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Abstract: As one of the leading types of energy, crude oil plays a crucial role in the global economy.
Understanding the movement of crude oil prices is very attractive for producers, consumers and
even researchers. However, due to its complex features of nonlinearity and nonstationarity, it is
a very challenging task to accurately forecasting crude oil prices. Inspired by the well-known
framework “decomposition and ensemble” in signal processing and/or time series forecasting,
we propose a new approach that integrates the improved complete ensemble empirical mode
decomposition with adaptive noise (ICEEMDAN), differential evolution (DE) and several types
of ridge regression (RR), namely, ICEEMDAN-DE-RR, for more accurate crude oil price forecasting
in this paper. The proposed approach consists of three steps. First, we use the ICEEMDAN to
decompose the complex daily crude oil price series into several relatively simple components. Second,
ridge regression or kernel ridge regression is employed to forecast each decomposed component.
To enhance the accuracy of ridge regression, DE is used to jointly optimize the regularization
item, the weights and parameters of each single kernel for each component. Finally, the predicted
results of all components are aggregated as the final predicted results. The publicly available West
Texas Intermediate (WTI) daily crude oil spot prices are used to validate the performance of the
proposed approach. The experimental results indicate that the proposed approach can achieve
better performance than some state-of-the-art approaches in terms of several evaluation criteria,
demonstrating that the proposed ICEEMDAN-DE-RR is very promising for daily crude oil price
forecasting.

Keywords: crude oil prices; time series forecasting; improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN); kernel learning; kernel ridge regression;
differential evolution (DE)

1. Introduction

Crude oil is one of the leading types of energy that has great impacts on the global economy.
Trying to accurately expect changes in crude oil prices benefits the producers and consumers of crude
oil. However, the prices are affected by many factors, such as climate, exchange rate, supply and
demand, speculation activities, geopolitics and so on, and they have fluctuated drastically in the last
decades [1,2]. For example, the prices of West Texas Intermediate (WTI) reached over 145 USD/barrel
in July 2008 and then quickly reduced to about 30 USD/barrel in the next five months. Crude oil
prices have shown significant nonlinearity and nonstationarity in the last three decades. The complex
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fluctuation of crude oil prices makes it a very challenging task to accurately predict crude oil prices.
Despite this, many researchers have contributed to building automatic models to forecast crude oil
prices accurately.

The task of forecasting crude oil prices is to expect future prices using existing data. From the
perspective of the input of the forecasting task, it can be divided into two groups: multivariate
forecasting and univariate forecasting. The former usually feeds the data associated with types of
variables, such as macroeconomic variables, exchange rates, sentiment analysis, inventory variables,
previous crude oil prices, and so on, to the predictors [1–7], while the latter uses the previous
prices only [8–12]. These are two different perspectives for studying crude oil price forecasting.
In practical applications, the former is usually used to forecast long-term crude oil prices, for example,
monthly prices or weekly prices, while the latter is for daily prices in most cases. In the task of
forecasting crude oil prices, the predictors can be mainly categorized into two classes: statistical
models (econometric models) and artificial intelligence (AI) models. Mirmirani and Li employed
vector auto-regression (VAR) to forecast the movements of U.S. oil prices [13]. Murat and Tokat
found that a vector error correction model (VECM) with crack spread futures outperformed the
traditional random walk (RW) model [14]. Moshiri and Foroutan applied auto-regressive integrated
moving average (ARIMA) and another statistical model, generalized autoregressive conditional
heteroskedasticity (GARCH), to forecasting daily crude oil futures prices [15]. Some extensions of
GARCH have also been employed in recent years [16–18]. In Lyocsa and Molnar’s study, the authors
investigated whether the heterogeneous autoregressive (HAR) model can improve the results of
forecasting the volatility of crude oil prices by using information from related energy commodity,
and the experimental results demonstrated that such information can not improve the volatility
forecasting [19]. Lv studied the performance of the HAR model of realized volatility (HAR-RV) for
forecasting crude oil futures price volatility [20]. Naser found that the dynamic model averaging
(DMA) model showed better performance in forecasting crude oil prices than all the other alternative
models, and it could also achieve better results of forecasting spot prices than futures prices [21].
Azevedo and Campos combined ARIMA, exponential smoothing, and dynamic regression to forecast
WTI and Brent crude oil spot prices, and the experimental results indicated that the combined model
was promising for crude oil price forecasting [22].

The statistical models are usually built on the assumption of linearity and stationarity of the
predicted time series. However, most research has shown that crude oil prices are highly nonlinear and
nonstationary [8,12,23], so such characteristics limit the accuracy of statistical models for forecasting
crude oil prices. To cope with the complex characteristics of crude oil prices, more and more scholars
use AI models to forecast crude oil prices. The most popular AI models include artificial neural network
(ANN) [12,24–27], support vector regression (SVR) [28,29] and least squares SVR (LSSVR) [2,10,30],
sparse Bayesian learning (SBL) [31,32], extreme learning machine (ELM) [23,33,34], extreme gradient
boosting (XGBoost) [8], random vector functional link (RVFL) network [11], long short-term memory
(LSTM) [35], and so on. Yu et al. used a feed-forward neural network (FNN) to forecast each
decomposed component from the raw series of crude oil prices, and then integrated the results
of all components as the final forecasting result by an adaptive linear neural network (ALNN) [12].
Xiong et al. also used FNN to conduct multi-step-ahead weekly crude oil spot price forecasting [25].
Barunik and Malinska found that a focused time-delay NN could achieve higher accuracy than the
compared models when forecasting monthly crude oil prices [26]. Extensive research has demonstrated
that the kernel-based methods, such as SVR, LSSVR and relevance vector machine, are promising
for forecasting crude oil prices [2,10,28–30,36]. Very recently, the LSTM, an artificial recurrent NN
architecture widely used in deep learning, has been applied to forecasting crude oil prices. Owing to
its power in processing sequences of data, the LSTM-based approach has yielded very promising
forecasting results [35]. Chiroma et al. presented an extensive review of the research that applied
AI-based models to crude oil price forecasting [37].
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Due to the nonlinearity and nonstationarity of crude oil price series, statistical models and AI
models usually cannot achieve satisfactory results by conducting forecasting with the raw crude oil
prices directly. A simple but effective way is to adopt the “divide and conquer” strategy, that is,
to decompose the complex signal into several relatively simple components and then extract relevant
features or handle each component for further work. Typical applications of such strategy include
fault diagnosis [38,39], biosignal analysis [40,41], time series forecasting [42,43], and so on [44–46].
Following this strategy, a “decomposition and ensemble” framework has become very popular in
the field of energy forecasting, such as wind speed forecasting [47,48], load forecasting [49–51] and
price forecasting [8,11,52,53] in recent years. Ren et al. integrated empirical mode decomposition
(EMD) and SVR to forecast wind speed. Specifically, EMD was used to decompose the raw wind speed
series into a couple of components (a residue and a few intrinsic mode functions (IMFs)). After that,
SVR was used to build an individual forecasting model for each component. At last, the predicted
values of all the components were aggregated as the final forecasting result [47]. Similarly, Li et al.
utilized an extended EMD, namely, ensemble EMD (EEMD), and random forests (RF) for electricity
consumption forecasting [31], and Yang and Wang applied complementary EEMD (CEEMD) and back
propagation NN (BPNN) to forecast wind speed [54]. All the research indicates that the approaches
following the framework of “decomposition and ensemble” is capable of significantly improving the
accuracy of energy forecasting.

