
energies

Article

Atomic Scheduling of Appliance Energy Consumption
in Residential Smart Grids

Kyeong Soo Kim 1,2 , Sanghyuk Lee 3,*, Tiew On Ting 1 and Xin-She Yang 4

1 Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
Kyeongsoo.Kim@xjtlu.edu.cn (K.S.K.); Toting@xjtlu.edu.cn (T.O.T.)

2 Centre for Smart Grid and Information Convergence, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
3 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
4 School of Science and Technology, Middlesex University, London NW4 4BT, UK; x.yang@mdx.ac.uk
* Correspondence: leesanghyuk@tdtu.edu.vn; Tel.: +86-512-8816-1415

Received: 1 July 2019; Accepted: 19 September 2019; Published: 25 September 2019
����������
�������

Abstract: Most of the current formulations of the optimal scheduling of appliance energy consumption
use the vectors of appliances’ scheduled energy consumption over equally divided time slots of
a day as optimization variables, which does not take into account the atomicity of certain appliances’
operations, i.e., the non-interruptibility of appliances’ operations and the non-throttleability of the energy
consumption patterns specific to their operations. In this paper, we provide a new formulation of atomic
scheduling of energy consumption based on the optimal routing framework; the flow configurations of
users over multiple paths between the common source and destination nodes of a ring network are used as
optimization variables, which indicate the starting times of scheduled energy consumption, and optimal
scheduling problems are now formulated in terms of the user flow configurations. Because the atomic
optimal scheduling results in a Boolean-convex problem for a convex objective function, we propose
a successive convex relaxation technique for efficient calculation of an approximate solution, where we
iteratively drop fractional-valued elements and apply convex relaxation to the resulting problem until we
find a feasible suboptimal solution. Numerical results for the cost and peak-to-average ratio minimization
problems demonstrate that the successive convex relaxation technique can provide solutions close to and
often identical to global optimal solutions.

Keywords: atomic scheduling; convex relaxation; demand-side management; energy consumption
scheduling; optimal routing; smart grid

1. Introduction

We study the problem of scheduling electrical appliance energy consumption in residential smart grids.
Our goal in revisiting this well-known problem of energy consumption scheduling (e.g., References [1–13])
is to establish a new formulation of optimal scheduling problems where we take into account the atomicity
of operations by household appliances and to provide efficient solution techniques for the formulated
optimal scheduling problems. By atomicity, we mean the non-interruptibility of appliances’ operations and
the non-throttleability of the energy consumption patterns specific to their operations. As we will show
later, the atomicity—the load characteristic newly introduced in this work—generalizes the characteristics
of non-interruptibility and non-throttleability by allowing a prescribed usage pattern, which can vary over
time from the beginning to the end of its operation with possible gaps in between.
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Note that the scheduling of electrical appliance energy consumption is a key to the autonomous
demand-side management (DSM) for residential smart grids in optimizing energy production and
consumption; the scheduling is based on smart meters installed at users’ premises and the two-way
digital communications between a utility company and users through the smart meters, and the typical
goals of DSM include consumption reducing and shifting, which lead into lower peak-to-average ratio
(PAR) and energy cost [14].

Since the energy consumption scheduling was formulated as an optimization problem using energy
consumption scheduling vectors as optimization variables representing appliances’ scheduled hourly
energy consumption over a day [2], there have been published a number of papers on the subjects
of appliance energy consumption scheduling and related billing/pricing mechanisms based on this
formulation. For instance, the issue of optimality and fairness in autonomous DSM is studied in relation
with billing mechanisms in References [7], while the same issue is studied but in the context of user
privacy in Reference [10]. The cost and PAR minimization problems, which are separately formulated
in Reference [2], are integrated into a PAR-constrained cost minimization problem in Reference [12].
This integration is also further extended to take into account consumers’ preference on operation delay and
power gap using multiple objective functions. In Reference [13], instead of typical concave n-person games,
the Rubinstein–Stahl bargaining game model is used to capture the interaction between the supplier and
the consumers through a retail price vector in lowering PAR to a certain desired value.

In most existing works on the energy consumption scheduling for autonomous DSM in smart grid,
however, no serious attention has been given to the microstructure of scheduled energy consumption
over time slots; their major focus is on the optimal value of an objective function that is only based
on the aggregate load from the scheduled energy consumption. Few exceptions in this regard include
the works on the integration of consumers’ preference [12] and the use of load consumption curves in
the objective function [4] and scheduling of noninterruptible tasks with price uncertainty [8] and load
uncertainty [3]. None of them, however, can guarantee both the non-interruptibility of the operations and
the non-throttleability of the energy consumption patterns, the latter of which are generally not constant
over time and specific to appliances’ operations [15–17].

