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Abstract: Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2

concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides
a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage
medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential
of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals
can be potentially achieved through the electrochemical water splitting, which is an environmentally
friendly process as well as the electrons and water are the only reagents. However, these devices
still require a lot of research to reduce costs and increase efficiency. An approach to improve their
performance is based on nanostructured electrodes characterized by high electrocatalytic activity.
In this work, we show that by using template electrosynthesis it is possible to fabricate Ni nanowires
featuring a very high surface area. In particular, we found that water-alkaline electrolyzers with Ni
nanowires electrodes covered by different electrocatalyst have good and stable performance at room
temperature as well. Besides, the results concern nickel-cobalt nanowires electrodes for both hydrogen
and oxygen evolution reaction will be presented and discussed. Finally, preliminary tests concerning
the use of Ni foam differently functionalized will be shown. For each electrode, electrochemical and
electrocatalytic tests aimed to establishing the performance of the electrolyzers were carried out.
Long term amperostatic test carried out in aqueous solution of KOH will be reported as well.

Keywords: alkaline electrolyzers; nickel; nanostructures; Ni-alloy; iridium oxide; cobalt; palladium;
nanowires; foam; electrocatalysts

1. Introduction

In recent years, there has been an increase in global energy demand caused by many factors, such
as the increase in world population and the improvement in the standard of living—especially in
developing countries [1,2]. The increasing energy demand, together with other factors, such as climate
change, the depletion of fossil fuels, environmental pollution, security of supply, etc., is creating an
urgent need to develop new energy strategies with limited emissions of greenhouse gases and with a
high ease of supply [3,4]. The only possible strategy is the adoption on a global scale of high-efficiency
energy technologies and the exploitation of renewable energy sources (RES), capable of combining
the development needs of individual countries and protecting the environment, [5]. Among them,
hydrogen is a valuable energy carrier, which can act as a storage medium to balance the discontinuity
of the renewable sources, as shown in Table 1.
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Table 1. Specific energy and energy density comparison between hydrogen and other fuels.

Properties Hydrogen Methane Gasoline Diesel LPG Methanol

Specific energy [MJ/kg] 141.86 55.6 46.4 45.6 49.6 19.87
Energy density [MJ/L] 10.044 (liquid) 22.2 34.2 38.6 25.3 15.6

Hydrogen is currently made via steam-methane reforming, which produces greenhouse gases
and thus cannot be considered an environmentally friendly process. Water electrolysis is a real
alternative process and represents a fundamental stage of the hydrogen economy (HE). HE consists
in the production of electrolytic hydrogen from the surplus electricity of renewable sources and is
then used as fuel to produce energy when it is the most in demand [6–10]. Focusing on the hydrogen
production through electrolysis, the HE chain can be summarized in four steps (as shown in Figure 1):

• The first phase is the production of hydrogen through electrochemical cells (electrolyzers) powered
by renewable sources.

• The post-production phase is the hydrogen storage. Hydrogen storage methods can be classified
into physical methods, such as compression, and chemical methods, such as metal hydrides.

• The third phase consists in the transport of hydrogen from the point of production to the place of
consumption—which must not necessarily coincide.

• The last phase of the supply chain is the conversion of hydrogen into electricity or into other
forms of energy. In fact, hydrogen can be converted into electricity through fuel cells. However,
this should not exclude the possibility of using hydrogen as a fuel in heat engines or boilers,
converting hydrogen into mechanical energy and thermal energy, respectively.
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The application of HE has the potential advantage of not dispersing the surplus energy of
renewable energies, which would otherwise be cut by the introduction into the grid. Instead, this
surplus can be used to produce hydrogen that is a decarbonized and therefore an emission free energy
carrier, usable in a large number of applications where fossil fuels are currently used, allowing a global
reduction of CO2 emissions into the atmosphere [11].

