227 0.0492 0.6376 0.5152 0.7848
FTS-LSTM 0.0599 0.4041 0.4966 0.0115 0.0852 0.9978 −0.0120 0.0491 0.6453 0.4848 0.7822

FTS-MOGWO-LSTM −0.0106 0.3962 0.4884 0.0110 0.0822 0.9979 0.0021 0.0483 0.6585 0.4343 0.7828
CEEMD-FTS-MOGWO-LSTM −0.0205 0.2314 0.2964 0.0041 0.0487 0.9992 0.0041 0.0296 0.7439 0.7374 0.9359

Dataset B ARIMA 0.0129 0.4160 0.5344 0.0103 0.0768 0.9980 −0.0023 0.0470 0.6528 0.4848 0.7809
GRNN 0.1744 0.4548 0.5907 0.0136 0.0889 0.9975 −0.0306 0.0514 0.7058 0.5859 0.7252
WNN 0.1796 0.4394 0.5510 0.0118 0.0858 0.9978 −0.0315 0.0479 0.6692 0.4949 0.7726
LSTM −0.2642 0.4271 0.5487 0.0138 0.0863 0.9973 0.0545 0.0560 0.7711 0.5152 0.7855

MOGWO-LSTM −0.0291 0.4338 0.5521 0.0114 0.0803 0.9978 0.0052 0.0488 0.6926 0.5152 0.7519
FTS-LSTM −0.2094 0.4398 0.5700 0.0116 0.0791 0.9977 0.0380 0.0512 0.7650 0.5455 0.7632

FTS-MOGWO-LSTM −0.0980 0.4204 0.5356 0.0105 0.0773 0.9979 0.0176 0.0477 0.7189 0.5253 0.7663
CEEMD-FTS-MOGWO-LSTM −0.0532 0.2345 0.2850 0.0032 0.0439 0.9994 0.0095 0.0253 0.6145 0.7677 0.9737

Dataset C ARIMA −0.0031 0.4313 0.5485 0.0130 0.0893 0.9974 −0.0006 0.0534 0.5905 0.4343 0.6835
GRNN 0.0932 0.4836 0.6393 0.0185 0.1038 0.9964 −0.0181 0.0617 0.6799 0.5051 0.5105
WNN 0.0199 0.4727 0.6438 0.0186 0.1005 0.9964 −0.0039 0.0625 0.7127 0.4343 0.5528
LSTM 0.0131 0.4419 0.5731 0.0146 0.0928 0.9971 −0.0026 0.0557 0.6151 0.5556 0.6241

MOGWO-LSTM 0.1206 0.4315 0.5739 0.0146 0.0919 0.9971 −0.0234 0.0553 0.5997 0.5253 0.6341
FTS-LSTM −0.0550 0.4181 0.5416 0.0129 0.0868 0.9974 0.0109 0.0531 0.6260 0.5758 0.6515

FTS-MOGWO-LSTM 0.0929 0.3892 0.5201 0.0121 0.0826 0.9976 −0.0181 0.0503 0.6044 0.6061 0.6905
CEEMD-FTS-MOGWO-LSTM −0.0189 0.2432 0.3085 0.0039 0.0488 0.9992 0.0037 0.0301 0.5552 0.7677 0.9154

Dataset D ARIMA −0.0415 0.4194 0.5416 0.0121 0.0846 0.9975 0.0081 0.0525 0.6718 0.4242 0.7712
GRNN −0.1744 0.4986 0.6308 0.0173 0.1008 0.9966 0.0347 0.0621 0.7936 0.5051 0.6845
WNN −0.2658 0.4778 0.5979 0.0150 0.0943 0.9969 0.0534 0.0594 0.7732 0.4242 0.7516
LSTM −0.1168 0.4295 0.5565 0.0131 0.0868 0.9974 0.0231 0.0544 0.7198 0.4848 0.7488

MOGWO-LSTM −0.0652 0.4094 0.5411 0.0122 0.0831 0.9975 0.0128 0.0527 0.7009 0.5455 0.7516
FTS-LSTM −0.0447 0.4075 0.5263 0.0114 0.0825 0.9976 0.0088 0.0512 0.6954 0.5859 0.7582

FTS-MOGWO-LSTM 0.0151 0.3825 0.5031 0.0106 0.0787 0.9978 −0.0030 0.0487 0.6923 0.5859 0.7740
CEEMD-FTS-MOGWO-LSTM −0.1282 0.2569 0.3272 0.0039 0.0491 0.9993 0.9991 0.0254 0.5921 0.7179 0.9280
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Table 8. Experimental outcomes of the proposed forecasting system and other models (Experiment III, Wednesday).