Below are some scenarios illustrating the importance of the atomicity of appliance operations.

• When a user washes clothes, the washing machine should be continuously on for a certain period
depending on the amount of laundry, e.g., for two hours, during which the operation of the clothes
washer cannot be interrupted and the supplied power cannot be reduced arbitrarily. As the washing
task can be activated anytime within a specified period, e.g., from 9 a.m. to 3 p.m. when the user is
out to work, the major goal of autonomous DSM is to determine the optimal two-hour time slot to
complete the task when the energy price is lowest during the specified period.

• For heavier-duty tasks like charging the battery of a plug-in hybrid electric vehicle (PHEV), again,
the continuity of the operation is important, e.g., four hours of uninterruptible charging to maintain
the lifetime of PHEV’s battery.

• Appliances such as a rice cooker can significantly contribute to the overall cost saving if handled
properly. Some rice cookers’ function may take more than one hour for completion, e.g., the slow
cooking function for delicate soup, whereby the cooking process can be scheduled within any
time-shot during the day.

Considering that most of the operations subject to DSM are either atomic as such (e.g., laundry
cleaning by a clothes washer) or consist of atomic suboperations (e.g., house heating by a heater operating
in the morning and in the evening) [11], we provide a new formulation of the optimization problem for
atomic scheduling of appliance energy consumption and efficient solution techniques for the resulting
problems in this paper. Atomic scheduling has been mostly discussed in the context of concurrent task
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scheduling on a multiprocessor/core system on a chip (SOC) [18] or transaction processing [19]. To the
best of our knowledge, our work is the first attempt to formulate atomic scheduling of appliance energy
consumption in the autonomous DSM for residential smart grid, where both the non-interruptibility
of appliances’ operations and the non-throttleability of the energy consumption patterns are taken into
account and guaranteed.

The rest of the paper is organized as follows: In Section 2, we review and discuss the issues of
the current formulation of appliance energy consumption scheduling based on energy consumption
scheduling vectors defined over time slots. In Section 3, we describe a new formulation of the appliance
energy consumption scheduling based on the optimal routing framework, which guarantees the atomicity
of appliance operations, and a successive convex relaxation technique for the efficient solution of the
Boolean-convex problem resulting from the new formulation for a given convex objective function.
In Section 4, we demonstrate the performance of successive convex relaxation techniques through
numerical results for the cost and PAR minimization problems. Section 5 concludes our work and
discusses topics for further study.

2. Review of Current Formulation of Appliance Energy Consumption Scheduling

We first review the current formulation of the appliance energy consumption scheduling problem by
formally describing it. The formulation described here is largely based on Reference [2] but with some
modifications and extensions for clarity and better handling of scheduling intervals over a day boundary.
Many notations and definitions in this section are applicable to the formulation of atomic scheduling
problems in Section 3 as well.

Let N, {1, . . ., N} denote a set of users in a residential smart grid whose appliances share a common
energy source and are subject to autonomous DSM. Without loss of generality and for the ease of
presentation, we assume that each user has only one appliance throughout the paper as in Reference [10].
(We use the term “user” and “appliance” interchangeably). In this case, a daily energy consumption
scheduling vector of user n is defined as

xn ,
[

x0
n, . . . , xh

n, . . . , xH−1
n

]
(1)

where a scalar element xh
n denotes the energy consumption scheduled for a time slot h∈H, {0, . . ., H−1}.

(Time slot numbering in this paper starts from 0, which makes it easier to handle energy consumption
scheduling wrapping around the day boundary (i.e., from 11 p.m. to 6 a.m.) using modulo operation.
See Equations (2) and (3) for details). A feasible energy consumption scheduling set for user n is given by

Xn=

{
xn

∣∣∣∣∣ ∑
h∈Hn

xh
n=En,

γmin
n ≤xh

n≤γmax
n , ∀h∈Hn, xh

n=0, ∀h∈H\Hn

} (2)

where γmin
n and γmax

n are the minimum and the maximum energy levels for a time slot, En is the total
daily energy consumption of user n’s appliance,H\Hn is the relative complement ofHn inH (i.e., the set
difference ofH andHn), andHn is a scheduling interval defined as follows:

Hn ,
{

h
∣∣h = i mod H, ∀i∈ [αn, βn]

}
(3)

with αn∈[0, H−1], βn∈[1, 2H−2], and 1≤βn−αn≤H−1.
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With these definitions of scheduling vectors and feasible sets, the optimal scheduling is formulated as
an optimization problem for a given objective function (e.g., total energy cost or PAR) as follows:

minimize
xn∈Xn , ∀n∈N

ψ(x) (4)

where
x , [x1, . . . , xN ] . (5)

As shown in Reference [2], it is better to develop a DSM approach that optimizes the properties of the
aggregate load of the users rather than individual user’s consumption. In fact, the optimal scheduling
problems are formulated in terms of the total load across all users at each time slot h in Reference [2], i.e.,

Lh (x) , ∑
n∈N

xh
n. (6)

Therefore, Equation (4) can be expressed as

minimize
xn∈Xn , ∀n∈N

φ (L(x)) (7)

where
L(x) , [L0 (x) , . . . , LH−1 (x)] . (8)

Note that the objective function becomes

φ (L(x)) = ∑
h∈H

Ch (Lh(x)) (9)

for the energy cost minimization problem, where Ch(·) is a cost function indicating the cost of generating
or distributing electricity energy by the energy source at a time slot h and

φ (L(x)) =
H max

h∈H
Lh(x)

∑
n∈N

En
(10)

for the PAR minimization problem.
A major issue with the formulation of optimal scheduling problems based on the energy consumption

scheduling vectors in Equation (1) is that it cannot guarantee the atomicity of appliance operations, which is
illustrated in Figure 1a. When a load from other appliances falls in the middle of the scheduling interval,
especially that of non-shiftable appliances, the scheduled appliance energy consumption spreads over
non-contiguous time slots, resulting in several gaps. Relatedly, the scheduled energy consumption may
not provide enough power for appliances to carry out required operations because, during the scheduling,
the energy levels over time slots are determined to achieve the optimal solution for the given objective
function but not to meet the actual energy consumption requirements of the appliances for the operations.
The atomic scheduling that will be described in Section 3, on the other hand, assigns contiguous time
slots with a predefined pattern of operating energy levels (i.e., γ

op
n (·)) as shown in Figure 1b, even at the

expense of increased penalty in optimization.



Energies 2019, 12, 3666 5 of 18

αn βn

αn βn

Gap Gap

γmin
n

γmax
n

(a)

γop
n (·)

γmin
n

γmax
n

(b)

Figure 1. Examples of (a) nonatomic and (b) atomic scheduling of appliance energy consumption,
where γmin

n , γmax
n , and γ

op
n (·) are the minimum, the maximum, and the operating energy levels of

an appliance for a time slot.

3. Atomic Scheduling of Appliance Energy Consumption

We assume that all appliance operations are atomic (i.e., no gaps in energy consumption during the
operations) and that the operation of the appliance of user n requires δn contiguous time slots belonging to
a scheduling interval ofHn with a predefined pattern of operating energy levels γ

op
n (h)—which become

power levels when the time slot duration is an hour (i.e., H=24)—such that γ
op
n (h)>γmin

n ∀h∈[0, δn−1] and
γ

op
n (h)=γmin

n otherwise. Clearly, βn≥αn+δn−1. Without loss of generality, we set γmin
n to 0; the resulting

daily energy consumption En, therefore, is given by

En =
δn−1

∑
h=0

γ
op
n (h) . (11)

Figure 2 shows an example of operating energy levels. Note that, if an appliance requires multiple,
separate scheduling intervals (e.g., one for 6 a.m.–11 a.m. and the other for 1 p.m.–5 p.m.), it can be
modeled as multiple (virtual) appliances, each of them having only one contiguous scheduling interval
(i.e., appliance 1 with 6 a.m.–11 a.m. and appliance 2 with 1 p.m.–5 p.m.).

0 1 2 3 4 5 · · · h

γopn (h)

Figure 2. An example of a predefined pattern of operating energy levels for δn = 4.