It is a common opinion that water splitting driven by renewable sources is the only way to
achieve both a clean and simultaneously abundant production of hydrogen [12,13]. It is common
opinion as well that innovative electrochemical cells should be developed in order to reduce the energy
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required per unit mass of produced hydrogen [14], (including the increase in entropy, the required
thermodynamic value for hydrogen production is 79.3 Wh per mol of H2 [15,16]). To reduce the
electrolyze running costs, the main strategies are the use of high surface area electrodes, which can
support efficient catalysts as well [17–19] (with the aim to reduce the load, thus lowering the costs),
and at the same time the development of electrodes suitable for photo-water splitting [20–22].

In order to increase the efficiency, we have focused our attention on the optimization of the i-V
electrolyze characteristic. In the i-V characteristic, the two major dissipative contributions are due to
reaction overvoltage and ohmic drop [23,24]. Reaction overvoltage depends on the electrode materials
and on the electrocatalysts, while ohmic drop is related to engineering of the cell. The electrode
materials and catalysts depend on the nature of the electrolyte. In particular, precious metals or their
alloys are used for water splitting in acidic aqueous solutions, supported on porous carbonaceous
materials [25–28]. In alkaline electrolytes, cheaper materials, such as Ni and its alloys [29–32], are used
instead. Besides, different electrocatalysts in acidic and basic electrolyte are employed for hydrogen
evolution reaction (HER) [33,34], and for the highly irreversible oxygen evolution reaction (OER) [35,36],
as shown in Figure 2. Finally, very different materials are used in the case of solid oxide electrolyzers
operating at high temperatures [37,38].
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Among the different electrolyzer technologies, the alkaline electrolyzers have been the most
successful from a commercial point of view, as they are the simplest and cheapest option [39–41].
Despite being commercial devices, research on alkaline electrolyzers is still very active in order to
optimize their operation and increase efficiency. In addition, a lot of effort is being made to develop
alkaline electrolyzers that enable chlorine-free electrolysis from seawater [42].

For improving the electrode catalytic activity, both nanostructured anode and cathode have been
extensively investigated [43–46]. In fact, the use of nanostructured materials is a strategy employed
by several researchers because reaction overvoltage strongly depends on electrode surface area [47].
In this context, the template electrochemical methods play a relevant role for nanostructured electrode
fabrication usable in different devices [48–51]. Particularly, we have focused our attention on the
template electrosynthesis of ordered array of Ni nanowires (Ni-NWs). These electrodes have a
surface area about 70 times higher than geometrical one, and can be functionalized with different
electrocatalysts both for HER and OER [52–55]. Ni was selected owing to its low cost and high chemical
stability in alkaline environment and because it is part of the strategy pursued by several researchers
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to develop catalysts based on earth abundant transitional metals [36,56]. Besides, we have studied
the behavior of Ni foam covered with different catalysts as well. In both cases, with Ni nanowires
and foam, the functionalization with electrocatalysts was achieved by means of electrodeposition and
galvanic displacement deposition, which are very easy and low-cost methods.

In particular in this work, the performance of nanostructured composite electrodes of Ni/IrO2,
Ni/Pd and Ni-Co alloy have been studied. Electrochemical and electrocatalytic characterization were
carried out to estimate the properties of nanostructured for HER and OER in an alkaline medium.
Moreover, in order to simulate the operation in electrolyzers, the electrodes were tested at constant
current density for different hours. Some preliminary results were reported in [57,58].

2. Materials and Methods

Ni NWs substrates were fabricated by a two-step procedure consisting of deposition of a thin
layer of Ni, which acts as current collector, followed by nanowires deposition [54,58,59]. For nanowires,
a pulsed unipolar electrodeposition into the pores of the polycarbonate membrane was used, following
the procedure reported in [52]. In particular, a trapezoidal wave, with potential pulsed between −0.12
and −0.83 V versus Reversible Hydrogen Electrode (RHE) and a scan rate of 0.1 V s-1, was used. As
reported in [53], this wave shape allows to produce Ni nanowires with uniform length, on the entire
surface of template. The electrodeposition solution is the typical Watts’s bath (300 g/l Nickel Sulphate
Hexahydrate, 45 g/l Nickel Chloride, 45 g/l Boric Acid) at 3 pH. After deposition, a template was etched
in pure dichloromethane at room temperature in order to obtain NWs conformal to the template and
well adherent to the current collector as well.

