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Abstract: As smartphone built-in sensors, wireless technologies, and processor computing power
become more advanced and global positioning system (GPS)-based positioning technologies are
improving, location-based services (LBS) have become a part of our daily lives. At the same time,
demand has grown for LBS applications in indoor environments, such as indoor path finding and
navigation, marketing, entertainment, and location-based information retrieval. In this paper, we
demonstrate the design and implementation of a smartphone-based indoor LBS system for location
services consisting of smartphone applications and a server. The proposed indoor LBS system
uses hybrid indoor positioning methods based on Bluetooth beacons, Geomagnetic field, Inertial
Measurement Unit (IMU) sensors, and smartphone cameras and can be used for three types of indoor
LBS applications. The performance of each positioning method demonstrates that our system retains
the desired accuracy under experimental conditions. As these results illustrate that our system can
maintain positioning accuracy to within 2 m 80% of the time, we believe our system can be a real
solution for various indoor positioning service needs.

Keywords: indoor positioning system; location-based service; bluetooth low energy; beacon;
fingerprinting; inertial measurement unit; geomagnetic field; pedestrian dead-reckoning; vision
positioning

1. Introduction

Nowadays, smartphone users are increasingly exploiting their phones’ capabilities based on
advanced sensor technology, wireless communications, and computing power. Smartphone services
including multimedia streaming, health diagnostics, outdoor navigation, virtual reality (VR),
and augmented reality (AR) are available now and getting popular. Specifically, location-based
services (LBS) in outdoor environments have been developed based on the development of GPS-based
precision positioning technology and map services including geographical information, street view,
and satellite maps. Many consumers are already using these LBS on their personal smartphones.
These services have been essentially requested in indoor environments. However, conventional GPS
positioning has a limited ability to provide LBS in environments where signal reception is limited, such
as in tunnels, underground, and inside buildings. To address this challenge, technologies for indoor
positioning systems (IPS) have been studied. As GPS signals are unable to penetrate buildings, other
technologies such as Wi-Fi, Bluetooth, Ultra Wide-Band (UWB), Ultrasonic wave, Radio Frequency
Identification (RFID), Geomagnetic field, and Inertial Measurement Unit (IMU) have been used
for positioning [1,2]. By using these positioning methods, the IPS can perform personal indoor
smartphone navigation, marketing (shopping advertisements and proximity-based voucher sharing),
location-based entertainment, indoor emergency localization, and so on. To deliver these services, IPS
technologies are expected to provide reasonable accuracy for indoor positioning applications [3].
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Researchers in academia and industry have focused on studying positioning techniques based on
Wi-Fi and Bluetooth beacons due to the wide availability of Wi-Fi and Bluetooth in common places
and mobile phones. Conventional RF positioning methods rely on the time of arrival (ToA), angle of
arrival (AoA), and Received Signal Strength Indicator (RSSI) [4]. Currently, RSSI based fingerprint
positioning is the most widely implemented method because of its acceptable accuracy for indoor
environments [5]. However, its accuracy depends on the stability of RSSI and line of sight between
transmitting and receiving devices [6–8]. Another widely-used positioning tool is the IMU sensor,
which consists of accelerometers, magnetometers, and a gyroscope [9,10]. It is a popular sensor
for human and vehicular navigation systems. Additionally, the implementation cost of an IMU is
low, and pedestrian dead-reckoning (PDR) positioning using the IMU sensor does not need an extra
infrastructure investment [11]. However, PDR using IMU sensors has an acceptable positioning
accuracy only for a short distance, since it suffers from drift error in heading estimation over time.
This drift error will be accumulated with PDR positioning using low cost IMU sensors embedded
in the handheld device like a smartphone. These errors can be handled with sophisticated heading
drift reduction methods. Another option for indoor positioning is adapting the fingerprint method
to use the geomagnetic field as a fingerprint, since each building or structure has a unique magnetic
fingerprint generated by the building and the Earth. Various magnetic field-based positioning methods
have been introduced using machine learning and deep learning techniques [12,13].

Extensive research is going on to integrate two or more positioning technologies to mitigate
the effect of distortion in RSSI and geomagnetic field-based IPS. Integration of multiple technologies
can mitigate the limitations of each individual technology. Recently, various works have integrated
RSSI-based positioning and PDR with the Kalman filter, particle filter and landmark, despite the
relatively high computational costs of these methods [14–16].