A simple and straightforward formulation of atomic scheduling is using the starting times of
operations as optimization variables, i.e.,

s , [s1, . . . , sN ] (12)



Energies 2019, 12, 3666 6 of 18

where a feasible set of starting times for user n is given by

Sn ,
{

sn
∣∣sn = i mod H, ∀i∈[αn, βn−δn+1]

}
(13)

The total load across all users at each time slot h, therefore, can be expressed in terms of starting times
sn∈Sn, ∀n∈N , as follows:

Lh(s) , ∑
n∈N

γ
op
n ((h− sn) mod H) IRn(sn)(h) (14)

whereRn(sn) is a range of user n’s appliance operation for sn defined by

Rn(sn) ,
{

h
∣∣h = i mod H, ∀i∈ [sn, sn + δn − 1]

}
(15)

and IRn(sn)(h) is an indicator function; note that, for a set A, the indicator function is defined as

IA(a) ,

{
1 if a ∈ A,
0 otherwise.

(16)

Because the feasible set is now discrete, we have to evaluate the objective function for all the elements
in the feasible set, which makes the optimization problem impractical for large N and H. For instance,
when N = 100 and H = 24 with the worst case scenario of αn = 0, βn = 23, and δn = 1 for all n∈N ,
global optimization by direct enumeration would require evaluation of the objective function 24100 times,
which is on the order of 10138 times. To address the scalability issue, therefore, we provide an alternative
formulation of atomic scheduling based on the optimal routing framework, which is amenable to convex
relaxation and enables systematic analysis of suboptimal solutions with upper and lower bounds.

3.1. Optimal Routing-Based Formulation

We provide a new formulation of the optimal scheduling of appliance energy consumption based on
the framework of optimal routing in networking [20]; this new formulation takes into account the atomicity
of appliance operations in scheduling without taking any additional objective functions.

As for optimization variables, instead of the energy consumption scheduling vector xn in (1), we use
flow configurations of users over multiple paths between the common source and destination nodes of the
network shown in Figure 3a (this is for the case of hourly time slots, i.e., H = 24), which are defined
as follows:

The users belonging to the set N share a set P of paths connecting the source node S and the
destination node D, where the path set P is defined as

P ,
{

pi,j
∣∣∣i = 0, . . . , H−1, j = 1, . . . , H−1

}
(17)

where i and j are the starting node number on the ring of a path and the number of hops, respectively;
for instance, as illustrated in Figure 3a, p9,3 is a three-hop path consisting of links l9,10, l10,11, and l11,12 on
the ring. Note that we do not take into account the radial links connecting the source and the destination
nodes to and from the intermediate nodes on the ring in calculating hop counts and path/link costs.
(This means that their link costs are zero). We now define f s

n as a flow that user n sends on path ps,δn ,
which represents an atomic operation of user n’s appliance with starting time slot s and duration of δn slots.
Figure 3b shows the mapping of all possible atomic appliance operations of two users (i.e., α1 = 0, β1 = 5,
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δ1 = 2 for user 1 and α2 = 9, β2 = 14, δ2 = 3 for user 2) into corresponding groups of flows (i.e., f 0
1 , . . ., f 4

1 for
user 1 and f 9

2 , . . ., f 12
2 for user 2).

S

D

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

l9,10
l10,11

l11,12

p9,3

(a)

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

f0
1

f1
1

f2
1

f3
1

f4
1

f9
2

f10
2

f11
2f12

2

S

D

(b)

Figure 3. Atomic energy consumption scheduling based on optimal routing: (a) A network connecting
the source (S) and the destination (D) through 24 intermediate nodes with a sample path (p9,3) and its
constituent links (l9,10, l10,11, and l11,12) and (b) mapping of all possible atomic operations of two appliances
into two groups of flows ( f 0

1 , . . . , f 4
1 and f 9

2 , . . . , f 12
2 ) over multiple paths on the network.

We use the flow configurations of all users as the optimization variables, which are defined as follows:

f , [ f 1, . . . , f n, . . . , f N ] (18)

where
f n ,

[
f 0
n , . . . , f H−1

n

]
. (19)
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A feasible atomic energy consumption scheduling set for user n is given by

Fn=

{
fn

∣∣∣∣∣ ∑
s∈Sn

f s
n=1,

f s
n∈ {0, 1} , ∀s∈Sn, f s

n=0, ∀s∈H\Sn

} (20)

where Sn is the feasible set of starting times for user n that is already defined in Equation (13) but in terms
of s instead of sn. Note that the constraint of ∑s∈Sn f s

n=1 in Equation (20) ensures that an optimal user
flow configuration vector f n has only one nonzero element representing the starting time of a scheduled
atomic operation.