Models AE MAE RMSE NMSE MAPE IA FB U1 U2 DA R

GRNN 45.5683 196.0143 241.4824 0.0018 0.0347 0.9996 −0.0078 0.0204 0.7029 0.3535 0.9478
WNN 20.7296 168.5709 205.6567 0.0014 0.0302 0.9997 −0.0035 0.0174 0.7651 0.6667 0.9604
CNN 137.5887 229.2342 239.6551 0.0025 0.0403 0.9994 −0.0233 0.0247 0.7953 0.444 0.9362
DBN 19.7873 191.6701 243.2305 0.0019 0.0341 0.9996 −0.0034 0.0206 0.7248 0.2727 0.9444
SAE 101.5634 175.8553 214.9376 0.0013 0.0304 0.9997 −0.0173 0.0181 0.7351 0.4343 0.9652

LSTM −161.6647 172.3742 205.9165 0.0011 0.0281 0.9997 0.0281 0.0177 0.7425 0.7576 0.9916
FTS-LSTM 47.6418 96.6102 115.9360 0.0004 0.0171 0.9999 −0.0081 0.0098 0.5328 0.7071 0.9904

MOGWO-LSTM −83.5761 106.2048 129.7533 0.0004 0.0176 0.9999 0.0144 0.0111 0.5570 0.7677 0.9918
FTS-MOGWO-LSTM 26.9179 84.9093 104.1058 0.0003 0.0146 0.9999 −0.0046 0.0088 0.4629 0.7677 0.9903

EMD-FTS-MOGWO-LSTM 52.6362 67.7765 79.8200 0.0002 0.0116 1.0000 −0.0090 0.0068 0.4940 0.7374 0.9968
EEMD-FTS-MOGWO-LSTM 11.3961 55.9408 69.4255 0.0001 0.0096 1.0000 −0.0020 0.0059 0.4142 0.8283 0.9957
CEEMD-FTS-MOGWO-LSTM −29.7311 47.5537 64.3627 0.0001 0.0083 1.0000 0.0051 0.0055 0.4030 0.9293 0.9970

The values in bold indicate the best values of each benchmark function.
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Figure 9. Forecasting results of the developed forecasting system and the other compared models
(Experiment II).
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3.4. Experiment III: Tested with Electrical Load Data

The third experiment aims to verify the performance of the proposed CFML forecasting model in
QLD (Queensland) electrical power load forecasting (Figure 10). Due to the similarity in weekdays or
weekends and the noticeable differences between the load data from weekdays and weekends, the data
from Wednesday was randomly selected as a representative of weekdays and the data from Sunday
was chosen to represent weekends [60]. Tables 8 and 10 list the experimental outcomes. All forecasting
results from Wednesday and Sunday are depicted in Figure 10. In addition, the basic datasets from
Wednesday and Sunday in QLD are shown in Figure 10, and both of these datasets were collected
from Queensland in Australia. The specific results of electrical load forecasts are presented and shown
clearly in this subsection, from which the following conclusions were drawn:

(1) Regarding the electrical power load data from Wednesday and all forecasting steps, the proposed
hybrid forecasting system performed the best among all the other models. Moreover, among
all the single models involved in this experiment, the single model that performed best was the
WNN algorithm, while the worst was the CNN model. However, this may be a result of the data
features, which does not mean that the CNN constantly performs more poorly than the WNN
model. Since the regular form of the CNN model is designed to deal with figure data, to perform
unidimensional time series forecasting, it should be first transformed into a matrix in which each
row contains many observations, such as 128 or 256, just like the grey scale image data to some
extent. Otherwise, it is also reasonable and practical to let each row represent the number you
would like to use as input data, but a compromise in the accuracy may arise on some occasions.