In this paper, we design three IPS applications: indoor smartphone navigation, marketing,
and location-based entertainment. These applications could be realized using Bluetooth Low
Energy (BLE) based beacons, Pedestrian Dead Reckoning (PDR), geomagnetic field, and vision-based
positioning methods for indoor environments. Different combinations of all these positioning
technologies are chosen according to the purpose of each specific application. The effectiveness of
each application can be achieved with the positioning combinations providing the proper positioning
accuracy and meeting the requirements for the computation overhead in the smartphone.

The contents of our work are presented as follows. Section 2 shows previous related works for
IPS. Section 3 presents the implementation approaches for three IPS applications and positioning
methods used for them. The performance of the proposed IPS is described in Section 4, and the paper
is concluded in Section 5.

2. Related Work

Over the decades, advances in various indoor positioning methods have been achieved.
Most indoor positioning studies have focused on positioning performance enhancement using Wi-Fi,
BLE, IMU sensors, and combinations of these technologies.

The commonly used BLE and Wi-Fi technologies generally make use of the fingerprinting method.
Ref. [17] proposed an indoor positioning method using fingerprinting with BLE beacons that used
19 beacons to construct a fingerprint map for positioning the user. They showed that BLE beacons
can be used more effectively than Wi-Fi devices for positioning; however, factors like multipath
fading, attenuation, and interference cause RSSIs to fluctuate in indoor environments, affecting
positioning results.

In recent years, geomagnetic field has been used for indoor positioning. This method has the
advantage of not requiring any external infrastructure. Gozick et al. [18] showed that magnetic
signatures are stable over time and can be used for positioning. Haverinen et al. [19] proposed a
localization method using the geomagnetic field. They used a particle filter to determine the position
of a robot and a person from any given initial point. However, positioning results from geomagnetic
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positioning systems are limited because the magnetic field is not always discernible from the inside of
the building.

Nazemzadeh et al. [20] developed a camera vision positioning method using homography-based
image processing algorithms [21] to measure the relative distance between the camera and a quick
response (QR) code landmark. This method estimates the user’s current position using this relative
distance and the knowledge of the reference position obtained from the marker.

Finally, hybrid positioning approaches try to overcome the limitations of individual technologies.
For example, in [22,23], IMU-based PDR positioning is used along with Wi-Fi positioning systems.
Since Wi-Fi positioning uses RSS fingerprints and provides better accuracy, it can help to remove the
accumulated drift error of the IMU-based navigation system. For indoor navigation applications, IMU
sensors can be used for PDR positioning; however, the latter has a lower positioning accuracy due to
accumulated drift errors in user heading estimation. In [24,25], various methods have been introduced
to reduce IMU sensor errors, but these have not completely removed location errors from IMU sensors.
Therefore, the errors continue to affect their application in indoor positioning.

In another example, Zeng et al. [26] proposed a solution for indoor/outdoor positioning systems.
Their approach integrates PDR and light and magnetic sensor signals for indoor positioning. In [27],
PDR is integrated with a microelectromechanical system (MEMS) and Wi-Fi for pedestrian navigation
using an extended Kalman filter. In [28], PDR is combined with IEEE 802.15.4a radio beacons. Although
this hybrid positioning is accurate for a large area inside the building, the results are less accurate
for small areas such as corridors. Adding geomagnetic positioning to the integrated PDR and RF
positioning approach could increase accuracy at the cost of complexity and increased smartphone
battery use.

3. Proposed Indoor Positioning System

3.1. Design Goals for Indoor Positioning System

Smartphone IPS involves three components: a user device sensing the current environmental
status, an RF infrastructure node installed inside the building to assist with positioning, and an
LBS server communicating with the user device for estimating the current position and providing
local indoor map information. In this paper, we describe a smartphone indoor positioning system
supporting three LBS applications: indoor social marketing (App. 1), indoor navigation and tracking
(App. 2), and indoor entertainment (App. 3). In Table 1, three different types of applications supported
in our work are shown with positioning requirements and conditions for each indoor LBS application.
That is, App. 1 is an LBS category for the service of social marketing, advertisement, and indoor
monitoring which requesting positioning error limit approximately from 2 to 4 m. Also, App. 2 is
for the service of indoor navigation and tracing which requesting the higher positioning error limit
approximately from 1.5 to 3 m. Meanwhile, App. 3 is for the indoor entertainment service using
smartphone camera, while requesting the error limit from 1.5 to 3 m.