Regarding the decomposition methods, although EMD, EEMD and CEEMD have the ability of
improving accuracy, they may introduce new noise into the recovered signal and still suffer from
the “mode mixing” problem [55,56]. To solve this problem, a complete EEMD with adaptive noise
(CEEMDAN) and an improved CEEMDAN (ICEEMDAN) were proposed [57,58]. The existing study
has demonstrated the power of CEEMDAN/ICEEMDAN in energy forecasting [8,59]. As far as the
forecasting method for each component, so-called individual forecasting, any regression methods
can be selected for this purpose in theory. Besides the above-mentioned methods such as SVR, ANN,
ELM, LSTM and so on, ridge regression (RR) is a simple but powerful regression for forecasting.
Moreover, the accuracy of regression can be further improved by introducing kernels into RR (KRR),
and the KRR has been successfully applied in wind speed forecasting [60,61], object tracking [62],
and preheat temperature prediction [63]. The basic idea of the kernel trick is to map the features
of the low-dimensional space to the high-dimensional space to obtain more representative features.
Naik et al. used wavelet kernel RR and low rank multi-kernel RR to forecast the components of
wind speed and wind power decomposed by EMD and variational mode decomposition (VMD),
respectively [61,64]. The low rank multi-kernel RR in their approach was a simple linear combination
by a polynomial kernel and a wavelet kernel, that is to say, the multi-kernel was actually a combination
of two simple kernels [64]. The number and type of kernels may limit the performance of the proposed
approach. Qian et al. used multi-kernel RR for object tracking, where the final kernel included one
linear kernel, five polynomial kernels and five Gaussian kernels, and the parameter of each kernel was
specified in advance and the optimization process was only to optimize the weight of each kernel [62].
Regarding multi-kernel learning, an ideal way is to optimize the weights and the parameters of each
kernel together. The nature-inspired algorithms, such as particle swarm optimization (PSO) [65–67],
differential evolution (DE) [68,69], ant colony optimization [70,71] and so on, can be applied to
optimizing both the weights and the parameters of the multi-kernel learning. Among the algorithms,
DE has proven to be very powerful for numerical optimization.

Motivated by the potential of ICEEMDAN in signal decomposition, RR in regression and DE in
numerical optimization, we proposed a novel approach integrating ICEEMDAN, DE and RR, namely,
ICEEMDAN-DE-RR, for crude oil price forecasting in this paper. Specifically, the ICEEMDAN-DE-RR
consists of three steps. First, ICEEMDAN is employed to decompose the raw daily crude oil price series
into several relatively simple components. Second, we use RR or KRR optimized by DE to forecast
each component individually. Finally, the predicted results from each component are aggregated as
the final forecasting result.
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The main contributions of this paper lie in the following:

(1) We propose a new framework of multiple kernel learning, which simultaneously optimizes the
weights and parameters of kernels using nature-inspired optimization.

(2) We forecast crude oil prices by integrating ICEEMDAN, DE and RR, following the “decomposition
and ensemble” framework. To the best of our knowledge, it is the first time that this combination
is used for forecasting tasks.

(3) The experimental results indicate that the proposed approach is effective for crude oil
price forecasting.

It is worth pointing out that although there have existed lots of models following the
“decomposition and ensemble” framework for energy forecasting, the proposed models are different
from them in several aspects. First, it is an attempt to use RR to forecast crude oil prices for the first
time. Existing research focuses on using RR to forecast wind speed, hydrologic time series, real estate
appraisal and so on [60,72,73], not including crude oil prices. Second, a new multiple kernel learning
framework is proposed using DE to optimize the parameters and/or weight of each base kernel, as well
as the regularization item simultaneously. The experimental results demonstrate the effectiveness of
the proposed approach. Third, the integration of ICEEMDAN, DE and RR is used to forecast time
series for the first time.

The novelty of this paper is three-fold: (1) Based on the power of ICEEMDAN, DE, and RR in
signal decomposition, numerical optimization, and regression, respectively, a novel combination of
these three methods is proposed for time series forecasting; (2) To improve the representability of
kernels, a novel multiple kernel learning framework using DE to simultaneously optimize the weights
and parameters of every single kernel is proposed, which can be applied to both classification and
regression; (3) The proposed ICEEMDAN-DE-RR approaches are firstly applied to forecasting crude
oil prices and the results demonstrate the effectiveness of the approaches.

The remainder of this paper is structured as follows. In Section 2, we briefly introduce
ICEEMDAN, DE and RR. Section 3 formulates the proposed ICEEMDAN-DE-RR method in detail.
To evaluate the proposed ICEEMDAN-DE-RR, we report and analyze the experimental results in
Section 4. Finally, we conclude the paper in Section 5.

2. Methods

2.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)

ICEEMDAN was originated from EMD proposed by Huang et al. [55–58]. EMD is an adaptive
method for time-space analysis, which decomposes a raw sequence that is non-linear and non-stationary
into several IMFs and one residue. The main steps of EMD are described as follows:

Step 1: Find out all local extrema of the raw data x(t), t = 1, 2, 3, · · · , T;
Step 2: Link all local minima and local maxima to construct the lower envelopes xlow(t) and upper

envelopes xup(t), respectively;

Step 3: Compute the local mean, i.e., m(t) = xup(t)+xlow(t)
2 ;

Step 4: Extract the first IMF and residue by IMF1(t) = x(t)−m(t) and R1(t) = m(t), respectively;
Step 5: For i = 1, 2, 3, · · · , n, if find out more than two local extrema of Ri(t), go back to step 2 and

get IMFi+1(t) and Ri+1(t).

In EMD, it was found that there were similar parts of signals existing at the same corresponding
position in different IMFs, which was called mode mixing. Because of it, IMFs have lost their
physical meanings [55]. To cope with this issue, Wu and Huang proposed Ensemble EMD (EEMD) by
performing EMD many times on the time series with added white noises [56]. The new time series
with white noises xi(t) can be formulated as Equation (1):

xi(t) = x(t) + wi(t), (1)
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where x(t) represents the raw data series and wi(t) is the i-th white noise, i = 1, 2, 3, · · · , n.
Then, when every xi(t) is decomposed, we can get the corresponding IMFi

k(t). To compute the
real k-th IMF, IMFk, EEMD calculates the average of the IMFi

k(t), which can remove the effect of
the white noises. However, in practice, one of the limitations of EEMD is that the recovered signal
will include residual noise. To solve this problem, Torres et al. proposed a new extension of EEMD,
termed as CEEMDAN for signal decomposition [57]. For k = 2, 3, · · · , K, the k-th IMF and residue can
be computed as Equations (2) and (3):

IMFk = 1/I
I

∑
i=1

(E1(rk−1[t] + εk−1E1(wi[t])), (2)

rk[t] = rk−1[t]− IMFk, (3)

where E1(.) represents the first IMF decomposed from the series, and εi is used to set the signal-to-noise
(SNR) at each stage.

In 2014, Colominas et al. found that the IMFs of CEEMDAN contained some residual noise
and some “spurious” modes. Thus, they further proposed a method to improve CEEMDAN
(ICEEMDAN) [57,58], whose main steps can be described as follows:

Step 1: Add the first IMF of the given white noises to the original series x(t), as shown in following:

xi(t) = x(t) + β0E1(wi(t)), (4)

where β0 is the level of noise.
Step 2: Find out the local means M(.) of xi(t) and calculate the average of local means to get the

following residue:

r1(t) =
1
N

N

∑
i=1

M(xi(t)). (5)

Step 3: Then, we can get the first IMF, as shown in Equation (6):

IMF1 = x(t)− r1(t). (6)

Step 4: For k = 2, 3, · · · , K, the residue and the k-th IMF can be computed by Equation (7) and
Equation (8):

rk(t) =
1
N

N

∑
i=1

M(rk−1(t) + εk−1Ek(wi(t))), (7)

IMFk = rk−1[t]− rk[t], (8)

In this paper, the ICEEMDAN is used to decompose the original data series into several IMFs and
one residue, standing for local physical features of original signals. The difficult task of forecasting the
original signals is now becoming several relatively simple sub-tasks.

2.2. Kernel Ridge Regression (KRR)

Ridge regression (RR) is a typical linear regression that uses a sum-of-squares error function and
regularization technique to control the bias variance trade-off, whose purpose is to discover the linear
structures hidden in the data [74]. Kernel ridge regression (KRR) is an extension of RR by introducing
a kernel function that maps the input data in a low dimensional space to a high one. The kernel
function k is defined on an input space X ⊆ Rd and is with the formula: k : X ×X → R. The kernel
function is actually a feature map from d dimensional space into a high-dimensional Hilbert SpaceHk,
Ψ : X → Hk such that k(xi, xj) = 〈Ψ(xi), Ψ(xj)〉Hk [75–77]. The most popular kernel functions include:
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• Linear kernel: kL(xi, xj) = xT
i xj.

• Polynomial kernel: kP(xi, xj) = (a(xT
i xj) + b)c, where a, b, and c are the coefficient, constant and

degree of kP, respectively..
• Sigmoid kernel: kS(xi, xj) = tanh(d(xT

i xj) + e), where d and e are the coefficient and
constant, respectively.

• Radial basis function (RBF) kernel: kR(xi, xj) = e− f ‖xi−xj‖2
, where f is related to the width of

the kernel.