(2) For the test of the optimization part and the verification of the fuzzy forecasting part,
comparisons between MOGWO-LSTM and LSTM and comparisons between FTS-LSTM and
LSTM are obviously shown in the aforementioned tables and figures, respectively. For instance,
on Wednesday, the regular LSTM model achieved a MAPE of 2.81%, which is higher than the
MAPE of FTS-LSTM by 39.14%. Moreover, the MOGWO-LSTM increased by 37.36% in terms of
the MAPE of 1.76%. Also, the FTS-MOGWO-LSTM model possessed a MAPE of 1.46%, lower
than that of the single LSTM combined with FTS or MOGWO. Noticeably, although this combined
model did not have that highest r2, it was not obviously lower than that of other compared
models. Moreover, it was apparently higher than that of regular networks such as GRNN, WNN,
DBN, SAE, and so on.

(3) All comparisons for the electrical power load data on Wednesday and Sunday demonstrate
that the decomposition methods achieved the best forecasting results. In this study, we tested
different parameter settings regarding the Nstd, NR, Maxiter, and modes for EMD, EEMD, and
CEEMD. The following outcomes were all acquired based on the best parameter settings for each
decomposition algorithm. Tables 9 and 10 show that the CEEMD method apparently outweighs
the EEMD and EMD methods, which explains why the CEEMD was selected by us and employed
in this research. Also, from Figure 10, the forecasts gained by the CEEMD model corresponded
most to the real data on both Wednesday and Sunday.

Remark: Based on the three experiments mentioned above, the strong applicability of
the developed model in these two electrical power load signals and in different wind data
sites, which feature different characteristics, reasonably and convincingly demonstrates that the
CEEMD-FTS-MOGWO-LSTM model has universal applicability. Also, the CFML model performs
better than all other compared benchmark models.
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Figure 10. The forecasting results from Wednesday and Sunday as well as the basic data descriptions.

Table 9. Results for the Diebold–Mariano (DM) test.

Models Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F Average

GRNN 3.9575 3.6231 * 4.0912 * 5.1216 * 6.8446 * 6.3102 * 7.4871 *

WNN 4.2354 * 3.8835 * 4.0655 * 5.3478 * 7.0481 * 5.5907 * 5.0285 *

CNN 6.4340 * 4.4792 * 5.4704 * 5.1895 * 6.6125 * 6.8757 * 5.8436 *

DBN 5.8905 * 5.1538 * 4.0607 * 5.7001 * 5.7287 * 6.2989 * 5.4721 *

SAE 5.9415 * 4.7566 * 4.7852 * 5.5428 * 7.7388 * 6.3725 * 5.8563 *

LSTM 4.0334 * 3.8478 * 4.3132 * 4.4067 * 7.9982 * 6.4910 * 5.1817 *

FTS-LSTM 4.9204 * 4.6690 * 5.3686 * 4.1885 * 5.1504 * 4.8412 * 4.8064 *

MOGWO-LSTM 3.6338 * 3.8032 * 3.9883 * 4.0228 * 5.4912 * 5.5515 * 4.4151 *

FTS-MOGWO-LSTM 4.4712 * 4.1507 * 3.8489 * 3.8727 * 4.0104 * 4.5032 * 4.1429 *

EMD-FTS-MOGWO-LSTM - - - - 1.9867 * 4.7634 * 3.3751 *

EEMD-FTS-MOGWO-LSTM - - - - 0.8353 2.5458 * 1.6901 *

CEEMD-FTS-MOGWO-LSTM - - - - - - -

* Indicates the 1% significance level.
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Table 10. Experimental outcomes of the proposed forecasting system and other models (Experiment III, Sunday).

Models AE MAE RMSE NMSE MAPE IA FB U1 U2 DA R

GRNN 17.5396 149.6115 190.1444 0.0013 0.0284 0.9997 −0.0033 0.0179 0.6929 0.3838 0.9376
WNN 38.7488 103.6095 137.2156 0.0006 0.0194 0.9998 −0.0073 0.0129 0.6450 0.7071 0.9711
CNN 16.6657 162.4187 200.3068 0.0013 0.0302 0.9997 −0.0032 0.0189 0.7094 0.3737 0.9308
DBN 8.2873 163.9351 205.5054 0.0015 0.0310 0.9996 −0.0016 0.0194 0.7268 0.3232 0.9234
SAE 6.4847 132.5766 173.3199 0.0010 0.0244 0.9998 −0.0012 0.0163 0.6732 0.4949 0.9487