Table 1. LBS application, and required features, and used technologies.

LBS Category Application Examples Requirements Positioning Technologies

Marketing social marketing, approx. accuracy = 2∼4 m Bluetooth, PDR(App.1) advertisement, indoor monitoring

Navigation and Tracking pedestrian navigation, approx. accuracy = 1.5∼3 m Bluetooth, PDR
(App.2) path finding, tracking geomagnetic field

Entertainment social networking, approx. accuracy = 1.5∼3 m, Bluetooth, PDR
(App.3) gaming, fun sharing camera for AR service Camera

We integrate four positioning technologies to provide reasonable positioning accuracy for each
application: BLE beacon, geomagnetic field, IMU sensor, and vision camera. Generally, both Wi-Fi
and BLE beacon positioning have been used to replace the GPS in indoor environments. In this paper,
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we select the BLE beacon for RF positioning for the following reasons. The first reason is that Wi-Fi does
not usually provide better positioning accuracy than BLE. In research related to indoor positioning,
ref. [29] showed that BLE beacon positioning was able to scan the signal once per second, while Wi-Fi
positioning showed that it was able to scan the signal every 3–4 s. Also, ref. [30] showed that BLE
beacon positioning had better signal resolution than Wi-Fi. The second reason is that BLE using a
battery will be helpful for navigation applications during power outages and emergencies.

Since we use BLE beacons and a vision camera for the selected LBS applications, we can limit
the required infrastructure components for indoor positioning to BLE beacons and paper-printed
vision markers. These facilities do not require any external power source for indoor positioning-based
services. Also, the proposed system can minimize implementation costs and time required to install
and maintain the location service. The features for the proposed LBS are as follows: low power
consumption of the user device, low-cost investment for the positioning infrastructure, and no extra
positioning-aided device required for users.

In this paper, we show how to integrate the typical positioning methods for each application
case and demonstrate the implemented positioning applications using the technology combinations.
Specifically, a vision-based positioning with milliradian measurement is shown to help the positioning
accuracy enhanced which can be useful for the indoor entertainment service using a smartphone
camera for AR, MR, and so on.

3.2. Operation of Indoor Positioning System

Figure 1 shows the operation procedure of the proposed IPS using the multiple indoor positioning
technologies selected based on the target application.

Service Area

DataBase

Indoor Map

Fingerprint Map

User Data

LBS Server

  ● BLE data collection

  ● Magnetic field data collection

  ● Vision marker and BLE beacon

     installation

  ● Build indoor map

Monitoring

Map Service

  ● BLE beacon based positioning

  ● Magnetic field based positioning

  ● PDR based positioning

  ● Vision based positioning

  ● Display indoor map

Management

BLE beacon Vision Marker

Offline phase Online phase

Figure 1. Operation procedure of the proposed indoor positioning system.

LBS system operation generally requires two steps: (1) an offline phase for drawing the navigation
map, measuring the indoor fingerprint map, and learning the reference positioning information and
(2) the online phase for estimating the current position.

During the offline phase, a fingerprint map is needed for the positioning reference and an indoor
space map is needed for the navigation application. For the fingerprint map, we divided the service
area into non-overlapping grid cells with the same size, then collected the RSSI of the beacon signal
and intensity of the geomagnetic field at each reference point (RP) using the Bluetooth module and
magnetometer in the smartphone. When we measured the RSSI of the beacon signal and intensity of
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the geomagnetic field, we aimed the measuring device in 4 heading directions (0◦, 90◦, 180◦, and 270◦),
because signal strength can be influenced by the heading direction of the device.

During the online phase, the LBS applications built on the smartphone execute the positioning
functions according to the target service application and then request the estimated current position by
providing the observed BLE signal, geomagnetic field intensity, and QR marker information to the LBS
server. The LBS server responds to the requests from the LBS client device (smartphone) asking for
the indoor navigation map, fingerprint map, and LBS member identification. After the final indoor
location is acquired from the server, the application starts its service on the client device depending on
the current location. For example, an indoor navigation system created for this work searches for the
shortest path to the destination using the Dijkstra algorithm and displays the direction on a 3D map
obtained from the server.