With the user flow configurations, the total load across all users at each time slot h∈H can be calculated
as the sum of all flows passing over the link lh,((h+1) mod H), i.e.,

Lh(f) , ∑
n∈N

∑
s∈Sn

{
γ

op
n ((h−s) mod H) f s

n IRn(s)(h)
}

. (21)

Now that we have an expression of the total load at each time slot in terms of flows representing
atomic operations of appliances, we can formulate the problem of optimal scheduling of appliance energy
consumption for a given objective function of φ (L (f)) with L (f), [L0 (f) , . . . , LH−1 (f)] as follows:

minimize
fn∈Fn ,∀n∈N

φ (L (f)) . (22)

For a convex objective function, this problem becomes a Boolean-convex problem, since the sum
constraint in Equation (20) is linear and the optimization variable f s

n is restricted to take only 0 or 1 as in
Reference [21]. Note that this problem still cannot be solved efficiently but, unlike the problem formulation
directly based on starting times in Equation (12), is amenable to the successive convex relaxation technique
that we describe in Section 3.2.

3.2. Successive Convex Relaxation

We can obtain the convex relaxation of the atomic optimal scheduling problem in Equation (22) by
replacing the nonconvex constraints f s

n∈ {0, 1} in Equation (20) with the convex constraints 0≤ f s
n≤1

as follows:
minimize
fn∈F̂n ,∀n∈N

φ (L (f)) (23)

where

F̂n =

{
fn

∣∣∣∣∣ ∑
s∈Sn

f s
n=1,

0 ≤ f s
n ≤ 1, ∀s∈Sn, f s

n=0, ∀s∈H\Sn

}
.

(24)

For a convex objective function, this problem becomes convex because the new feasibility set F̂n

is now convex where all the equality and inequality constraints on f are linear. This convex-relaxed
problem in Equation (23), therefore, can be solved efficiently, for instance, using the well-known interior-
point method [22].
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Let f̂ denote a solution to the relaxed problem in Equation (23). The relaxed atomic scheduling
problem in Equation (23) is not equivalent to the original problem in Equation (22) because the elements
of the optimal solution f̂ can take fractional values (e.g., 0.75). The optimal objective value of the relaxed
atomic scheduling problem in Equation (23), however, provides a lower bound on the optimal objective
value of the original problem in Equation (22); the optimal value of the relaxed problem is less than or
equal to that of the original problem because the feasible set for the relaxed problem contains the feasible
set for the original problem.

We can also use the solution to the relaxed problem in Equation (23) to generate a suboptimal solution.
Note that we cannot simply choose N largest elements of the optimization vector as is done for the optimal
selection of sensor measurements in Reference [21]; since the optimization variable f is a vector of vectors
(i.e., f n), the selection of largest elements should be done per component vector. Also, we found that the
convex relaxation spreads the starting times of appliance energy consumption over the same scheduling
interval when there are several appliances with identical parameter values (i.e., αn, βn, γ

op
n (·), and δn),

which often results in many elements with the same values in the component vectors. If we choose
randomly one element among the same-valued ones to break ties in this case, the performance of resulting
suboptimal solution is not close to the optimal one.

Therefore, here, we present a new technique, called successive convex relaxation, where we iteratively
drop fractional-valued elements and apply convex relaxation to the resulting problem until we find
a feasible solution. This technique is similar to the cutting-plane algorithm in mixed integer linear
programming [23] in that, at each iterative step, new constraints are added to refine the feasible region.
The proposed technique, however, is much simpler in forming new constraints where it does not introduce
any new slack variables and takes into account the structure of the optimization variables. The detailed
procedure is described in Algorithm 1, where we introduce two variables, i.e., θD, the threshold value
for dropping, and ND, the maximum number of fractional-valued elements that can be dropped per
iteration. Note that the overall complexity of the interior-point method to solve the relaxed convex
optimization problem is O

(
(NH)3

)
operations [22], which is needed per iteration and a dominating

factor of the complexity of the proposed successive convex relaxation technique. With these variables,
therefore, we can do a fine control of the number of fractional-valued elements dropped per iteration and
the number of iterations to finish the procedure: A reasonable value of θD (e.g., 0.1) can prevent many
high fractional-valued elements (e.g., ≥0.5) from being dropped unnecessarily per iteration when ND
is set to a rather large number. On the other hand, when a relaxed convex optimization problem gives
a solution with a large number of fractional-valued elements smaller than θD, we can drop them up to
ND. In this way, we can speed up the whole procedure while not sacrificing the quality of the resulting
suboptimal solution.
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Algorithm 1: Successive convex relaxation.