LSTM −2.8595 92.739 113.8205 0.0004 0.0175 0.9999 0.0005 0.0107 0.6788 0.8081 0.9916
FTS-LSTM −20.6497 77.1604 100.2723 0.0003 0.0143 0.9999 0.0039 0.0095 0.5844 0.8485 0.9910

MOGWO-LSTM −4.2641 78.6017 98.7397 0.0003 0.0148 0.9999 0.0008 0.0093 0.6091 0.8485 0.9917
FTS-MOGWO-LSTM 1.9840 64.8811 82.8495 0.0002 0.0122 0.9999 −0.0004 0.0078 0.5073 0.8586 0.9907

EMD-FTS-MOGWO-LSTM −6.8800 62.4585 79.6677 −0.0002 0.0118 0.9999 0.0013 0.0075 0.5218 0.7778 0.9904
EEMD-FTS-MOGWO-LSTM −8.9363 47.3082 60.5872 0.0001 0.0088 1.0000 0.0017 0.0057 0.4453 0.8586 0.9960

CEEMD-FTS-MOGWO-LSTM −40.7260 41.1810 47.4667 0.00008 0.0079 1.0000 0.0078 0.0045 0.3802 0.8687 0.9990

The values in bold indicates the best values of each benchmark function.
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4. Discussion

In this section, based on the Diebold–Mariano test (DM test), we discuss and analyze the forecasting
model’s statistical significance, after which we adopt the Pearson’s correlation coefficient to discuss
the association strength. Then, to verify the contributions of our CFML model, the improvement
percentages between different combinations of basic models are also discussed in this section. Also,
the multistep-ahead forecasting of the developed model and a sensitivity analysis are conducted.

4.1. Discussion I: Statistical Significance

The DM test is widely used to demonstrate the significance of the improvement brought by
the developed CFML forecasting system compared with other algorithms. Table 9 lists the specific
DM test outcomes, which demonstrates that we are able to reject the null hypothesis at the 1%
significance level because all of the compared models’ DM test outcomes were greater than the critical
1% significance value for all four wind speed datasets and the two electrical power load data series.
Hence, we are convinced that the proposed CFML forecasting system obviously outweighs the other
compared algorithms. According to this, we are able to conclude reasonably that the hybrid forecasting
framework displays a significant difference in terms of the statistical level. Furthermore, this proves
that the proposed CFML model is superior to the other models mentioned above and involved in wind
speed forecasting.

4.2. Discussion II: Association Strength

The Pearson test can reveal the correlation strength between the predicted and actual values,
which was proposed by scientist Karl Pearson. In this section, the correlation strength is discussed
based on the Pearson test to prove the superiority of the proposed hybrid prediction model and all other
comparative models. Specifically, if the Pearson’s correlation coefficient is equal to 0, there is no linear
relationship between the two sets of data and, if the Pearson’s correlation coefficient is equal to 1, there
is a linear relationship between the actual value and the predicted value. Table 11 demonstrates the
outcomes of the Pearson’s test, from which we were able to obtain the conclusion that the values of all
other comparative models were lower than that of the proposed CFML forecasting model, which shows
that the forecasting values of the CFML model possess higher association strengths to some extent.

Table 11. Results for the Pearson’s test.

Models Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F Average

GRNN 0.7830 0.7252 0.5105 0.6845 0.9478 0.9376 0.7648
WNN 0.6738 0.7726 0.5528 0.7516 0.9504 0.9711 0.7787
CNN 0.5871 0.5558 0.2078 0.5892 0.9362 0.9308 0.6345
DBN 0.7122 0.7284 0.5589 0.7419 0.9444 0.9234 0.7682
SAE 0.7083 0.6608 0.6481 0.7227 0.9652 0.9487 0.7756

LSTM 0.7915 0.7855 0.6241 0.7488 0.9916 0.9916 0.8221
FTS-LSTM 0.7822 0.7632 0.6515 0.7582 0.9904 0.9910 0.8228

MOGWO-LSTM 0.7848 0.7663 0.6341 0.7515 0.9918 0.9917 0.8200
FTS-MOGWO-LSTM 0.7828 0.7663 0.6905 0.7740 0.9903 0.9907 0.8324