3.3. Positioning Techniques for the Indoor Positioning System

3.3.1. Bluetooth Low Energy (BLE) Based Fingerprinting

BLE beacon based fingerprint positioning is widely used because of its advantages of low cost,
low energy consumption, and small size. It operates in the spectrum range of 2.4–2.4835 GHz ISM
band and enables an advertising packet transfer at very adjustable update rates. The frequency band
is divided into 40 channels spaced at 2 MHz apart, and three channels are used for an advertisement.
A BLE beacon uses these advertisement channels to broadcast its advertising packets continuously.
The advertising packet allows a device to perceive proximity to a specific location-based on its RSSI.
However, the application of RSSI for distance estimation is limited because it fluctuates over time due
to factors like multipath fading, interference, and shadowing, as shown in Figure 2.

0 5 1 0 1 5 2 0 2 5 3 0 3 5
- 1 0 0

- 9 0

- 8 0

- 7 0

- 6 0

RS
SI 

[dB
m]

D i s t a n c e  [ m ]

 S i m u l a t e d
 M e a s u r e d

Figure 2. RSSI simulations and observations .

Therefore, RSSI can be used for coarse-grained location estimates. This RF behavior can be
represented in a propagation model [31] given by

RSSI = Pt − PL(d0)− 10ηlog10
d
d0

+ A, (1)

where Pt is the transmit power, PL(d0) is the path loss at a particular reference distance (normally
d0 = 1 m), d is distance from the beacon, η is the path loss exponent, and A is a Gaussian random
variable with zero mean and variance σ2.
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• BLE data collection

For the BLE based positioning, we use a fingerprinting approach comparing the currently observed
RSSI and the offline RSSI radio map. During the offline phase, the average RSSI fingerprints at
each reference point are collected and stored in the database. Then, the fingerprints are compared
to the online observed RSSIs. This observed RSSIs form an RSSI radio map Mij in the format
given by

Mij = [F, Xi, Bj, Rij], (2)

where F is the floor number, Xi is the location of reference point i given by x and y coordinates
[x, y], Bj is the BLE beacon identifier, and Rij is the mean RSSI of 100 samples taken from the
jth BLE beacon signal in all four directions at the ith RP. At the smartphone, the BLE beacon
identifiers can be observed by examining an advertisement packet sent from the neighboring
beacons. The message format representing the RSSI radio map at each reference point sent by our
positioning application to LBS server is shown in Figure 3.

RSSI Radio 

map ID

Floor

Number
X-cor Y-cor

Beacon

ID
       

Figure 3. Data structure for the beacon fingerprint map.

Figure 4 shows an example of a BLE device identifier constructed with the condition of 8th floor
and beacon device number 1.

7008 8 01

Major Floor Id
Beacon

sequence number

7008;801

Figure 4. Example of a BLE beacon identifier used in the proposed indoor positioning system.

• RSSI fingerprint matching algorithm

RSSIs from beacons are measured during the online phase and compared with the stored RSSI
values for estimation of the current location. For the fingerprinting algorithm, our focus is on
not only high accuracy but also low complexity of the positioning technologies for the realistic
implementation of IPS. We use the weighted K nearest neighbor (WKNN) method, which is a
conventional and effective matching method for a user’s current location [32,33]. The Euclidean
distance (Di) between the stored RSSI value (Rij) at the ith reference point and the online collected
RSSI value (R̃j) is given by

Di =

√√√√ M

∑
j=1

(Rij − R̃j)
2, Di = {D1, D2, . . . , DN}, (3)

where i is the number of reference points and j is the number of the BLE devices in range used
for the RSSI comparison (1 ≤ i ≤ N, 1 ≤ j ≤ M). In this work, we select m strongest beacons
per reference point in measuring the Euclidean distance (Di), where m is less than M. The small
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number of beacons in the RSSI fingerprint matching algorithm is for a lower computation load
and quick response to the smartphone IPS application.

The reference points for the estimation of the current location are sorted in the ascending order
based on the Euclidean distance. Then, we select the first k reference points for WKNN-based
position estimation, where the final location (XBLE, YBLE) is given by

(XBLE, YBLE) =

(
∑i=k

i=1 wixi

∑i=k
i=1 wi

, ∑i=k
i=1 wiyi

∑i=k
i=1 wi

)
, where wi =

1
Di

(4)

where wi is the weight assigned to the ith reference point and (xi, yi) is a coordinate of the ith
reference point. To determine the weight assigned to the reference point, the inverse of Di is used
as a weight to its respective reference point.