1 D ← ∅ /* initialize the set of elements to drop */
2 while true
3 f̂←Solution of (23) with the equality constraints replaced by “ f s

n = 0, ∀s∈H\Sn ∪ D” in (24)
4 Exclude elements that are the maximum of f̂ n, ∀n ∈ N , arrange in ascending order the remaining

elements of f̂ whose values are less than one, and let i1, i2, . . . denote their indexes
5 f̂i1 ← 0 /* always drop the minimum-valued element */
6 D ← D ∪ i1
7 for j = 2, . . . , ND
8 if f̂ij < θD

9 f̂ij ← 0 /* drop it */

10 D ← D ∪ ij

11 else
12 Break /* return to the while loop */
13 if there is only one nonzero element in f̂ n, ∀n∈N
14 Break /* stop here; solution found */

3.3. Examples

Below we provide specific examples of the optimal atomic scheduling for frequently used objective
functions for DSM in residential smart grids.

3.3.1. Energy Cost Minimization

For energy cost minimization, we can formulate it as the following optimization problem similar
to Reference [2]:

minimize
fn∈Fn ,∀n∈N ∑

h∈H
Ch (Lh(f)) (25)

where Ch(·) is a cost function indicating the cost of generating or distributing electric energy by the energy
source at a time slot h.

Replacing the feasible set Fn with F̂n in Equation (25), we obtain the relaxed energy cost minimization
problem as follows:

minimize
fn∈F̂n ,∀n∈N

∑
h∈H

Ch (Lh(f)) . (26)

3.3.2. Peak-To-Average Ratio Minimization

Considering the total energy consumption ∑n∈N En is fixed, we can formulate the PAR minimization
problem as follows:

minimize
fn∈Fn , ∀n∈N

max
h∈H

(Lh(f)) . (27)

Note that Equation (27) is difficult to directly solve due to the max(·) term in the objective function.
As mentioned in Reference [2], however, this optimization problem can be turned into a Boolean-linear
program, a special case of Boolean-convex optimization, by introducing a new auxiliary variable Γ
as follows:

minimize
Γ,fn∈Fn ,∀n∈N

Γ

subject to Γ ≥ Lh(f), ∀h ∈ H.
(28)
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Again, replacing the feasible set Fn with F̂n in Equation (28), we obtain the relaxed PAR minimization
problem, i.e.,

minimize
Γ,fn∈F̂n ,∀n∈N

Γ

subject to Γ ≥ Lh(f), ∀h ∈ H.
(29)

Like the convex optimization, the linear program can be efficiently solved by either the simplex
method or the interior-point method [22]. Note that, unlike f, the auxiliary variable Γ is not subject to
dropping when applying the successive convex relaxation technique described in Algorithm 1.

4. Numerical Results

We demonstrate the application of the successive convex relaxation technique to the atomic scheduling
of appliance energy consumption through numerical examples for the minimization of total energy cost and
PAR in the aggregated load. In all the examples, a day is divided into 24 time slots (i.e., H = 24), and each
user is to have an appliance randomly selected from the appliances of which the energy consumption
requirements are summarized in Table 1; for simplicity, we assume constant operating energy levels for
all appliances.

Table 1. Appliance energy consumption requirements (adapted from Reference [2]).

Appliance Parameters

α [h] β [h] γop [kWh] δ [h]

Dish Washer 0 23 0.7200 2
Washing Machine (Energy-Star) 0 23 0.4967 3

Washing Machine (Regular) 0 23 0.6467 3
Clothes Dryer 0 23 0.6250 4

Plug-in Hybrid Electric Vehicle
22 1 29 1 3.3000 3(PHEV)

1 Scheduling interval of 10 PM–5 AM.

For the energy cost minimization problem described in Section 3.3.1, we assume a simple quadratic
hourly cost function as in Reference [2], which is given by

Ch (Lh) = ahL2
h [cent] (30)

where

ah =

{
0.2 if h ∈ [0, 7],
0.3 if h ∈ [8, 23].