Functionalization with Iridium oxide: Iridium oxide was deposited electrochemically into the
array of Ni nanowires by pulsed electrodeposition with a rectangular wave (500 cycles between 0.0
(for 1 s) and 1 mA cm−2 (for 1 s)) using a Dimensionally Stable Anode (DSA) as counter-electrode.
Electrodepositions of iridium oxide were performed at room temperature from a de-aerated solution
of Ir2O3xH2O, following the procedure proposed in [54]. The performances of Ni nanowires electrodes
were compared to Ni sheet, with flat morphology, without iridium oxide, since these types of composite
electrodes were extensively investigated in the literature [60,61].

Functionalization with palladium nanoparticles: Pd nanoparticles were deposited by galvanic
displacement deposition using Ni NWs as substrate. For galvanic deposition, an aqueous solution of 5
mM Pd(NH3)4 with 0.1 M H3BO3 was used [58]. The solution was acidified up to a pH of about 2
using HNO3 and the process was carried out at room temperature. Ni NWs was simply immersed in
this solution, which was sonicated to ensure its permeation throughout the entire NWs length.

Galvanic deposition is a spontaneous process driven by the difference of electrochemical redox
potential between Pd and Ni. The global reaction is (reaction 1):

Ni + Pd2+
→ Ni2+ + Pd. (1)

The process starts just after the immersion of Ni in solution, and in particular the dissolution of
Ni occurs producing the electrons for palladium ion reduction, as shown in Figure 3.

Fabrication of Ni-Co alloy: Ni-Co nanowire arrays were produced with a similar procedure
used for the fabrication of Ni nanowires. Watt’s bath was used for the Ni deposition, while the Co
deposition bath was composed of 300 g/L Cobalt Sulfate Heptahydrate, 45 g/L Cobalt Chloride and 45
g/L Boric Acid at pH 3 [57]. For Ni-Co deposition, in order to obtain alloy with tuned composition,
the above baths were mixed in different volumetric ratio. Nanowires were obtained by pulsed potential
electrodeposition in polycarbonate template using the same potential wave of Ni NWs deposition
above described.

Functionalization of Ni foam: Ni foam was functionalized with Pd and Ni-Co alloy. Composite
Ni foam/Pd was obtained by galvanic displacement deposition, Figure 4. Composite Ni foam/Ni-Co
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Figure 4. Scheme of galvanic displacement deposition of Pd on Ni-foam.

In all cases, electrodeposition and electrochemical characterization were performed using a Cell Test
System (model: Mod. 1470 E, 8 channels, Solartron Analytical, Leicester, United Kingdom). Morphology
was investigated using a FEG-ESEM microscope (model: QUANTA 200 by FEI, Thermo Fisher Scientific,
Waltham, MA, USA), while composition was estimated by Energy Disperse Spectroscopy (EDS).
A RIGAKU X-ray diffractometer was used to investigate the crystallographic structure (model: D-MAX
25600 HK, Tokyo, Japan). All characterization methods are detailed in [62–64]. Electrodes were
electrochemical characterized by cyclovoltammetry (CV) and quasi-steady-state polarization (QSSP)
in KOH solution at room temperature. In the same solution, the performance of electrode with and
without catalyst was evaluated as detailed in [53–55].
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3. Results and Discussion