3.3.2. Pedestrian Dead Reckoning-Based Positioning (PDR)

Pedestrian dead reckoning (PDR) is a navigation technique for estimating current location using
the previously determined location. PDR generally uses IMU sensors to estimate speeds over elapsed
the time and course. PDR consists of three processes such as step detection, step length estimation,
and heading estimation. The position-based on these components is determined by

xt+1 = xt + SLtcosθt, yt+1 = yt + SLtsinθt, (5)

where SLt is the step length and θt is the heading angle at step t. That is, the position obtained from
PDR (XPDR, YPDR) is equal to (Xt+1, Yt+1). A feature of PDR is that the location estimation at the time
t + 1 is dependent on the location estimated at the time t. Also, the positioning accuracy is limited
by the sensor precision, magnetic disturbances inside buildings, smartphone orientiation, and so
on. Even though the accuracy of inertial sensors in the smartphone has recently increased, sensors
still cannot provide higher accuracy for the indoor navigation application for a large area because
of heading drift errors due to gyroscope bias. However, PDR is effective for short-term positioning
over a limited area, thus it should be combined with other approaches for long-term, large-area
positioning applications.

• Step detection: Step detection is based on the vertical reading of the accelerometer with respect to
ground. Because vertical acceleration is affected by the tilting of the smartphone, we consider the
magnitude of the acceleration (amag) [34]. A step is detected when it satisfies the condition

‖amag − g‖ ≥ ath, (6)

where g is gravitational acceleration of the Earth and ath is the threshold acceleration.
• Step length estimation: Step length depends on various external factors like user age, height,

gender, etc. Therefore, it is hard to determine the step length of the individual pedestrian using
only the smartphone sensors. However, a universal equation can be formed to minimize the error
in step length estimation using the Weinberg approach [35].

• Heading detection: Since the individual’s heading is not always in a straight line, estimation
of direction is very important for indoor navigation. In this work, the heading orientation is
determined by the smartphone orientation sensor and converted it to the testbed coordinate
system (0◦–360◦).

3.3.3. Magnetic Field-Based Fingerprinting

Another positioning approach is magnetic field-based fingerprinting using magnetic sensor data
obtained from a smartphone. Generally, the magnetic field creates certain anomalies due to distortions
created by ferromagnetic materials such as the steel, iron, and reinforced concrete used in modern
buildings [36]. Since these elements are distributed differently throughout the building, the magnetic
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field intensity (MFI) varies with respect to location inside the building. The distribution of MFI makes
it a suitable sensor signal for use in indoor positioning applications. Magnetic field positioning is cost
effective because it provides accuracy with no additional hardware requirements.

• Magnetic field data collection

Magnetic field data can be collected inside the building using the smartphone’s magnetic
sensor. The smartphone can measure MFI in with respect to three axis (mx, my, mz). As in
the BLE-based fingerprinting, MFI data observed at each reference point can be stored with
the location coordinate of the reference point. The data stored in the database are formatted
as M(x,y) = [X, Y, mx, my, mz, MA], where mx, my, and mz represent the three-axis intensities
generated from the magnetic sensor, and MA represents the average magnetic field intensity
given as:

MA =
√

m2
x + m2

y + m2
z . (7)

As in BLE beacon positioning, we collected the data in four directions at each reference point to
reduce signal observation errors.

• Magnetic field fingerprint matching algorithm

A nearest neighbor search is implemented to find the current indoor location. The root mean
square deviation (RMSD) of the average MFI (MA) between an offline dataset and an online
dataset is performed to find the nearest neighbor [37]. The nearest neighbor is selected when it
has the smallest RMSD. The formulation can be given as

Di =

√
∑(D2

x + D2
y + D2

z + D2
A)

4
(8)

Dx = (mxi − m̃x), Dy = (myi − m̃y), Dz = (mzi − m̃z), DA = (MAi − M̃A), (9)

where mxi , myi , mzi , and mAi are MFI observed at the ith reference point during the offline phase
and m̃x, m̃y, m̃z, and m̃A are MFI observed at the user smartphone during the online phase.
In this work, the locations of the reference points for magnetic field measurement can be same
as the locations for BLE signal observation. By searching for the reference point with the lowest
observation of Di, the magnetic field based fingerprinting method can determine the current
location (XMag, YMag) during the online phase.