(31)

The objective function in Equation (26) for this hourly cost function can be expressed as

ψ (f) = φ (L (f)) = ∑
h∈H

ah (Lh (f))
2 . (32)

Then its first and second derivatives, which are needed for convex optimization, are given as follows:
For n∈N and s∈H, the first derivative (i.e., the gradient of ψ(f)) is given by

∂ψ(f)
∂ f s

n
= 2 ∑

h∈H
ahγ

op
n ((h−s) mod H) Lh (f) IRn(s)(h). (33)
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For n1, n2∈N and s1, s2∈H, the second derivative (i.e., the Hessian of ψ(f)), which is positive due to
the convexity of the objective function in Equation (32), is given by

∂2ψ(f)
∂ f s1

n1 ∂ f s2
n2

=2 ∑
h∈H

ahγ
op
n1 ((h−s1) mod H) γ

op
n2 ((h−s2) mod H)

× IRn1 (s1)
(h)IRn2 (s2)

(h).
(34)

To evaluate the performance of the successive convex relaxation technique, we first obtain the lower
bound (LB) using Equations (26) and (29) for the minimization of energy cost and PAR, respectively.
Then, we obtain suboptimal solutions, which are also upper bounds, using Algorithm 1 with the dropping
threshold θD fixed to 0.1 and different values of ND (UB(ND)). We compare the lower and the upper bounds
with the optimal objective value from global optimization (GO) using direct enumeration. The results
are shown in Figure 4, where, due to the huge size of the feasible set for direct enumeration given
in Equation (20), we limit the maximum value of N to 10; for N = 10, the size of feasible set is about
2.3 × 1013, and in case of the energy cost minimization, it took 105.2 h (i.e., more than 4 days) to obtain the
optimal solution from direct enumeration using an OpenMP-based parallelized version of C++ program
on a workstation with two Intel R© Xeon R© processors running at 2.3 GHz providing 20 cores and 40 threads
in total, while it took 23.3 s to obtain the suboptimal solution from the successive convex relaxation with
ND = 1 (requiring 207 iterative steps of convex relaxation) using a MATLAB R© script with OPTI toolbox [24]
on the same machine. Note that due to the random selection of appliances and their different requirements
for energy consumption, the resulting energy cost and PAR are not proportional to N.

The results in Figure 4 show that both lower and upper bounds are very close to the true optimal
values. In case of the upper bounds, they are even identical to the true optimal values. For instance,
the upper bounds on the energy cost for all values of ND when N = 2 and for ND = 1,2,5 when N = 5 are
identical to true optimal values; in case of PAR, the upper bounds for all values of ND when N ≤ 6 are
identical to true optimal values. Considering the huge difference in the computational complexity between
the two approaches, these results are remarkable. Of the results for energy cost in Figure 4a and PAR in
Figure 4b, we found that the integrality gap in convex relaxation [25] is more visible for the lower bounds
on the PAR: Note that, unlike the total cost of which the calculation involves all the appliances, the PAR
depends on less number of appliances in its calculation, i.e., only those that contribute to a specific time
slot in which the load is maximum. The relaxation process, however, makes more appliances contribute to
the PAR calculation by spreading fractional-valued flows over all possible paths.

To further investigate the quality of lower and upper bounds and the impact of different values
of ND on the performance of the successive convex relaxation technique, we obtain the lower and the
upper bounds, their gaps defined as the difference between upper and lower bounds, and the number of
iterations for upper bounds for the value of N from 2 to 50. Figures 5 and 6 show the results for energy
cost minimization and PAR minimization, respectively. For a comparison against suboptimal solutions
based on heuristics, we also include the results from the atomic scheduling based on genetic algorithm
(GA) [26] in Figures 5a and 6a; the options of GA used for the experiments are summarized in Table 2.
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Figure 4. Comparison of upper (UB) and lower bounds (LB) with true values from global optimization
(GO) in atomic energy consumption scheduling for (a) cost minimization and (b) peak-to-average ratio
(PAR) minimization.

From the figures, we observe that the overall trend in the results from the minimization of energy
cost and PAR are similar to each other, except the relatively larger gaps in the PAR minimization that we
already discussed with the results shown in Figure 4. For both minimization problems, the upper bounds
are quite close to the lower bound for a broader range of values of N and the curves for lower bounds with
different values of ND are hardly distinguishable. The gaps shown in Figures 5b and 6b further confirm
that the quality of suboptimal solutions represented by the lower bounds hardly depends on the values
of ND but slightly improves as N increases; even though both upper and lower bound values roughly
increase as N increases, the gaps fluctuate but do not show any trend of increasing.
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The suboptimal solutions from the GA-based atomic scheduling, on the other hand, show large
fluctuations in its relative performance compared to that of the proposed successive convex relative
technique, of which the overall trend is also increasing as N increases. As a heuristic technique,
the GA-based atomic scheduling can provide solutions nearly identical to those of the proposed technique
for some cases, but there is neither any guarantee for such good solutions nor any bounds provided in
general; as shown in Figures 5a and 6a, the quality of the GA-based solutions could be quite poor and
could result in a cost difference of around 3 USD in case of cost minimization.
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Figure 5. Atomic energy consumption scheduling for cost minimization: (a) Upper (UB) and lower bounds
(LB); (b) gaps; and (c) number of iterations.
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Table 2. Genetic algorithm (GA) options for atomic energy consumption scheduling for cost and PAR
minimization.