With the kernel functions and n data samples (x1, y1), (x2, y2), · · · , (xn, yn) ∈ X × Y (yi is the
target value of corresponding xi, i = 1, 2, · · · , n), we can construct the kernel matrix as Equation (9):

K =


k (x1, x1) k (x1, x2) . . . k (x1, xn)

k (x2, x1) k (x2, x2) . . . k (x2, xn)

. . . . . . . . . . . .
k (xn, x1) k (xn, x2) . . . k (xn, xn)

 . (9)

Then the KRR problem can be formulated as Equation (10):

min
w
‖Y−Kw‖2 + λ‖w‖2, (10)

where Y is the target vector of all the n data samples, w is the unknown vector to be found, and λ ≥ 0
is a regularization item to avoid a large range of w. The solution in terms of w can be easily given in
a closed-from manner as Equation (11):

w = (K + λIn)
−1 Y, (11)

where In is an n× n identity matrix with ones on the main diagonal and zeros elsewhere.
Kernel types and parameters are two important factors for KRR. Some existing research used

only a single kernel with specified parameters or simple combinations of several kernels with a fixed
weight of every kernel in practical problems, limiting the forecasting performance of KRR. To improve
the performance, an ideal solution is to adaptively optimize the weight and/or the parameters of each
single kernel using some nature-inspired optimization algorithms. In this paper, we use differential
evolution (DE) to optimize such weights and/or parameters for kernels.

2.3. Differential Evolution (DE)

Differential evolution (DE) is a member of the family of nature-inspired algorithms, and it has
been demonstrated that DE is very powerful in solving various science and engineering problems [68].
The main idea of DE is to optimize a problem by using a few operations to iteratively improve a set of
candidate solutions with evaluation criteria. Basically, the evolutionary process of DE consists of four
stages/operations: initialization, mutation, crossover, and selection.

2.3.1. Initialization

For a D-dimensional optimization problem, given the population size P, evolutionary generation
G, and the lower and upper bounds of each decision variable Xmin = [x1,min, x2,min, · · · , xD,min] and
Xmax = [x1,max, x2,max, · · · , xD,max] respectively, the d−th decision variable of the i−th individual
(i = 1, 2, · · · , P) can be initialized as Equation (12):

I1
i,d = xd,min + rand(0, 1)× (xd,max − xd,min), (12)

where the “1” at the right-up corner of I represents the current evolutionary generation, and rand(0, 1)
generates a random real number between 0 and 1.
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The initialization produces a population with P individuals/solutions/vectors, and the d−th
decision variable in each individual is in the range of [xd,min, xd,max].

2.3.2. Mutation

The purpose of mutation is to generate a new vector Vg
i , so-called mutant vector, from several

existing vectors/individuals with respect to each vector Ig
i , so-called target vector, in the population of

the g−th generation. Some popular mutation strategies are shown as follows:

Vg
i = Ig

r1 + F× (Ig
r2 − Ig

r3), (13)

Vg
i = Ig

b + F× (Ig
r1 − Ig

r2), (14)

Vg
i = Ig

b + F× (Ig
r1 − Ig

r2) + F× (Ig
r3 − Ig

r4), (15)

Vg
i = Ig

i + F× (Ig
b − Ig

i ) + F× (Ig
r1 − Ig

r2), (16)

where r1− r4 are mutually random indices of the individuals, F is a preset parameter for scaling the
difference vector, and Ig

b is the best individual at the g−th generation.

2.3.3. Crossover

The purpose of crossover is to generate a trial vector Ug
i = {Ug

i,1, Ug
i,2, · · · , Ug

i,D} from the target
vector Ig

i and its corresponding mutant vector Vg
i with the following strategy:

Ug
i,j =

{
Vg

i,j, if rand(0, 1) ≤ Cr or j = jrand

Ig
i,j, otherwise

, (17)

where Cr is a user-defined crossover rate that satisfies Cr ∈ [0, 1], and jrand is a random integer in [1, D]

to ensure that at least one decision variable in Vg
i can be passed to Ug

i directly.

2.3.4. Selection

The selection operation is to select the better vector from the target vector Ig
i and its corresponding

trial vector Ug
i for the next generation with evaluation by fitness function f . The selection strategy is

mathematically shown in Equation (18):

Ig
i =

{
Ug

i , if f
(

Ug
i

)
≤ f

(
Ig
i

)
Ig
i , otherwise

. (18)

3. The Proposed ICEEMDAN-DE-RR Approach

3.1. Ridge Regression by DE

For any types of RR, the regularization item is an important parameter to be optimized. Kernel is
a very powerful trick in machine learning, which maps the data that are linearly inseparable in the
input space into a higher dimensional space where the mapped data are linearly separable using kernel
functions. Regarding kernel Ridge regression (KRR), besides the regularization item in Equation (10),
the parameters a− f for the single kernels kP, kS and kR need to be optimized. To further explore the
ability of multiple kernel RR (MKRR) for crude oil price forecasting, we build a multiple kernel that
consists of one kL, one kP, one kS and n kRs, as shown in Equation (19),
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kM(xi, xj) = w1kL(xi, xj) + w2kP(xi, xj) + w3kS(xi, xj) +
n+3

∑
l=4

wlkR(xi, xj)

= w1xT
i xj + w2(a(xT

i xj) + b)c + w3 tanh(d(xT
i xj) + e) +

n+3

∑
l=4

wle
− fl−3‖xi−xj‖2

,

(19)

where w1, w2, · · · , wn+3 are the weights of each single kernel, and a− e and f1 − fn are parameters for
each single kernel.

In our approach, we use DE to optimize the regularization item λ in RR, λ and a− f for each single
kernel, and λ, weights and a− e, f1− fn for kM, respectively. The weights for kM, wi(i = 1, 2, · · · , n− 3),
are generated from n + 3 real values xj(j = 1, 2, · · · , n− 3) optimized by DE to meet ∑n+3

i=1 = 1 by
Equation (20):

wi =
xi

∑n+3
j=1 xj

. (20)

3.2. The Proposed ICEEMDAN-DE-RR Approach

The proposed ICEEMDAN-DE-RR approach is a typical form of “decomposition and ensemble”,
which consists of three stages, i.e., decomposition, individual forecasting, and ensemble forecasting,
as shown in Figure 1.

ICEEMDAN

DE-RR 2DE-RR 1 DE-RR n

Addition

…

…

…

Stage 1 

Decomposition

Stage 2 

Individual Forecasting

Stage 3 

Ensemble Forecasting

Crude oil prices

Component 1 Component 2 Component n

Forecasting 

result 1

Forecasting 

result 2

Forecasting 

result n

Final forecasting 

result

Figure 1. The flowchart of the proposed ICEEMDAN-DE-KRR.

The details of each stage are as follows:

Stage 1: Decomposition. The daily raw crude oil price series is decomposed into two groups of
components: several IMFs and one residue.

Stage 2: Individual forecasting. The data samples in each component are divided into training set,
validation set, and test set. The training set and validation set are used to build RR models,
and then the test set is applied to evaluate the models. For each model, we use DE to
optimize the regularization item, corresponding kernel parameters, and possible weights.

Stage 3: Ensemble forecasting. The individual forecasting results of all the components in Stage 2
are aggregated as the final forecasting results by addition.
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The proposed ICEEMDAN-DE-RR adopts the typical “divide-and-conquer” strategy,
which divides the complexly non-linear and non-stationary crude oil prices into several relatively
simple components and then handles each component with a relatively simple DE-based RR predictor.
With the strategy, the tough task of forecasting raw crude oil price series becomes several relatively
simple sub-tasks of forecasting each component.

It is worth pointing out that although there is a lot of work on energy forecasting following the
framework of “decomposition and ensemble”, our proposed work is very different from the work in
several aspects: (1) RR and KRR are first applied to crude oil forecasting; (2) a novel multiple kernel
RR (MKRR) optimized by DE is proposed and it can be applied in other fields; and (3) the ICEEMDAN,
DE and RR are integrated to forecast daily crude oil prices for the first time.

4. Experimental Results and Comparative Analysis

4.1. Data Description

To validate the effectiveness of the proposed approach, we select the West Texas Intermediate
(WTI) daily crude oil spot closing prices from 2 January 1986 to 4 February 2019 as an experimental
dataset. There are 8342 samples in total, and the daily crude oil prices from 2 January 1986 to
14 June 2012, with 6673 samples accounting for 80% of the total samples, are chosen as the training set,
while the rest are for testing. Within the training set, 5338 (80%) and 1335 (20%) samples are used for
training and validation, respectively.