3.1. NWs Behavior with Iridium Oxide

Ni-IrO2 electrodes for OER were obtained by pulsed electrodeposition of Ni nanowires. Prior
to electrocatalytic characterization, prepared electrodes were analyzed by XRD and SEM. From the
patterns of Figure 5a—where Ni NWs were reported before and after the deposition of IrO2—it can be
concluded that the iridium oxide deposit consists of an amorphous phase in agreement with the result
obtained by Yamanaka [65]. In fact, on both patterns only the peaks of nickel were found, but in the
pattern of functionalized NWs the intensity of these peaks is considerably lower. This result can be
attributed to an amorphous deposit screening the peaks of Ni NWs support. The presence of iridium
oxide was confirmed as well by EDS spectroscopy (Figure S2). Figure 5b shows the SEM image of
functionalized nanowires. In comparison to as obtained Ni NWs (Figure S1), this image shows the
IrO2 deposit cover with a thin layer on the surface of the nanowires. This morphology is more different
of that obtained in [54], where iridium oxide was deposited by three different electrochemically ways
(potentiostatically, galvanostatically and by cyclic voltammetry). The electrochemical characterization
of samples was performed by CV and quasi-steady state polarization (QSSP). Both tests were carried-out
in 1 M KOH solution at room temperature using a two-compartment cell connected through a salt
bridge (made of Agar-Agar in KNO3 saturated solution), which assurances the electrolytic continuity.
CV curves were measured in the potential range from 1 to 1.6 V vs. RHE with a scan rate of 10 mV s−1,
while QSSP curves were recorded between 2.4 and 3.2 V versus RHE at a rate of 0.167 mV s−1. As
is evident in Figure 5c, from Ni sheet to Ni NWs, an increase of peak current can be observed. This
increase is about two orders of magnitude, as reported as well in previous works [53]. Considering
that all CV were recorded at the same potential scan rate of 10 mV s−1, such an increase of the area
underlying peaks can be attributable to the high surface area of nanostructures. For functionalized
NWs with IrO2, the further increase of peak current is due to the electrocatalytic activity of the iridium
oxide, which is known to be one of the best electrocatalysts for the OER [66,67]. The anodic peak at
about 1.39/1.43 V (RHE) (and the corresponding cathodic peak at 1.3/1.27 V) is attributable to the redox
couple Ni(OH)2/NiOOH as reported by Schrebler Guzmán et al [68].
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SEM image of functionalized Ni NWs; (c) CV and (d) cell potential of Ni NWs without and with iridium
oxide electrocatalyst. For comparison, the behavior of the Ni sheet was reported as well.

The positive influence of IrO2 to improve the electrocatalytic behavior of Ni NWs for OER is
shown as well in Figure 5d where the mean values (for about a work time of 48 h) of cell potential
are reported. These values refer to nanostructured electrode assembled in an alkaline electrolyzers,
using a Ni sheet as cathode and an aqueous 1 M KOH electrolyte with 1 cm of inter-electrode distance,
working at a constant current density of 100 mA cm−2 at room temperature. Clearly, functionalized
iridium oxide nanowires show the lower potential value. This result was confirmed as well by QSSP
measure (Figure S3) showing that, for the same potential value, Ni-NWs/IrO2 have the highest current
for the OER. The obtained results are very interesting because we have obtained a current density
value at 2.1 V (cell potential) at room temperature, which was very close to that obtained by Li et al [31]
at 55 ◦C.

3.2. NWs Behavior with Palladium Nanoparticles

Ni-Pd nanostructured electrodes, fabricated through the combination of electrochemical and
galvanic deposition, were investigated for HER [58]. Pd was selected because it is well known that it
is a very good electrocatalysts for HER, being a catalyst of precious metals group [30,33,69,70]. Pd
nanoparticles were deposited on electrochemical obtained Ni-NWs by the spontaneous displacement
deposition, and its presence was confirmed by EDS spectroscopy (Figure S4).