GA Parameter Value

Initial Population Random Uniform
Crossover Scattered Crossover
Crossover Fraction 0.8
Fitness Scaling Rank Scaling
Max Number of Generations 100× N
Mutation Function Gaussian
Population Size 50 for N ≤ 5; 200 for N > 5
Selection Function Stochastic Uniform
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Figure 6. Atomic energy consumption scheduling for PAR minimization: (a) Upper (UB) and lower bounds
(LB); (b) gaps; and (c) number of iterations.

While Figures 5a,b and 6a,b show that ND does not have any visible impact on the quality of
suboptimal solutions, Figures 5c and 6c show that increasing the value of ND can significantly reduce
the number of iterations. As discussed in Section 3.2, these results show that a larger values of ND
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in combination with a lower dropping threshold values (i.e., θD = 0.1) can improve the speed of the
successive convex relaxation while maintaining the quality of resulting suboptimal solutions.

5. Conclusions

The atomicity of appliance operation has never been given serious attention in the scheduling of
appliance energy consumption in autonomous DSM for residential smart grids. The current dominant
approach based on the vector of appliance’s hourly energy consumption may result in several gaps in
scheduled appliance energy consumption and have problems in providing enough power for appliances
to carry out required operations, which, in most cases, are atomic. Note that there are several
approaches which can schedule non-interruptible tasks, but that they cannot take into account the
non-throttleability of the energy consumption patterns which are generally not constant over time and
specific to appliances’ operations.

In this paper, therefore, we have provided a new formulation of appliance energy consumption
scheduling based on the optimal routing framework, which guarantees the atomicity of resulting
scheduled energy consumption without additional objective functions. Compared to the straightforward
problem formulation based on the vector of possible starting times of an appliance operation,
the optimal-routing-based formulation provides a Boolean-convex problem for a convex objective function,
which is amenable to the successive convex relaxation technique; with the successive convex relaxation
technique, we can apply the well-known interior-point methods for the efficient solution of the relaxed
convex optimization problem. Unlike approaches based on heuristics like genetic algorithms [26], convex
relaxation enables us to carry out a systematic analysis of the original problem with both upper and
lower bounds.

The numerical results for the cost and PAR minimization problems demonstrate that the proposed
successive convex relaxation technique can provide tight upper and lower bounds unlike approaches based
on heuristic techniques and, therefore, suboptimal solutions very close to optimal solutions, often identical
to true optimal values, in an efficient way. The results also show that, using two control parameters,
i.e., ND for the maximum number of fractional-valued elements that can be dropped per iteration and
θD for a dropping threshold, we can strike the right balance between the quality of suboptimal solutions
and the number of iterations to obtain them in applying the successive convex relaxation technique.
Considering that the original problem of atomic scheduling is a very difficult combinatorial problem to
solve using direct enumeration due to the huge size of the feasible set, the proposed successive convex
relaxation technique makes it practical to implement atomic scheduling of appliance energy consumption
for autonomous DSM in residential smart grids.

Note that our major focus in this paper is on the formulation of the atomic scheduling problem and
efficient solution techniques based on convex relaxation with adaptive dropping of fractional-valued
elements. The extension to distributed atomic energy consumption scheduling and advanced techniques
refining the feasible region at each iterative step to reduce the total number of iterations are interesting
topics for further study.

Also, note that the formulation of the atomic scheduling in Section 3 could be extended to incorporate
nonatomic scheduling described in Section 2 by using an augmented scheduling vector (i.e., [x, f]) and by
reformulating the objective function in Equation (22) based on it, which is under our active consideration
and further study.

Another interesting but challenging topic for further study is the inclusion of intelligent and interactive
appliance operations based on the feedback from the environment (e.g., air conditioning/heating a room
until a desired temperature is reached) in the scheduling, which would require a new and joint approach
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not only based on the appliance energy consumption scheduling but also based on the appliance
operation control.
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