The WTI daily crude oil spot prices and corresponding decomposed components by ICEEMDAN
are shown in Figure 2. We can see that the complex raw crude oil prices are decomposed into two
groups: high-frequency group (IMF1-IMF5) and low-frequency group (IMF6-IMF11 and residue).
The high-frequency components fluctuate within a narrow range of amplitude while the low-frequency
ones fluctuate within a wide range of amplitude, making forecasting crude oil prices with the
components easier than with the raw crude oil prices.

We conduct several types of multi-step-ahead forecasting with a lag of L in the experiments.
A type of m-step-ahead prediction means forecasting the crude oil prices on the (t + m)-th day with
the L price samples before the t-th day but including the t-th day.

For a fair comparison, each decomposed component is scaled to [0, 1] using the min-max
normalization, as formulated by Equation (21).

x
′
t =

xt − xmin
xmax − xmin

, (21)

where xt and x
′
t are crude oil price series before and after normalization respectively, and xmax and

xmin are the maximum value and the minimum value of the time series, respectively.

4.2. Evaluation Criteria

We use a set of criteria to evaluate the proposed approach as well as the compared models.
Specifically, the selected criteria include the mean absolute percent error (MAPE), the root-mean-square
error (RMSE), and the directional statistic (Dstat). The MAPE, RMSE and Dstat are defined as
Equations (22)–(24):

MAPE =
1
N

N

∑
i=1
|yt − ŷt

yt
|, (22)

RMSE =

√√√√ 1
N

N

∑
i=1

(yt − ŷt)2, (23)

Dstat =
1
N

N

∑
i=1

di × 100%, (24)
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where yt and ŷt are the actual and predicted values at time t respectively, N is the size of the prediction,
and di = 1 if (ŷt+1 − yt)(yt+1 − yt) ≥ 0; otherwise di = 0. The smaller the values of MAPE and RMSE,
the better the model. In contrast, a higher Dstat means a better forecasting model.
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Figure 2. The daily WTI crude oil prices and the corresponding decomposed components by
ICEEMDAN.
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Besides, we take the Diebold–Mariano (DM) test to compare the statistic difference of the accuracy
of prediction between pairs of models. At first, we compute the difference of the prediction of pairs of
models at time t as Equation (25):

dt =
N

∑
t=1

(yt − ˆyt,a)
2 −

N

∑
t=1

(yt − ˆyt,b)
2, (25)

where ˆyt,a is the prediction of model a at time t and ˆyt,b is the prediction of model b at time t. Then,
the DM statistic can be defined as Equation (26):

DM =
d̄√

Vd/N
, (26)

where

d̄ =
1
N

N

∑
t=1

dt, (27)

Vd = cov(dt, dt) + 2
∞

∑
l=1

cov(dt, dt−l), (28)

where cov is a covariance matrix.
If the value of the DM test is negative and statistically significant (e.g., p-value≤ 0.05), it is proven

that there is a significant difference between the predictive accuracy of pairs of models [78].

4.3. Experimental Settings

We forecast daily crude oil prices from the raw price series and decomposed components, so-called
single models and ensemble models, respectively. As for single models, we compare the RR-based
methods (RR, LinRR, PolyRR, SigRR, RbfRR and MKRR in Table 1) with two state-of-the-art AI
models: LSSVR and BPNN, as well as two classical statistical methods: ARIMA and RW. Regarding
ensemble models, we compare ICEEMDAN with EEMD to show the power of decomposition, and all
the forecasting methods with single models except for ARIMA are applied to ensemble models.
The parameters in the experiments are shown in detail in Table 1. Note that for the MKRR, we use
23 single kernels, i.e., one linear kernel, one polynomial kernel, one Sigmoid kernel and 20 RBF kernels,
to build the multiple kernel, and both the weight and parameters of each single kernel are optimized
by DE. The values or the ranges of some parameters are from existing literature [8,31]. In addition,
we use RMSE as the fitness function to evaluate the individuals in DE.

All the experiments were performed by Matlab R2016b on a PC with 64-bit Windows 10, a 3.6 GHz
i7 CPU and 32 GB RAM.

4.4. Results and Analysis

4.4.1. Single Models

The single models are performed on the raw daily crude oil prices directly. We compared the
RR-based methods with LSSVR, BPNN and ARIMA. The experimental results are reported in Table 2,
with the best and the worst results being shown in bold and underline, respectively, in terms of each
criterion with each horizon.
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Table 1. The settings for the parameters.

Method Description Parameters

EEMD Ensemble empirical mode decomposition Noise standard deviation: 0.2;
Number of realizations: 100.

ICEEMDAN Improved complete EEMD with adaptive noise Noise standard deviation: 0.05;
Number of realizations: 500;
Maximum number of sifting iterations allowed: 5000.

RR Ridge Regression λ: [0.001, 0.2].
LinRR RR with a linear kernel λ: [0.001, 0.2].
PolyRR RR with a polynomial kernel λ: [0.001, 0.2]; a: [0, 2]; b: [0, 10]; c: {1,2,3,4} .
SigRR RR with a Sigmoid kernel λ: [0.001, 0.2]; d: [0, 4]; e: [0, 8].
RbfRR RR with a radial basis functional kernel λ: [0.001, 0.2]; f : [2−10, 212].
MKRR RR with multiple kernels as formulated

in Equation (19)
λ: [0.001, 0.2];
a− e: the same as the above single kernel;
n: 20, number of the RBF kernels;
f1 − f20: [2−10, 212]; w1 − w23: [0, 1] s.t. ∑23

i=1 wi = 1.
LSSVR Least square support vector regression

with a RBF kernel
Regularization parameter: 2{−10,−9,··· ,11,12};
Width of the RBF kernel: 2{−10,−9,··· ,11,12}.

BPNN Back propagation neural network Size of the hidden layer: {10, 20, 50, 100};
Maximum training epochs: {100, 1000, 10000};
Learning rate: {0.001, 0.01, 0.05, 0.1}.

ARIMA Autoregressive integrated moving average Akaike information criterion (AIC) to
determine parameters (p-d-q) [79].

DE Differential Evolution Population size: 20; Number of iterations: 40;
Crossover probability: 0.2.

Table 2. Results of single models.

Horizon Criterion RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN ARIMA RW

1

MAPE 0.0154 0.0154 0.0154 0.0154 0.0156 0.0154 0.0154 0.0161 0.0157 0.0156
RMSE 1.2454 1.2462 1.2473 1.2483 1.2567 1.2472 1.2481 1.3050 1.2701 1.2700
Dstat 0.5000 0.4940 0.5132 0.5156 0.5186 0.5162 0.5102 0.5132 0.4868 0.5054

3

MAPE 0.0262 0.0263 0.0264 0.0264 0.0265 0.0263 0.0266 0.0264 0.0274 0.0272
RMSE 2.0627 2.0689 2.0708 2.0701 2.0754 2.0767 2.0801 2.0797 2.1713 2.1645
Dstat 0.4988 0.4988 0.4964 0.4958 0.5000 0.5090 0.4952 0.4994 0.4982 0.4952

6

MAPE 0.0377 0.0379 0.0381 0.0381 0.0381 0.0380 0.0379 0.0394 0.0408 0.0401
RMSE 2.8977 2.9101 2.9209 2.9208 2.9239 2.9149 2.9128 2.9943 3.1824 3.1195
Dstat 0.4952 0.4958 0.4862 0.4898 0.4922 0.4964 0.4910 0.4976 0.4916 0.4928

From the table, we can find that the AI models outperform the statistical models in 6 out of 9 cases.
Among the AI models, BPNN obtains two worst results: the MAPE value of 0.0161 as well as the RMSE
value of 1.3050 with Horizon 1, while LSSVR and PolyRR obtain the worst values once: the Dstat
value of 0.4592 and 0.4862 with Horizon 3 and 6, respectively. Overall, the RR-based single models
outperform other models in most cases. In particular, RR achieves the best results in 6 out of 9 cases,
showing that it is superior to other single models. Regarding the statistical models, RW is very close
to but slightly better than ARIMA. In terms of MAPE and RMSE, for each model, the results become
worse and worse when the horizon increases.