EMD-FTS-MOGWO-LSTM - - - - 0.9968 0.9904 0.9936
EEMD-FTS-MOGWO-LSTM - - - - 0.9957 0.9960 0.9959
CEEMD-FTS-MOGWO-LSTM 0.9369 0.9737 0.9154 0.928 0.9970 0.9990 0.9583

The values in bold indicate the best values of each benchmark function.
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4.3. Discussion III: Improvement Percentage

In order to fully and clearly demonstrate the superiority of the proposed hybrid prediction system,
this section discusses the percentage improvements in MAPE, RMSE, MAE, and direction accuracy
(DA) between the developed system and other comparative models. These comparisons analyze and
quantify how each component works in the overall prediction framework. Table 12 demonstrates
the outcomes of the improvement percentages, taking dataset B and the electrical load power on
Wednesday as examples, which shows the following conclusions:

(1) By contrasting the improvement percentage between FTS-MOGWO-LSTM with FTS-LSTM and
MOGWO-LSTM, we drew the conclusion that the combination of MOGWO and FTS contributes
more than either FTS-LSTM or MOGWO-LSTM to the forecasting ability of the whole presented
hybrid CFML forecasting model.

(2) The comparison between the CEEMD-FTS-MOGWO-LSTM and the FTS-MOGWO-LSTM
models obviously revealed the improvement brought by the addition of the decomposition
approach CEEMD.

(3) On average, all improvement percentages were positive and significant, except for the percentages
of FTS-MOGWO-LSTM, as it fluctuated according to different datasets with different features.
This can be studied in the future. Regardless of the fluctuations, all values revealed that
FTS-MOGWO-LSTM does perform better than the regular one.

Table 12. Results for the discussion of improvement percentages.

Improvement Percentages Dataset B Wednesday Average Dataset B Wednesday Average

MOGWO-LSTM vs. LSTM FTS-LSTM vs. LSTM

MAE −1.568719 38.387067 18.409174 −2.973542 43.953213 20.489836
RMSE −0.619646 36.98742 18.183887 −3.881903 43.697567 19.907832
MAPE 6.952491 37.366548 22.15952 8.34299 39.145907 23.744449

U2 10.180262 24.983165 17.581714 0.791078 28.242424 14.516751

Improvement Percentages FTS-MOGWO-LSTM vs. LSTM FTS-MOGWO-LSTM vs. MOGWO-LSTM

MAE 1.568719 50.741294 26.155007 3.088981 20.051354 11.570168
RMSE 2.387461 49.442711 25.915086 2.988589 19.766357 11.377473
MAPE 10.428737 48.042705 29.235721 3.73599 17.045455 10.390723

U2 6.76955 37.656566 22.213058 −3.797286 16.894075 6.5483945

Improvement Percentages FTS-MOGWO-LSTM vs. FTS-LSTM CEEMD-FTS-MOGWO-LSTM vs.
MOGWO-LSTM

MAE 4.411096 12.111454 8.261275 45.94283 55.224528 50.58368
RMSE 6.035088 10.204078 8.119583 48.37892 50.396098 49.387508
MAPE 2.275601 14.619883 8.447742 45.33001 52.840909 49.085461

U2 5.804507 13.119369 9.461938 11.27635 27.648115 19.462233

Improvement Percentages CEEMD-FTS-MOGWO-LSTM vs.
FTS-MOGWO-LSTM CEEMD-FTS-MOGWO-LSTM vs. LSTM

MAE 44.219791 43.99471 44.107251 45.09483 72.412519 58.753673
RMSE 46.788648 38.175683 42.482166 48.05905 68.743301 58.401175
MAPE 43.208279 43.150685 43.179482 49.13094 70.462633 59.796786

U2 14.522187 12.94016 13.731174 20.30865 45.723906 33.016278
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4.4. Discussion IV: Multistep-Ahead Forecasting

Now, we consider that the one-step forecasting model is sometimes insufficient to ensure the
controllability and reliability of the electrical power load or wind speed forecasting system. Therefore,
to test the multistep performance of the developed CFML system, the multistep prediction in this
study used the two datasets listed in Table 3 (i.e., dataset A and the electrical power load on Sunday as
representatives).