We found that, by simply adjusting the deposition time, it is possible to control the loading of the
electrocatalyst on the surface of nanowires. This is well clear from the comparison of SEM images of
Figure 6a,b, showing the effect of galvanic deposition time on the Pd load into Ni NWs. After 1 min
of deposition, Pd nanoparticles have a spherical shape, with a mean diameter of about 60 ± 5 nm,
and are randomly distributed on the lateral surface of the Ni NWs. In the cross-sectional view of
this sample, Figure 6c, it can be seen as well that nanoparticles are not present on the entire length of
nanowires, but only in the last 1–1.5 µm, which is the top of the array and the zone exposed to the
galvanic deposition bath. In the sample obtained after 5 min of deposition, an increase of the Pd load
is clearly visible. In particular, it is possible to observe that the head of the nanowires is completely
covered with large palladium particles of about 110 ± 5 nm, formed by the coalescence of neighboring
nanoparticles. Additionally, in this sample, the nanoparticles are present on the lateral surface of the
nanowires only for a few µm from the head.
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Figure 6. SEM image of Ni NWs with Pd nanoparticles obtained (a) after 1 min a and (b) 5 min of
galvanic displacement deposition (c) cross-sectional view of sample of Figure 6a; (d) QSSP of Ni NWs
without and with Pd nanoparticles. For comparison, the behavior of Ni sheet was reported as well.

Ni-Pd cathodes were tested in 30% w/w KOH aqueous solutions at room temperature and
Figure 6d shows the QSSP curves. The potential was scanned from 0 to −0.5 V (versus RHE) at a scan
rate of 0.167 mV s−1. In the plot, only the linear behavior was reported. For HER, Ni-Pd electrodes
have better performance than other samples (Ni NWs and Ni sheet). This behavior was attributed
to the high catalytic activity towards hydrogen evolution of the palladium. QSSP were fitted by the
Tafel’s model (Equation (2)), to exactly evaluate the slope:

η = a + b logi. (2)

Table 2 reports the value of a and b parameters, related to exchange current density and the slope
of the Tafel’s curves respectively. Ni NWs without and with palladium nanoparticles have the lower
slope. This is a very interesting result, because the lower the value of the parameter b is, the better the
electrocatalytic performances are. Thus, it is possible to conclude that as prepared and composite Ni
nanowires have the lowest overpotential for the HER and thus the best performance. In Table 2 the mean
value of potential (referred to nanostructured electrode assembled in an alkaline electrolyzers, using a Ni
sheet as anode and an aqueous electrolyte of 30% of KOH with 1 cm of inter-electrode distance, working
at a constant current density of 0.05 A cm−2 and room temperature) was reported as well.

Despite the QSSP curves showing that the Ni-Pd composite nanowires have the highest current
for the development of hydrogen (for the same voltage value), the operation of the electrode in a cell
that simulates an alkaline electrolyze is very similar to that of pure Ni nanowires. In reality, at the
beginning of the electrolyze operation, Ni-Pd nanowires cathode shows a lower reaction overpotential
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than Ni NWs. However, considering that Pd is a sponge for hydrogen, the progressive adsorption of
hydrogen on Pd nanoparticles makes Ni-Pd nanowires very similar to nickel ones—and, in fact, very
similar cell potential were measured as evident in Table 2 [53].

Table 2. Fitted Tafel parameters for HER and potential mean value for a mid-term galvanostatic test at
0.05 A cm−2, in an aqueous KOH 30% w/w solution at room temperature.

Electrode a (V) b (V/dec) Potential (V vs. RHE)