Regarding directional statistics, RbfRR, MKRR and BPNN achieve the highest values of 0.5186,
0.5090 and 0.4976 with Horizon 1, 3, and 6, respectively. In contrast, ARIMA and PolyRR obtain the
worst values of 0.4868 and 0.4862 with Horizon 1 and 6, respectively. For Horizon 3, both LSSVR and
RW obtain the worst Dstat values of 0.4952. The intervals of the best values and the corresponding
worst values are so narrow that all the results of all cases are around 0.5, just like the result of random
guessing, showing that it is a tough task to forecast the direction using single models.

To further compare the single models, we report the DM test results in Table 3, with the statistics
and the corresponding p-values (in brackets). From this table, we have some findings. First, compared
with the statistical model ARIMA and RW, the statistics of all the AI models in all cases except for
BPNN with Horizon 1 are far below −2.000 and the corresponding p-values are much less than 0.01,
indicating that the AI models significantly outperform ARIMA and RW. ARIMA and RW have very
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similar results. Second, LSSVM and BPNN underperform RR-based approaches in most cases, showing
that the RR-based predictors are more effective than the statistical AI models (LSSVM and BPNN) for
forecasting raw crude oil prices, to some extent. Third, as for RR-based models, the RR, PolyRR and
MKRR have very close performance, which are superior to LinRR, SigRR and RbfRR. All the findings
confirm the analysis on MAPE, RMSE and Dstat.

Table 3. The Diebold-Mariano (DM) test results of single models.

Horizon Tested Model LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN ARIMA RW

1

RR −1.1025
(0.2704)

−0.7203
(0.4714)

−1.5290
(0.1265)

−2.0533
(0.0402)

−0.6405
(0.5219)

−1.3788
(0.1681)

−5.5601
(0.0000)

−3.4678
(0.0005)

−3.4585
(0.0004)

LinRR −0.4701
(0.6383)

−1.3435
(0.1793)

−1.6807
(0.0930)

−0.3852
(0.7001)

−1.3221
(0.1863)

−5.6817
(0.0000)

−3.3577
(0.0008)

−3.2647
(0.0007)

PolyRR −0.4864
(0.6268)

−1.3044
(0.1923)

0.2103
(0.8334)

−0.4205
(0.6742)

−5.7019
(0.0000)

−2.8226
(0.0048)

−2.7642
(0.0000)

SigRR −1.2372
(0.2162)

0.5057
(0.6132)

0.1453
(0.8845)

−5.7208
(0.0000)

−2.8937
(0.0039)

−2.3072
(0.0002)

RbfRR 1.3294
(0.1839)

1.2083
(0.2271)

−3.4277
(0.0006)

−1.3067
(0.1915)

−1.2796
(0.0142)

MKRR −0.4335
(0.6647)

−5.7099
(0.0000)

−2.8012
(0.0052)

−2.7326
(0.0312)

LSSVR −5.8110
(0.0000)

−2.8584
(0.0043)

−2.6057
(0.0147)

BPNN 2.6579
(0.0079)

2.1439
(0.0001)

ARIMA 0.0996
(0.1206)

3

RR −2.4997
(0.0125)

−1.6877
(0.0916)

−2.0321
(0.0423)

−2.8803
(0.0040)

−2.3015
(0.0215)

−3.2386
(0.0012)

−2.7039
(0.0069)

−5.6427
(0.0000)

−4.9664
(0.0000)

LinRR −0.2930
(0.7696)

−0.2368
(0.8129)

−2.0401
(0.0415)

−1.0401
(0.2984)

−2.9172
(0.0036)

−1.3601
(0.1740)

−5.1351
(0.0000)

−5.1652
(0.0000)

PolyRR 0.1966
(0.8442)

−0.6415
(0.5213)

−1.6590
(0.0973)

−1.1121
(0.2662)

−2.1367
(0.0328)

−4.6340
(0.0000)

−4.9189
(0.0000)

SigRR −1.0601
(0.2893)

−1.6399
(0.1012)

−1.6464
(0.0999)

−1.8857
(0.0595)

−4.8619
(0.0000)

−4.6375
(0.0000)

RbfRR −0.1690
(0.8658)

−3.6421
(0.0003)

−0.5004
(0.6169)

−4.4865
(0.0000)

−4.4237
(0.0000)

MKRR −0.4004
(0.6889)

−0.5933
(0.5530)

−4.3286
(0.0000)

−3.3925
(0.0000)

LSSVR 0.0403
(0.9679)

−4.2520
(0.0000)

−3.8976
(0.0000)

BPNN −4.4861
(0.0000)

−4.3547
(0.0001)

ARIMA 0.7708
(0.1300)

6

RR −2.6901
(0.0072)

−3.0491
(0.0023)

−3.1495
(0.0017)

−3.2282
(0.0013)

−1.4575
(0.1452)

−2.4926
(0.0128)

−5.1039
(0.0000)

−7.6069
(0.0000)

−7.9403
(0.0000)

LinRR −1.3345
(0.1822)

−1.2552
(0.2096)

−2.1339
(0.0330)

−0.3964
(0.6919)

−0.3807
(0.7035)

−4.2189
(0.0000)

−7.0961
(0.0000)

−6.8125
(0.0000)

PolyRR 0.0718
(0.9428)

−0.6199
(0.5354)

0.6465
(0.5180)

2.4994
(0.0125)

−4.9939
(0.0000)

−6.4072
(0.0000)

−6.0013
(0.0000)

SigRR −0.5182
(0.6044)

0.6242
(0.5326)

2.2295
(0.0259)

−5.2852
(0.0000)

−6.3341
(0.0000)

−6.1752
(0.0000)

RbfRR 0.8653
(0.3870)

2.6871
(0.0073)

−4.0728
(0.0000)

−6.3042
(0.0000)

−6.4841
(0.0000)

MKRR 0.2139
(0.8307)

−4.9976
(0.0000)

−6.4398
(0.0000)

−5.8925
(0.0000)

LSSVR −5.0705
(0.0000)

−6.6890
(0.0000)

−6.5482
(0.0001)

BPNN −4.0592
(0.0001)

−3.7692
(0.0002)

ARIMA 0.7134
(0.2304)
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Due to the nonlinearity and nonstationarity, the performance of directly forecasting on raw crude
oil price series needs to be improved. To cope with this issue, we use ICEEMDAN to decompose
the raw series into several components each of which shows relatively simple characteristics when
compared with the raw series, and then each component is predicted using an AI model individually.
At last, the predicted results of all components are aggregated as the final result.

4.4.2. Ensemble Models

To demonstrate the effectiveness of ICEEMDAN, we also use EEMD as one of the decomposition
methods for comparison. For the forecasting methods, we compare RR-base predictors with two
state-of-the-art AI methods: LSSVR and BPNN. The values of MAPE, RMSE and Dstat with ensemble
models are shown in Table 4.

Table 4. Results of ensemble models.

Decomposition Horizon Criterion RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW

EEMD

1

MAPE 0.0084 0.0089 0.0084 0.0084 0.0088 0.0085 0.0090 0.0200 0.0186
RMSE 0.6401 0.6827 0.6399 0.6399 0.6799 0.6467 0.6805 1.6044 1.7455
Dstat 0.8213 0.8112 0.8231 0.8189 0.7980 0.8135 0.8076 0.7344 0.5084

3

MAPE 0.0096 0.0111 0.0097 0.0097 0.0107 0.0100 0.0118 0.0195 0.0296
RMSE 0.7569 0.8702 0.7583 0.7560 0.8410 0.7803 0.9406 1.5599 2.5344
Dstat 0.7746 0.7314 0.7728 0.7794 0.7500 0.7710 0.7272 0.6847 0.5000

6

MAPE 0.0120 0.0146 0.0121 0.0122 0.0147 0.0122 0.0126 0.0210 0.0396
RMSE 0.9440 1.1602 0.9547 0.9704 1.1560 0.9666 0.9896 1.6297 3.1068
Dstat 0.7146 0.6607 0.7140 0.7002 0.6625 0.7290 0.6924 0.6265 0.4976

ICEEMDAN

1

MAPE 0.0043 0.0050 0.0043 0.0043 0.0048 0.0043 0.0044 0.0051 0.0175
RMSE 0.3458 0.4039 0.3469 0.3441 0.3901 0.3505 0.3528 0.3964 1.6209
Dstat 0.9101 0.8939 0.9101 0.9113 0.8975 0.9083 0.9071 0.8945 0.5228