Table 13 illustrates the forecasting outcomes of those comparative models (i.e., GRNN, LSTM, and
EEMD-FTS-MOGWO-LSTM) and the proposed CEEMD-FTS-MOGWO-LSTM forecasting model. It
can be observed that for one-step, two-step, and three-step predictions using electrical power load data
or wind speed data, the proposed model always achieved the lowest MAPE value in the test models.
That is to say, the developed framework effectively carried out multistep-ahead forecasting in electrical
power load prediction or wind speed prediction (through effective error index measurements).

4.5. Discussion V: Sensitivity Analysis

The hybrid forecasting model has two essential parameters, namely the number of iterations and
the number of search agents. Hence, in this subsection, we explore the effects of these two parameters
on the prediction performance of wind speed dataset A. That is, the other parameters’ values were
unchanged, while the number of search agents and iterations changed. Specifically, we set the search
agents as 5, 10, 15, 20, 25, and 30, and then, we kept the search agent at the value of 10, changing the
values of iterations to 5, 10, 20, 30, 40, and 50. Tables 14 and 15 illustrate the experimental outcomes of
dataset A. The following conclusions were drawn:

(1) The value of MAPE first decreased as the number of search agents increased. Then, it declined to
the minimum value with 10 search agents, after which it started increasing and fluctuated at a
high level except for a decrease at 25 search agents. Overall, we can see that the proposed hybrid
CFML forecasting model performed the best with 10 search agents.

(2) Keeping the number of search agents at the best value of 10, we changed the number of iterations
in order to check the influence caused by the iterations on the performance of the presented model.
We almost drew a similar conclusion to that of the search agents to some degree. We can see that,
as the number of iterations increased from 5 to 30, the accuracy measured by various metrics,
especially MAPE, first fell to the minimum value with 10 iterations and then rose gradually as the
number of iteration increased. According to these two conclusions, we set the number of search
agents and the number of iterations to 10 in our experiment.

(3) It was found through the comparisons that the number of those two parameters would worsen
the performance of the CEEMD-FTS-MOGWO-LSTM system proposed in this study if either they
were too small or too big. In addition, different prediction conditions were shown to depend to a
large extent on the decision-making process. Therefore, it is important to figure out the optimal
parameters under different application conditions.
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Table 13. Results for the multistep-ahead forecasting.

Data Multistep Ahead Forecasting Models MAE RMSE NMSE MAPE IA FB U1 U2 DA r

Dataset A One-step ahead GRNN 0.4650 0.5723 0.0154 0.1004 0.9970 −0.0283 0.0562 0.6984 0.4949 0.7057
LSTM 0.4364 0.5462 0.0138 0.0948 0.9973 −0.0530 0.0529 0.6470 0.4343 0.7915

EEMD-FTS-MOGWO-LSTM 0.2513 0.3215 0.0048 0.0524 0.9990 0.0101 0.0322 0.7000 0.7778 0.9478
CEEMD-FTS-MOGWO-LSTM 0.2314 0.2964 0.0041 0.0487 0.9992 0.0041 0.0296 0.7439 0.7374 0.9359

Two-step ahead GRNN 0.5546 0.6748 0.0203 0.1170 0.9959 −0.0149 0.0666 0.8160 0.3232 0.5548
LSTM 0.4980 0.6034 0.0175 0.1058 0.9967 0.0023 0.0600 0.8169 0.4545 0.6754

EEMD-FTS-MOGWO-LSTM 0.3725 0.4655 0.0090 0.0730 0.9980 0.0586 0.0477 0.7563 0.6263 0.8897
CEEMD-FTS-MOGWO-LSTM 0.3121 0.3930 0.0072 0.0667 0.9986 −0.0169 0.0387 0.5739 0.6566 0.8691

Three-step ahead GRNN 0.5688 0.7183 0.0239 0.1262 0.9954 −0.0601 0.0694 0.8542 0.4545 0.5725
LSTM 0.5449 0.6986 0.0213 0.1076 0.9956 0.0716 0.0719 0.8715 0.3535 0.6332

EEMD-FTS-MOGWO-LSTM 0.4327 0.5276 0.0122 0.0877 0.9975 0.0546 0.0539 0.7566 0.6162 0.8082
CEEMD-FTS-MOGWO-LSTM 0.3818 0.4891 0.0116 0.0840 0.9978 −0.0405 0.0478 0.7496 0.5859 0.8332