3.3.4. Vision Based Positioning

• Marker detection

Vision-based positioning is a technique for estimating the current position using the visual
characteristics of an object observed with the smartphone camera. The precondition of vision
positioning is that the object must uniquely represent its location. Also, the object detection
should not require too much computation for image processing. That is, vision markers for
positioning should be easy to detect with unique features that represent its position, and the
device for detecting markers should be able to read the information contained in the markers
quickly and accurately. In this work, we chose QR codes as markers that satisfy the features of low
computation power and fast detection even with a low-cost camera [38].
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• Positioning algorithm using milliradian measurement

By scanning the QR code, we can get the physical location information of the QR code marker.
Then, we can estimate the position of the marker-scanning device like a smartphone. We use
milliradian measurement to observe the distance from the observer (smartphone) to the target
(QR code) when the size of the target is known. Conversely, if the distance from the observer to
the target is known, the size of the target can be estimated too. Because of these characteristics,
milliradian measurement is actively used in the field for observation using equipment such as
riflescopes, telescopes, and binoculars.

Milliradian, often called a mil, is a unit for angular measurement which is defined as a thousandth
of a radian (0.001 rad ≈ 0.0573◦). That is, milliradian is the angle formed when the length of a
circular arc equals 1/1000 of the radius of the circle. Therefore, one mil approximately subtends
one meter at a distance of one thousand meters as shown in Figure 5.

1000m

          
        1m

Figure 5. Milliradian measurement using observation equipment.

To use the milliradian measurement for positioning, we first interpret the real size and position
of the QR code marker by reading the code information with a smartphone. We used the open
source library zxing [39] to read the position information from the QR code marker. Second, we
measure the pixels per milliradian (PPMR) like the mil scale in the binoculars using a viewing
angle (FOV) of the camera. Generally, the camera device has its own FOV, which can be found in
the specifications of the image sensor and lens.

PPMRh =
Pw

Milsh
, PPMRv =

Ph
Milsv

, (10)

where Pw and Ph are the number of pixels for width and height of the image frame captured from
camera. Also, we can derive the number of horizontal and vertical mils, Milsh and Milsv, from the
camera module’s viewing angles, FOVh and FOVv, as follows:

Milsh =
FOV◦h

0.0573◦
, Milsv =

FOV◦v
0.0573◦

, (11)

Figure 6 shows an example of a QR code marker used for positioning. Since the smartphone
captures an image frame from the camera module, the proposed algorithm searches the locator
symbols in the QR code. The locator symbols are usually displayed in a large rectangular shape at
three places: the lower left corner, the upper left corner, and the upper right corner. Additionally,
a smaller symbol may be included in the lower right corner depending on the amount of data.
In this study, we used three symbols (lower left, upper left, and upper right symbols) to measure
the size of a marker on the image frame. We can measure the size of a marker in pixels using
Euclidean distance between each symbol in the marker from the image frame, but we cannot
measure the real size of a marker. Besides, even if the distance between the marker and the
device is measured, the current position of the device can not be estimated without the position of
the marker. For this reason, we included the following information in the QR code; real length
between symbols in QR code (Lh, Lv) and setup angle (θM) and position (xM, yM) of the marker.
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To measure the distance between marker and device using information from the QR code, we
need to know the number of mils (MilsM) and real length (LM) of the marker.

Eh =
√
(x3 − x2)2 + (y3 − y2)2, Ev =

√
(x2 − x1)2 + (y2 − y1)2 (12)

         

                  

  

  

Figure 6. QR code marker and milliradian measurement. (The center coordinates of the locator symbols
are marked in green.)

In (12), (x1, y1), (x2, y2), and (x3, y3) are the coordinates of each locator symbol on the QR code.
When the marker is scanned in front of the device, Eh and Ev are almost the same because we used
a square-shaped marker. However, Eh becomes smaller when the marker is scanned from the left
or right side while Ev becomes smaller when the marker is scanned from the upper or lower side.
Therefore, we selected the larger of the values Eh and Ev as the representative length (LM) and
mils (MilsM) of marker as shown in (13).