3

MAPE 0.0073 0.0089 0.0074 0.0076 0.0087 0.0074 0.0075 0.0092 0.0286
RMSE 0.5926 0.7170 0.5953 0.6067 0.7001 0.5984 0.6044 0.7022 2.4296
Dstat 0.8453 0.8040 0.8399 0.8417 0.8124 0.8393 0.8333 0.8100 0.4862

6

MAPE 0.0102 0.0138 0.0102 0.0107 0.0130 0.0103 0.0104 0.0187 0.0400
RMSE 0.8027 1.0977 0.8100 0.8513 1.0276 0.8137 0.8236 1.3531 3.1926
Dstat 0.7590 0.6661 0.7584 0.7530 0.6847 0.7626 0.7578 0.6865 0.4982

As far as MAPE and RMSE with EEMD are concerned, the results of different forecasting models
except for BPNN and RW are significantly superior to those of the corresponding single models.
For example, the best (lowest) MAPE, and RMSE with Horizon 1 are improved from 0.0154 to 0.0084,
and from 1.2454 to 0.6399, respectively. Regarding Dstat, the best/worst value except those by RW is
0.8231/0.7344, which is far greater than the values of single models. Among the forecasting methods,
RR-based predictors achieve all the best values while BPNN and RW obtain all the worst results.
Specifically, RR, SigRR and PolyRR achieve the best values 4, 4 and 3 out of 9 times, respectively.
Except for the values of MAPE and RMSE with Horizon 1, the ensemble models by BPNN are
advantageous over single BPNN. Another finding is that RW obtains the worst values 8 out of 9 times.
In particular, the Dstat values by RW are always around 0.5, and the possible reason is that RW
performs poorly in forecasting high-frequency components. The experimental results indicate that
the ensemble models except for RW can significantly improve the forecasting effectiveness when
compared with the single models.

When we look at the results with ICEEMDAN and AI models in Table 4, we can see a significant
improvement in the forecasting ability. As for MAPE, the value of each model with ICEEMDAN is
superior to that of its competitor with EEMD. Specifically, RR achieves the best (lowest) MAPE for
all the horizons, while BPNN obtains the worst values for the same horizons. For Horizon 1, PolyRR,
SigRR and MKRR also achieve the best MAPE (0.0043) as RR does. The results of RMSE show similar
characteristics that all the models with ICEEMDAN exceed those with EEMD. The best values of RMSE
with Horizon 1, 3, and 6 are achieved by SigRR, RR, and RR, respectively. In contrast, LinRR, LinRR
and BPNN obtain the worst RMSEs with Horizon 1, 3 and 6, respectively. It is worth pointing out that
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the directional statistics is significantly improved by ICEEMDAN. The best Dstat (0.9113) is achieved
by SigRR with Horizon 1, and the other models achieve very close Dstat, indicating that this metric is
very stable with ICEEMDAN. The worst (lowest) value of Dstat is 0.6661, which is much higher than
the best one by single models (0.5186). Therefore, the models with ICEEMDAN and AI models are
able to effectively improve the results of directional statistics. Regarding the results with ICEEMDAN
and RW models, they still perform poorly and obtain the nine worst values, although RW models with
ICEEMDAN perform slightly better than those with EEMD for Horizon 1 and 2.

For the models with both EEMD and ICEEMDAN, most results of MAPE, RMSE and Dstat will
become worse when the horizon increases, showing that it is more difficult to forecast crude oil prices
with a long horizon than with a short one.

We still apply the DM test to compare the ensemble models, and the results are shown in Table 5.
From this table, we can see that when the forecasting methods with ICEEMDAN are compared with
those with EEMD, the statistical values are far below zero and the p-value is very close to zero
(usually less than 0.0001) with Horizon 1 and 3, indicating that the former significantly outperforms
the latter with these two horizons. Regarding Horizon 6, the forecasting methods, except for BPNN
with ICEEMDAN, still outperform the corresponding methods with EEMD. For each decomposition,
the RR-based methods are usually superior to LSSVR and BPNN. Among the RR-based predictors,
RR and SigRR have the best forecasting ability, followed by MKRR and PolyRR, while RbfRR and
LinRR have a slightly worse predictive power. In addition, the models with AI are all superior to
the corresponding models with RW, showing that the forecasting effectiveness does not stem from
luck but by the forecasting superiority of the proposed approaches. All the DM test results confirm
that ICEEMDAN and RR-based predictors are very effective for forecasting daily crude oil prices.
The proposed approach that integrates ICEEMDAN and RR is capable of improving the results of
crude oil price forecasting.

4.5. Discussion

In this subsection, we will discuss the impact of the parameter settings of the ICEEMDAN,
the impact of the lag orders and the result of each individual component. Since the above results and
analysis have shown that RR and SigRR usually outperform the other models, we will take both RR
and SigRR as examples to discuss the following.

4.5.1. The Impact of the Parameter Settings of the ICEEMDAN

When we use the ICEEMDAN to decompose the daily crude oil price series, we need to add
noises to the series and decompose the series many times. Therefore, the noise standard deviation
nsd and the number of realizations nr are two important parameters. To study the impact of nsd on
forecasting, we run the proposed approach with a variable nsd in the range of {0.01, 0.03, 0.05, 0.08,
0.1, 0.15, 0.2, 0.3, 0.4} while fixing other parameters. The experimental results are shown in Figure 3.
Likewise, we use a variable nr in the range of {20, 50, 100, 200, 300, 500, 800, 1000, 1500, 2000} and fixed
other parameters to study the impact of the number of realizations, as shown in Figure 4.
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Table 5. The Diebold-Mariano (DM) test results of ensemble models.

Horizon Decomposition Tested Model
ICEEMDAN EEMD

LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW

1

ICEEMDAN

RR −7.6331
(0.0000)

−0.6142
(0.5392)

0.9695
(0.3324)

−7.5172
(0.0000)

−1.9834
(0.0475)

−3.5554
(0.0004)

−12.8611
(0.0000)

−5.5386
(0.0000)

−21.3654
(0.0000)

−22.2857
(0.0000)

−21.2054
(0.0000)

−21.2416
(0.0000)

−21.3583
(0.0000)

−20.9534
(0.0000)

−22.0337
(0.0000)

−16.7261
(0.0000)

−4.0125
(0.0001)

LinRR 8.0753
(0.0000)

7.8183
(0.0000)

1.8874
(0.0593)

6.9073
(0.0000)

6.8284
(0.0000)

0.9153
(0.3602)

−5.4460
(0.0000)

−17.1007
(0.0000)

−19.9938
(0.0000)

−17.0228
(0.0000)

−17.1490
(0.0000)

−18.1073
(0.0000)

−17.0138
(0.0000)

−18.4270
(0.0000)

−16.4052
(0.0000)

−3.9545
(0.0001)

PolyRR 2.1682
(0.0303)

−7.7155
(0.0000)

−1.7738
(0.0763)

−3.6728
(0.0002)

−12.0394
(0.0000)

−5.5375
(0.0000)

−21.3854
(0.0000)

−22.4548
(0.0000)

−21.3348
(0.0000)

−21.3959
(0.0000)

−21.4127
(0.0000)

−21.0541
(0.0000)

−22.1490
(0.0000)

−16.7245
(0.0000)

−4.0116
(0.0001)

SigRR −8.3841
(0.0000)

−2.7328
(0.0063)

−5.2931
(0.0000)

−12.1439
(0.0000)

−5.5416
(0.0000)

−21.3483
(0.0000)

−22.3840
(0.0000)

−21.2987
(0.0000)

−21.3724
(0.0000)

−21.5018
(0.0000)

−21.0097
(0.0000)

−22.1334
(0.0000)

−16.7370
(0.0000)

−4.0142
(0.0001)

RbfRR 6.1499
(0.0000)

6.7789
(0.0000)

−0.8816
(0.3781)

−5.4706
(0.0000)

−18.2902
(0.0000)

−20.4238
(0.0000)

−18.2305
(0.0000)

−18.4002
(0.0000)

−20.0042
(0.0000)

−18.1252
(0.0000)

−19.5005
(0.0000)

−16.5070
(0.0000)

−3.9687
(0.0001)

MKRR −0.7986
(0.4246)

−11.7816
(0.0000)

−5.5313
(0.0000)

−21.1164
(0.0000)

−22.0611
(0.0000)

−21.0784
(0.0000)

−21.0921
(0.0000)

−20.9704
(0.0000)

−20.7933
(0.0000)