Dataset F One-step ahead GRNN 149.6115 190.1444 0.0013 0.0284 0.9997 −0.0033 0.0179 0.6929 0.3838 0.9376
LSTM 92.7390 113.8205 0.0004 0.0175 0.9999 0.0005 0.0107 0.6788 0.8081 0.9916

EEMD-FTS-MOGWO-LSTM 47.3082 60.5872 0.0001 0.0088 1.0000 0.0017 0.0057 0.4453 0.8586 0.996
CEEMD-FTS-MOGWO-LSTM 41.1810 47.4667 0.00008 0.0079 1.0000 0.0078 0.0045 0.3802 0.8687 0.999

Two-step ahead GRNN 192.6101 244.0532 0.0021 0.0368 0.9995 −0.0069 0.0230 0.7653 0.3535 0.8958
LSTM 137.3114 171.6678 0.0010 0.0258 0.9998 0.0032 0.0162 0.6710 0.4848 0.9708

EEMD-FTS-MOGWO-LSTM 109.3356 151.5123 0.0007 0.0202 0.9998 −0.0096 0.0142 0.6495 0.6061 0.9685
CEEMD-FTS-MOGWO-LSTM 56.0655 72.4324 0.0002 0.0105 1.0000 −0.0010 0.0068 0.4913 0.7879 0.9909

Three-step ahead GRNN 225.4602 287.1460 0.0029 0.0429 0.9993 −0.0092 0.0270 0.8026 0.2525 0.8480
LSTM 225.4602 287.1460 0.0029 0.0429 0.9993 −0.0092 0.0270 0.8026 0.2525 0.8480

EEMD-FTS-MOGWO-LSTM 139.4634 177.1613 0.0012 0.0272 0.9997 −0.0209 0.0165 0.7375 0.5859 0.9673
CEEMD-FTS-MOGWO-LSTM 107.3264 133.4660 0.0007 0.0208 0.9999 −0.0120 0.0125 0.6643 0.6364 0.9779
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Table 14. Sensitivity analysis of different search agent numbers based on MOGWO.

Metrics
The Value of Search Agent Number

5 10 15 20 25 30

AE −0.583443 −0.020492 −0.480544 −1.462529 −0.670987 −1.334932
MAE 0.613591 0.231376 0.492307 1.462529 0.680333 1.334932
RMSE 0.680007 0.296408 0.540443 1.483524 0.730494 1.349639
NMSE 0.019238 0.004058 0.011898 0.127156 0.022886 0.105523
MAPE 0.119743 0.048723 0.096181 0.294995 0.133244 0.271309

IA 0.995908 0.999202 0.997397 0.983123 0.995343 0.985745
FB 0.124580 0.004128 0.101493 0.344632 0.144625 0.309906
U1 0.071900 0.029562 0.056484 0.172524 0.077915 0.154459
U2 0.974610 0.743881 0.851054 1.010876 0.974186 1.003426
DA 0.575758 0.737374 0.626263 0.484848 0.565657 0.484848

r 0.925713 0.935871 0.969081 0.964314 0.955029 0.970766

The values in bold indicate the best values of each benchmark function.

Table 15. Sensitivity analysis of the different iteration numbers based on MOGWO.

Metrics
The Value of Iteration Number

5 10 20 30 40 50

AE −0.372790 −0.020492 0.288276 0.091318 0.133480 −0.398180
MAE 0.40222 0.231376 0.310034 0.350980 0.355459 0.409639
RMSE 0.474841 0.296408 0.362281 0.419625 0.438289 0.464493
NMSE 0.008926 0.004058 0.006453 0.008568 0.009241 0.009084
MAPE 0.077856 0.048723 0.068445 0.076189 0.077642 0.080769

IA 0.997962 0.999202 0.998823 0.998390 0.998213 0.998088
FB 0.077850 0.004128 −0.05631 −0.01819 −0.02647 0.083373
U1 0.049091 0.029562 0.035048 0.041391 0.043116 0.048082
U2 0.767918 0.743881 0.716270 0.726236 0.744410 0.779216
DA 0.656566 0.737374 0.666667 0.666667 0.646465 0.676768

r 0.947467 0.935871 0.969309 0.850194 0.883903 0.955046

The values in bold indicate the best values of each benchmark function.