Ni Lamina −0.560 −0.142 −0.980
Ni NWs −0.431 −0.118 −0.703

Ni NWs + Pd NPs −0.400 −0.120 −0.734

3.3. Behavior of Nanowires of Ni-Co Alloy

Ni is the most used material in the alkaline environment even if, during the operation, it is
subjected to deactivation due to the formation of nickel hydrides [71]. To overcome this problem,
we have alloyed nickel with Co in this work because it has been demostrated that the use of alloy
prevents the formation of hydrides and improve electrode stability [72,73]. Nanowires of Ni-Co
alloy were fabricated by electrodeposition using polycarbonate as template. In order to compare the
performance of the alloy, pure Ni and Co nanowires were fabricated as well. The composition of
nanowires was controlled by tuning the electrolyte composition, which was an aqueous solution of Ni
and Co salts in different concentration. The formation of alloy was demontrated by EDS spectroscospy
and XRD diffraction. From XRD, in the pattern of pure NWs Co, the presence of ε-Co peaks was
found (hcp lattice), while pure Ni nanowires have a similar spectrum of that reported in Figure 5,
which corresponds to crystalline α-Ni with fcc structure. With the increase of Ni content in the alloy,
a gradual shift of the Co diffraction peaks towards the characteristic peaks of pure Ni was observed.
The composition of alloy was calculated by EDS, performing the analisis in different points of the
nanowires in order to verify its homogeneity. In Figure 7, the EDS spectra of nanowires with a different
composition were reported. We found that, and in agreement with literature data, Co content is
higher in the alloy than in the deposition bath [74]. This behavior is imputable to the presence of boric
acid in the deposition bath. In fact, although the standard electrochemical potential of Ni is slightly
higher than that of Co, the formation of Co-Borate complex, which has a stability constant lower than
Ni-Borate ones, favours the deposition of Co [75]. Morphology of the nanostructured alloy (Figure S5)
is practally indentical to that of pure Ni nanowires.
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Ni-Co alloy electrodes were tested both as cathode and anode for the water splitting reaction in an
aqueous solution of 30% w/w KOH at room temperature. In Figure 8, the electrocatalytic performance
of alloy with different composition was shown.
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In Figure 8a, the linear behavior of QSSP tests was reported. For HER, the potential was scanned
from 0 to −0.5 V (versus RHE), while for the OER, it was scanned from 1.2 to 1.7 V (versus RHE).
In both cases, the scan rate was 0.167 mV s−1. As can be seen, pure Ni and Co electrodes have the worst
performance for both HER and OER. For the alloy, for both cathode and anode, the better performances
were obtained in the case of a composition of about 95% in Co and 5% in Ni. These results were
confirmed as well by galvanostatic tests carried out to evaluate the mid-term behavior of the electrodes
in 30% w/w KOH solution at room temperature and at an imposed current density of 0.05 A cm−2 for
six hours. During these tests, the cell potential remains approximately constant at the values shown in
Figure 8b. Thus, it can be deduced that the lowest cell voltage was obtained for the alloy with 95% of
Co and 5% of Ni.

3.4. Ni-foam Behavior with Different Electrocatalysts

Electrocatalytic behavior of commercial Ni-foam functionalized with two different electrocatalyst
was tested for both cathode and anode in KOH 30% w/w aqueous solution. In Figure 9 the SEM images
of foam surface with and without functionalization were reported. Particularly, Figure 9a,b is related
to Ni foam without catalyst, while Figure 9c,d shows in detail the Ni foam surface with Pd and Ni-Co
alloy, respectively.

Ni foam surface, Figure 9b, appears almost smooth with some irregularity. The catalyst deposit is
evident onto the Ni foam surface, as shown in Figure 9c,d. The morphology of the deposits appears
very different from each other, due to the difference both in the deposited material, but mainly to the
method used for the deposition. In both cases, the deposit uniformly covers the surface of the foam,
forming a thin layer that affects the entire structure of the foam (Figure S6).

The performance of Ni foam electrodes, before and after functionalization, was evaluated through
galvanostatic step tests in 30% KOH aqueous solution. Figure 10a,b shows the obtained results for
HER and OER, respectively. Each test consists in nine increasing current density step (0.5, 1, 2.5, 5,
10, 25, 50, 100 and 250 mA cm−2), each 300 s long. Each electrode was tested three times, and the
results are shown as mean values with error bars. For the HER and in all the investigated current
densities range, Ni foam/Pd and Ni foam/Ni-Co alloy electrodes have better performance compared
to Ni foam without catalyst. In particular, at 0.25 A cm−2, Ni foam/Ni-Co alloy electrodes have
an overpotential value less than 100 mV with respect to not functionalized Ni foam. For the OER,
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a different behavior was observed at low and high current density. In fact, at low current densities,
the performance of Ni foam/Ni-Co alloy, and especially Ni foam/Pd, were better than Ni foam. At 0.05
A cm−2, the overpotential value was the same for each electrode, and almost equal to 1.52 V. At higher
current densities, Ni foam electrodes without catalyst have the best performance.
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These results confirm that Pd and Ni-Co based electrodes have good electrocatalytic activity for
the HER. While, the deterioration of the performance for the electrodes with catalysts for the OER
is most likely due to a surface modification under oxygen evolution and/or the anodic polarization.
Further experiments are in progress to investigate this issue.