−21.8257
(0.0000)

−16.7113
(0.0000)

−4.0080
(0.0001)

LSSVR −10.4989
(0.0000)

−5.5281
(0.0000)

−20.9187
(0.0000)

−22.0006
(0.0000)

−20.8537
(0.0000)

−20.9486
(0.0000)

−21.1186
(0.0000)

−20.6389
(0.0000)

−21.8183
(0.0000)

−16.6977
(0.0000)

−4.0058
(0.0001)

BPNN −5.4562
(0.0000)

−17.9970
(0.0000)

−19.3554
(0.0000)

−17.9211
(0.0000)

−17.9391
(0.0000)

−18.2960
(0.0000)

−17.8094
(0.0000)

−19.1642
(0.0000)

−16.4971
(0.0000)

−3.9608
(0.0001)

RW 4.8947
(0.0000)

4.7746
(0.0000)

4.8956
(0.0000)

4.8959
(0.0000)

4.7796
(0.0000)

4.8761
(0.0000)

4.7762
(0.0000)

0.1120
(0.9109)

−0.4916
(0.6231)

EEMD

RR −5.9878
(0.0000)

0.0981
(0.9218)

0.0921
(0.9266)

−5.8039
(0.0000)

−1.9935
(0.0464)

−7.2864
(0.0000)

−14.8109
(0.0000)

−3.6137
(0.0003)

LinRR 5.8354
(0.0000)

6.0493
(0.0000)

0.3207
(0.7485)

4.6149
(0.0000)

0.2467
(0.8052)

−14.3910
(0.0000)

−3.5387
(0.0004)

PolyRR 0.0195
(0.9844)

−5.7741
(0.0000)

−2.2603
(0.0239)

−7.7598
(0.0000)

−14.8346
(0.0000)

−3.6141
(0.0003)

SigRR −5.8048
(0.0000)

−2.4071
(0.0162)

−8.0538
(0.0000)

−14.8512
(0.0000)

−3.6144
(0.0003)

RbfRR 4.6221
(0.0000)

−0.1080
(0.9140)

−14.4850
(0.0000)

−3.5431
(0.0004)

MKRR −7.2584
(0.0000)

−14.8197
(0.0000)

−3.6027
(0.0003)

LSSVR −14.5725
(0.0000)

−3.5415
(0.0004)

BPNN −0.6384
(0.5233)
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Table 5. Cont.

Horizon Decomposition Tested Model
ICEEMDAN EEMD

LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW

3

ICEEMDAN

RR −9.9325
(0.0000)

−1.4417
(0.1496)

−3.7347
(0.0002)

−9.4380
(0.0000)

−2.4333
(0.0151)

−4.2254
(0.0000)

−13.4240
(0.0000)

−8.2617
(0.0000)

−12.9322
(0.0000)

−15.5357
(0.0000)

−13.0108
(0.0000)

−12.8337
(0.0000)

−14.9738
(0.0000)

−13.9333
(0.0000)

−16.8289
(0.0000)

−14.1737
(0.0000)

−8.1352
(0.0000)

LinRR 10.0119
(0.0000)

9.7840
(0.0000)

1.8443
(0.0653)

9.5078
(0.0000)

9.0895
(0.0000)

1.0852
(0.2780)

−8.0440
(0.0000)

−2.6337
(0.0085)

−12.5877
(0.0000)

−2.7454
(0.0061)

−2.6451
(0.0082)

−8.2937
(0.0000)

−4.0327
(0.0001)

−10.8639
(0.0000)

−13.0047
(0.0000)

−7.9386
(0.0000)

PolyRR −4.4570
(0.0000)

−9.4540
(0.0000)

−1.1594
(0.2465)

−3.0217
(0.0026)

−13.1060
(0.0000)

−8.2580
(0.0000)

−12.5752
(0.0000)

−15.5953
(0.0000)

−12.7567
(0.0000)

−12.6621
(0.0000)

−14.8334
(0.0000)

−13.6041
(0.0000)

−16.7324
(0.0000)

−14.1551
(0.0000)

−8.1320
(0.0000)

SigRR −9.3379
(0.0000)

1.9688
(0.0491)

0.5195
(0.6035)

−10.9649
(0.0000)

−8.2399
(0.0000)

−11.3756
(0.0000)

−15.2838
(0.0000)

−11.5825
(0.0000)

−11.6158
(0.0000)

−14.3842
(0.0000)

−12.4692
(0.0000)

−16.2315
(0.0000)

−14.0525
(0.0000)

−8.1157
(0.0000)

RbfRR 8.7712
(0.0000)

8.8140
(0.0000)

−0.1757
(0.8605)

−8.0736
(0.0000)

−3.7902
(0.0002)

−11.6173
(0.0000)

−3.9565
(0.0001)

−3.9195
(0.0001)

−11.1280
(0.0000)

−5.2578
(0.0000)

−11.7123
(0.0000)

−13.2845
(0.0000)

−7.9644
(0.0000)

MKRR −1.6406
(0.1011)

−12.7449
(0.0000)

−8.2505
(0.0000)

−12.6415
(0.0000)

−15.4153
(0.0000)

−12.7391
(0.0000)

−12.5443
(0.0000)

−14.6474
(0.0000)

−13.6362
(0.0000)

−16.5479
(0.0000)

−14.1136
(0.0000)

−8.1265
(0.0000)

LSSVR −13.4650
(0.0000)

−8.2427
(0.0000)

−11.9772
(0.0000)

−14.9897
(0.0000)

−12.1661
(0.0000)

−12.0859
(0.0000)

−14.6889
(0.0000)

−13.4358
(0.0000)

−16.4904
(0.0000)

−14.0859
(0.0000)

−8.1157
(0.0000)

BPNN −8.0500
(0.0000)

−3.9068
(0.0001)

−9.2782
(0.0000)

−4.1170
(0.0000)

−3.9602
(0.0001)

−8.0803
(0.0000)

−5.6840
(0.0000)

−11.3597
(0.0000)

−13.3170
(0.0000)

−7.9423
(0.0000)

RW 7.9299
(0.0000)

7.7031
(0.0000)

7.9259
(0.0000)

7.9322
(0.0000)

7.7496
(0.0000)

7.8725
(0.0000)

7.4621
(0.0000)

5.0472
(0.0000)

−0.5382
(0.5905)

EEMD

RR −8.0803
(0.0000)

−0.6800
(0.4966)

0.2481
(0.8041)

−7.6514
(0.0000)

−4.8069
(0.0000)

−12.0032
(0.0000)

−12.7901
(0.0000)

−7.8385
(0.0000)

LinRR 7.9869
(0.0000)

8.2376
(0.0000)

2.2903
(0.0221)

5.9929
(0.0000)

−3.7962
(0.0002)

−11.4198
(0.0000)

−7.6264
(0.0000)

PolyRR 1.1239
(0.2612)

−7.6591
(0.0000)

−4.7817
(0.0000)

−11.8134
(0.0000)

−12.8335
(0.0000)

−7.8359
(0.0000)

SigRR −8.2382
(0.0000)

−4.8751
(0.0000)

−12.0577
(0.0000)

−12.8268
(0.0000)

−7.8411
(0.0000)

RbfRR 5.3608
(0.0000)

−7.2419
(0.0000)

−11.9950
(0.0000)

−7.6714
(0.0000)

MKRR −10.3296
(0.0000)

−12.6336
(0.0000)

−7.7891
(0.0000)

LSSVR −10.7944
(0.0000)

−7.4217
(0.0000)

BPNN −5.2626
(0.0000)
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Table 5. Cont.