LM =

{
Lh if Eh > Ev

Lv else
, MilsM =

{ Eh
PPMRh

if Eh > Ev
Ev

PPMRv
else

(13)

D[m] =
LM[mm]

MilsM
(14)

In (13), Lh is the real length between P3 and P2, and Lv is the real length between P2 and P1. If the
horizontal euclidean distance Eh is larger than Ev, variables for horizontal values (Lh, Eh, PPMRh)
are used to measure the distance. Otherwise variables for vertical values (Lv, Ev, PPMRv) are
used to measure the distance. The distance from camera to marker is obtained by dividing the real
size of the marker (LM) by the mils of the marker (MilsM).

Table 2 shows the experimental results of the proposed algorithm. To measure the accuracy, we
used a printed QR code of 30 cm in width and height, and a Samsung SM-N950 smartphone
Galaxy Note 8. The experimental result shows that the proposed algorithm can estimate the
distance between marker and device accurately. In experiments using other smartphones (LG-F700,
LM-G710, SM-G930), we found no significant difference in the measured distance according to the
smartphone model.

Table 2. Measured distance from smartphone to marker using milliradian measurement.

Dreal (m)
(A)

Dmeasured (m)
(B)

Error
(|A−B|)

Dreal (m)
(A)

Dmeasured (m)
(B)

Error
(|A−B|)

1 1.00 0.00 6 6.12 0.12
2 2.02 0.02 7 7.05 0.05
3 3.04 0.04 8 8.04 0.04
4 3.99 −0.01 9 9.09 0.09
5 5.04 0.04 10 10.08 0.08
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Figure 7 shows how proposed vision-based positioning calculates the device position,
after obtaining the distance (D) from device to marker. To estimate the current smartphone’s
position, we have to know the absolute position of the marker and the relative position of
the device. As we mentioned before, we can read the information from marker such as QR
code installation angle relative to magnetic north (θM), QR code location (coordinate and floor),
and additional service information by scanning the QR code. Then, we can estimate the position
of the device simply using (15).

(xD, yD) = (xM + D cos(θM − θD), yM − D sin(θM − θD)) (15)

Here, θD is the heading angle of the device obtained from the PDR positioning.

  [°]            

       
  [°]

           

       

        
           

     

Figure 7. Estimation of current smartphone position using QR code.

3.4. Hybrid Positioning Algorithm

As it mentioned earlier, BLE beacon positioning can only give the approximate location of the
device due to RF signal fluctuations caused by fading, shadowing, and wireless channel interference.
But, Geomagnetic field positioning does not suffer from the effects of multipath and fading, but it can
be affected by electronic devices and moving objects containing ferromagnetic materials. Geomagnetic
field positioning is also limited because the same MFI patterns may be observed at multiple locations.

To compensate for the disadvantages of each positioning technique, we propose a hybrid
positioning system. The proposed hybrid smartphone positioning system combines BLE beacons,
geomagnetic field, PDR, and marker detection to overcome the limitations of each technology.
Among these techniques, beacon and geomagnetic field positioning use fingerprinting because it
can be used to implement a real-time positioning system with low complexity. However, using two
fingerprint maps for real-time positioning will increase the battery consumption of the mobile device
due to the increased transaction costs involved in accessing the fingerprint database. Considering
real-time processing, the proposed hybrid positioning system minimizes the transactions for the
fingerprint database by limiting the search range with the previous position and PDR.

3.4.1. App. 1: Marketing Service

For a commercial marketing service, the proposed system should be capable of estimating
approximate position with minimum complexity. That is, the application designed for the commercial
marketing service (App. 1) is expected to estimate the user’s position, while operating with low battery
consumption. In our work, this positioning service is achieved using BLE beacons and IMU based
PDR. This combination is designed so the two components compensate for each other’s shortcomings
(instability of RSSI and drift error of PDR). The working procedure for the proposed hybrid positioning
application using Beacon and PDR is shown in Figure 8.



Energies 2019, 12, 3702 12 of 20

PDR

Positioning

BLE Beacon

Positioning

Beacon 

Database

Average

Update 

Search 

Range

Reset PDR

(Step =0)

Step = 0

Y

N

Step > T
Y

IMU

Data

Beacon

Signal

Current

Position

(x, y)

Previous

Position

Figure 8. Flow chart of hybrid positioning application (App. 1) using BLE beacon and PDR.