To reassume our results and compare them with more relevant literature data, Table 3 was
reported. It can be observed that for both HER and OER our results are very close to that obtained
from others authors.

Table 3. Reassuming of main results obtained in this work and the most relevant literature data.

Electrocatalysts HER/OER KOH Solution Potential
(V Versus RHE) Reference

Ni Lamina HER 30% w/w −0.269 This work
Ni Foam + Pd HER 30% w/w −0.250 This work
Ni0.95Dy0.05 HER 8 M −0.240 [76]

CoP/CC HER 1 M −0.206 [77]
Ni NWs HER 30% w/w −0.196 This work

Ni2P@mesoG HER 1 M −0.188 [78]
Petaloid FeP/C HER 1 M −0.185 [79]

Ni NWs + Pd NPs HER 30% w/w −0.150 This work
PO-Ni/Ni-N-CNFs OER 1 M 1.69 [80]

Ni NWs OER 30% w/w 1.67 This work
NiCo-LDH OER 0.1 M 1.65 [81]
Ni-FexP/NF OER 1 M 1.62 [82]

Mo-CoP OER 1 M 1.56 [83]
Ni NWs + IrO2 OER 1 M 1.53 This work

NiCo NWs (Ni5.27) OER 30% w/w 1.49 This work
Ni Foam + NiCo OER 30% w/w 1.48 This work

3.5. Performance of Lab Scale Electrolyzer

In all investigated conditions and for the different samples, the experimental cell voltage is always
above 2.3 V. This relatively high value is due to the charge transfer overvoltage and ohmic overvoltage.
In particular, the latter has the greatest weight as shown in [76]. We think that the high ohmic drop
is due to a different cause. Firstly, we have operated at room temperature, while industrial cells
work at 60 ◦C. A higher temperature is a better condition because with the increase of temperature
ionic conductivity increases leading to a decrease of the ohmic drop. In addition, the screen effect of
gas bubbles that accumulate on the surface of nanowires, as shown in Figure 11, must be taken into
consideration as well. In fact, with the increase of gas accumulation in the spaces between the NWs,
they go empty of electrolyte, which increases the ohmic drop.
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In order to decrease this voltage dissipation, we have focused our attention on the fluid dynamics
of electrolyzers to quickly remove the gas bubbles produced at the electrodes. For this aim we have
developed a homemade cell obtained with a 3D printer (Figure 12), as detailed in [55]. Preliminary
results show that by using this cell [55], the performance of electrolyze increases but further experiments
are in progress with continuous recycling of the electrolyte, which favors the outflow of gas, and at high
temperature than the room one. Besides many geometric parameters of the cell are under studying in
order to improve its efficiency.
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4. Conclusions

In this work, we have shown the use of different nanostructured materials as electrodes for
hydrogen and oxygen production in alkaline water splitting. Highly encouraging results were
obtained, founding an immediate benefit of the high surface area which characterizes the nanostructured
morphology. In particular, we have tested ordered arrays of Ni nanowires modified with iridium
oxide and palladium for oxygen and hydrogen evolution reaction, respectively. Besides, ordered array
of Ni-Co nanowires alloy with different composition were tested for both anode and cathode of an
alkaline electrolyzer. Additionally, the preliminary results on the use of differently functionalized Ni
foam were shown.

In all the cases considered, we found that the major drawback that affects the performance of the
electrolyzer is the ohmic overvoltage, which is most likely due to the confining of the gas bubbles inside
the nanostructures. To overcome this weakness, the optimization of different operation parameters,
such the hydrodynamic of the fluid fluxes throughout the cell, temperature, zero gap configuration are
under study.
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