Horizon Decomposition Tested Model
ICEEMDAN EEMD

LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW

6

ICEEMDAN

RR −13.9660
(0.0000)

−2.1767
(0.0296)

−6.0937
(0.0000)

−12.9968
(0.0000)

−2.4287
(0.0153)

−4.9536
(0.0000)

−22.6250
(0.0000)

−14.1579
(0.0000)

−12.3204
(0.0000)

−15.3905
(0.0000)

−12.0345
(0.0000)

−12.7060
(0.0000)

−15.1929
(0.0000)

−12.4624
(0.0000)

−13.2884
(0.0000)

−19.3882
(0.0000)

−17.6734
(0.0000)

LinRR 14.3951
(0.0000)

14.3875
(0.0000)

4.9217
(0.0000)

13.1664
(0.0000)

13.1583
(0.0000)

−9.0778
(0.0000)

−13.5116
(0.0000)

7.7778
(0.0000)

−4.3984
(0.0000)

7.4146
(0.0000)

6.9775
(0.0000)

−3.0020
(0.0027)

6.0234
(0.0000)

5.4957
(0.0000)

−13.2753
(0.0000)

−16.9797
(0.0000)

PolyRR −7.2407
(0.0000)

−13.3457
(0.0000)

−0.7001
(0.4840)

−2.9388
(0.0033)

−22.1291
(0.0000)

−14.1522
(0.0000)

−11.6702
(0.0000)

−15.6854
(0.0000)

−11.7628
(0.0000)

−12.7550
(0.0000)

−15.3002
(0.0000)

−11.7487
(0.0000)

−13.1322
(0.0000)

−19.3071
(0.0000)

−17.6775
(0.0000)

SigRR −12.8356
(0.0000)

4.1760
(0.0000)

3.6412
(0.0003)

−20.1380
(0.0000)

−14.0771
(0.0000)

−7.3939
(0.0000)

−14.8116
(0.0000)

−8.1197
(0.0000)

−9.6893
(0.0000)

−14.2892
(0.0000)

−7.9142
(0.0000)

−10.1005
(0.0000)

−18.4915
(0.0000)

−17.5994
(0.0000)

RbfRR 11.8646
(0.0000)

12.5228
(0.0000)

−12.1621
(0.0000)

−13.6712
(0.0000)

5.1460
(0.0000)

−6.9781
(0.0000)

4.6379
(0.0000)

3.9114
(0.0001)

−9.3717
(0.0000)

3.4358
(0.0006)

2.4569
(0.0141)

−14.7236
(0.0000)

−17.1397
(0.0000)

MKRR −1.5720
(0.1161)

−22.1601
(0.0000)

−14.1246
(0.0000)

−10.9045
(0.0000)

−14.7753
(0.0000)

−10.8633
(0.0000)

−11.5082
(0.0000)

−14.4164
(0.0000)

−11.3219
(0.0000)

−12.0115
(0.0000)

−19.2344
(0.0000)

−17.6322
(0.0000)

LSSVR −22.0285
(0.0000)

−14.1061
(0.0000)

−10.1588
(0.0000)

−14.5608
(0.0000)

−10.2971
(0.0000)

−11.2871
(0.0000)

−14.9082
(0.0000)

−10.9314
(0.0000)

−12.6866
(0.0000)

−18.7911
(0.0000)

−17.6113
(0.0000)

BPNN −12.2861
(0.0000)

16.3390
(0.0000)

6.6381
(0.0000)

16.0747
(0.0000)

15.2332
(0.0000)

6.7072
(0.0000)

16.0034
(0.0000)

14.0536
(0.0000)

−7.3185
(0.0000)

−15.2268
(0.0000)

RW 13.8085
(0.0000)

13.2857
(0.0000)

13.7910
(0.0000)

13.7611
(0.0000)

13.2775
(0.0000)

13.7266
(0.0000)

13.6873
(0.0000)

11.0380
(0.0000)

0.7513
(0.4526)

EEMD

RR −11.9133
(0.0000)

−2.8917
(0.0039)

−5.0101
(0.0000)

−11.8544
(0.0000)

−3.3420
(0.0009)

−7.1119
(0.0000)

−17.4323
(0.0000)

−17.2382
(0.0000)

LinRR 11.6342
(0.0000)

11.3981
(0.0000)

0.2374
(0.8124)

9.5491
(0.0000)

9.4853
(0.0000)

−12.3880
(0.0000)

−16.6841
(0.0000)

PolyRR −4.2271
(0.0000)

−11.7039
(0.0000)

−1.5927
(0.1114)

−5.6236
(0.0000)

−17.1205
(0.0000)

−17.2187
(0.0000)

SigRR −11.6910
(0.0000)

0.4412
(0.6591)

−3.2085
(0.0014)

−16.7302
(0.0000)

−17.1929
(0.0000)

RbfRR 9.9300
(0.0000)

11.0223
(0.0000)

−12.7276
(0.0000)

−16.6240
(0.0000)

MKRR −2.6530
(0.0081)

−16.3767
(0.0000)

−17.1081
(0.0000)

LSSVR −16.6247
(0.0000)

−17.0843
(0.0000)

BPNN −13.4903
(0.0000)
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Figure 3. The impact of the white noise strength in the ICEEMDAN by RR and SigRR.
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Figure 4. The impact of the number of the realizations in the ICEEMDAN by RR and SigRR.

It can be seen from Figure 3 that the results in terms of RMSE, MAPE and Dstat are gradually
improved when nsd increases from 0.01 to 0.08. In contrast, after that, all the evaluation indicators are
getting worse and worse with the increase of noise strength when nsd is greater than 0.1. Both RR and
SigRR have similar trends, and one of the two models is alternatively better than the other. The results
show that the white noise strength has great impact on the forecasting performance and an ideal white
noise strength is between 0.05 and 0.1.

When we look at Figure 4, we can find that when the number of the realization is 20, the results
of RMSE, MAPE and Dstat are all rather bad. When the number of realization increases from 20 to
500, all the results become better and better. Specifically, the Dstat reaches the best values for both
RR and SigRR when the number of realization equals 500, while the results of RMSE and MAPE are
very close to the best values. After that, the values of the three indicators are very stable when the
number of realization varies from 500 to 2000. The results indicate that 500 is very ideal for the number
of realizations.
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4.5.2. The Impact of the Lag Orders

Lag orders refer to the length of recent data points treated as explanatory variables to build time
series models. We further investigate the impact of variable lag orders from 1 to 20 with horizon 1,
and the results are shown in Figure 5. When the lag order is equal to 1, the results of the evaluation
indicators are the worst. However, when it varies from 1 to 6, the corresponding results are all
becoming better and better. After that, the results have remained almost unchanged for the lag order
from 6 to 20. Therefore, the best lag order is 6 because it can provide satisfactory results with less input,
which confirms the previous study [12,31].
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Figure 5. The impact of the lag orders by RR and SigRR.

4.5.3. The Result of Each Individual Component

Each decomposed component by the ICEEMDAN shows either high-frequency or low-frequency
characteristics. In general, it is harder to forecasting a high-frequency component than a low-frequency
one. We plot the predicted values and raw data of each component and the raw crude oil prices by RR
and sigRR in Figures 6 and 7, respectively.
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Figure 6. The individual and final forecasting results by RR.
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Figure 7. The individual and final forecasting results by SigRR.

It can be seen from these figures that both RR and SigRR are able to forecast the high-frequency
components (IMF6-IMF11 as well as the residue) very well, and the predicted errors mainly come
from the high-frequency components (IMF1-IMF5), especially from IMF1. Since the volatility of the
hight-frequency components is relatively narrow, the forecasting errors from such components might
be restricted. This is one of the possible reasons why the framework of “decomposition and ensemble”
is effective for time series forecasting.

5. Summary and Conclusions

Forecasting daily crude oil prices is an important but challenging task. To improve the forecasting
performance, a series of approaches using ICEEMDAN, DE and RR, termed as ICEEMDAN-DE-RR,
are proposed in this paper. The proposed approaches firstly use ICEEMDAN to decompose the complex
original crude oil prices into several components, and then each component is forecasted individually
by DE-based RR predictors. In the end, the sum of the predicted results of all the components is taken
as the final result. The extensive experiments demonstrated the proposed approaches can outperform
some state-of-the-art methods.

Especially from the experimental results, we have the following interesting findings: (1) It is
a very difficult task to accurately forecast daily crude oil prices with the raw price series because
of its nonlinearity and nonstationarity; (2) AI-models usually outperform statistical methods when
forecasting crude oil prices; (3) RR-based predictors with DE optimizing the parameters have good
forecasting ability; (4) The framework of “decomposition and ensemble” can significantly improve
the performance of forecasting daily crude oil prices; ICEEMDAN is advantageous over EEMD for
the forecasting tasks; (5) The proposed ICEEMDAN-DE-RR approach outperforms the competitive
methods in terms of several evaluation metrics, indicating that it is promising for daily crude oil price
forecasting. (6) Regarding RR-based predictors, RR and SigRR with DE optimizing parameters can
achieve very promising forecasting results in terms of several criteria.

In the future, we will apply the proposed approaches to forecasting other types of energy time
series, such as natural gas prices, wind speed, wind power and electricity load.
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