Remark: According to Discussions I to V, we can draw the conclusion that the proposed hybrid
forecasting system, namely CEEMD-FTS-MOGWO-LSTM, possesses a more effective and stable
forecasting ability, regarding not only the wind speed but also the electrical power load, than other
models in terms of a lot of aspects, such as the correlation strength, statistical significance, and
forecasting accuracy. Also, the small number of iterations and search agents demonstrates the
superiority and convenience of the proposed model.
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5. Conclusions

Accurate wind speed electrical power load forecasting is crucial for power grid safety management,
power system operation, and the power market. However, due to the nonlinearity and randomness
of wind speed data and electrical power load series, it is still a difficult and challenging task to
establish an effective forecasting framework to deal with this problem. In this study, a new hybrid
prediction system was developed in order to obtain stability and accuracy simultaneously. Four wind
speed datasets and two electrical power load datasets were adopted to test the effectiveness of the
hybrid forecasting framework. The outcomes show that our proposed system outperformed all other
comparative benchmark models on many indicators. Firstly, a data preprocessing decomposition
approach, named CEEMD, was successfully applied in this study to enhance the forecasting ability of
the CFML forecasting model. Secondly, an effective multi-objective optimization algorithm, MOGWO,
was successfully combined and used to find out the optimal initial parameters. It not only achieved
better results in testing functions than the other two optimization models (NSGA-II and MODA) but
also showed the best optimization capability. Moreover, fuzzy time series forecasting with the rough
set induction rule, which is based on the LEM2 algorithm to build rule sets, was successfully combined
with MOGWO and the deep learning algorithm, called LSTM, in this paper. It was shown that the
addition of the FTS part, the MOGWO part, and the data decomposition part all bring improvements in
the performance of the hybrid forecasting framework. Also, a similar method can be applied in other
fields, for example, the electrical power load, which was verified in this paper. Finally, the forecasting
models CEEMD, FTS, and MOGWO showed the ability to carry the strength of each component
and to effectively improve the forecasting ability of the CFML forecasting model in terms of stability
and accuracy.
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FB The fractional bias
U1 The Theil U statistic 1

CFML CEEMD-FTS-MOGWO-LSTM U2 The Theil U statistic 2
WNN Wavelet Neutral Network DA The direction accuracy

GRNN
Generalized Regression Neural
Network

INDEX
The improvement ratio of the index among
different models

SAE Sparse Autoencoder R2 The Pearson’s correlation coefficient
LSTM Long Short-Term Memory DM Diebold–Mariano test
DBN Deep Belief Network H0 The null hypothesis
CNN Convolutional Neural Network H1 The alternative hypothesis
IGD The inverted generational distance α The confidence level
FTS Fuzzy time series Xt An input at time t

LEM2
Learning from examples module
version two

St The hidden state
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AR Autoregressive model MA Moving-average model

ARIMA
Autoregressive Integrated Moving
Average

ARMA Autoregressive moving average model

MODA Multi-objective dragonfly St−1 The previous time step
MOGWO Multi-objective grey wolf f t The forget gate

NSGA-II
Non-dominated sorted genetic
algorithm-II

it The input gate

Kα The distance between wolf α and the
prey

R1 The position of wolf α at time ite+1

Kβ The distance between wolf β and the
prey

R2 The position of wolf β at time ite+1

Kδ The distance between wolf δ and the
prey

R3 The position of wolf δ at time ite+1

QLD Queensland Ct−1 The old cell state
Pni Positive noise Nni Negative noise
AE The average error Wni Noise with identical amplitude and phase
MAE The mean absolute error Ot The output gate
RMSE The root-mean-square error gj The j-th inequality constraint

NMSE
The normalized average of the squares
of error

hj The j-th equality constraint

MAPE The mean absolute percentage error RST Rough set theory
IMF Intrinsic mode function IA The index of agreement
ZDT2 Zitzler–Deb–Thiele’s function N. 2 ZDT1 Zitzler–Deb–Thiele’s function N. 1
Kursawe Kursawe function ZDT3 Zitzler–Deb–Thiele’s function N. 3
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
CEEMD Complete Ensemble Empirical Mode Decomposition
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