App. 1 positioning finds the absolute position of the device by combining two sets of coordinates
obtained from BLE beacon and PDR positionings. To minimize accumulated drift error of the PDR
over time in the positioning process, App. 1 positioning periodically resets the PDR position using
the coordinates obtained from the BLE positioning. The following steps show the procedure of
the algorithm:

1. BLE beacon-based positioning measures the coordinates (XBLE, YBLE) by using WKNN
fingerprinting. In the initialization phase of the system, the beacon positioning coordinates
are determined as the current position because there has been no step yet (step = 0 in Figure 8).

2. PDR detects the user’s steps, determines step length and heading direction, and then estimates
the new PDR coordinate (XPDR, YPDR), updating the position from the previous coordinate.

3. The search range for beacon fingerprinting is created using PDR-estimated coordinates. That is,
the beacon positioning coordinates are searched within a limited range around the PDR
estimated coordinates.

4. Final coordinates for the user’s location are measured by averaging the coordinates derived from
the beacon and PDR positions.

(X f inal , Yf inal) =
{

XBLE+XPDR
2 , YBLE+YPDR

2

}
(16)

5. When the accumulated step is larger than a maximum value T, the number of the accumulated
steps is reset to 0 and the coordinate obtained from PDR, (XPDR, YPDR), is initialized with (XBLE,
YBLE) to eliminate the drift error of PDR positioning. This positioning refresh process is useful,
because PDR approach is generally effective for short-term positioning over a limited area.
In this work, we use 10 for T. This value of 10 for T has been empirically obtained through the
testbed experiments.

3.4.2. App. 2: Navigation and Tracking Service

For services such as indoor navigation and human tracking, high positioning accuracy is needed
even in places where it is not easy to find a destination, such as buildings with complicated interior
structures and many passageways. Signal interference and multipath fading in these environments
limit the use of BLE beacon indoor positioning. Moreover, to use additional RF-based positioning
technology such as Wi-Fi and UWB, infrastructure costs and smartphone battery consumption become
disadvantages. Therefore, the positioning algorithm for App. 2 adds magnetic field-based positioning
to the App. 1 positioning method. Figure 9 shows the App. 2 positioning procedure.
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Figure 9. Flow chart of hybrid positioning algorithm (App. 2) using BLE beacon, magnetic field,
and PDR.

The operation of beacon and PDR positioning is the same as App. 1, but in App. 2 the measured
MFI in the IMU data is used for geomagnetic field positioning. In addition, the output from BLE and
PDR positioning is used as an input for the geomagnetic field positioning to limit the search range
for fingerprinting. Limiting the search range of the geomagnetic field fingerprinting helps minimize
the positioning error range, even in the case when similar MFI values can be observed at different
locations [13].

3.4.3. App. 3: Entertainment Service

There is an active indoor commercial entertainment movement to incorporate vision-based
services such as VR, AR, or MR (Mixed Reality) combined with user-friendly content such as
multimedia, games, shopping guides, and so on. Vision-based services require high positioning
accuracy because they need to visualize the contents accurately at the user’s location. However,
in an environment with many factors affecting the magnetic field and beacon signals, there are many
challenges for positioning. For example, in exhibition or event venues, BLE beacon signals can be
affected by people walking around, and the magnetic field can be distorted by electrical devices or
obstacles containing ferromagnetic material. When positioning using beacon and magnetic field suffers
from a large error, vision-based positioning techniques can be used. To develop a system with the
minimum positioning error, App. 3 positioning combines beacon, PDR, and milliradian positioning to
estimate the user’s current position.

With vision markers installed along the user moving path, the smartphone user can easily
find a QR code marker and scan it for vision-based positioning along the way. In the position
where the marker has been scanned, sub-meter positioning can be provided using milliradian
positioning. When the marker is not available, beacon and PDR-based positions are used to update the
current position.

Figure 10 shows the processing procedure of the proposed hybrid positioning method. The overall
positioning process is similar to App. 1, but it has been combined with milliradian positioning.
When the user directs the camera module of the device toward the QR code marker, the device reads
the position information from the QR code on the marker. If position information is present in the
scanned QR code, the proposed App. 3 estimates the current position using milliradian positioning.
After the current position of the device has been obtained using milliradian positioning, App. 3
positioning gives it the highest priority to determine the current position because it has higher
positioning accuracy than the beacon and PDR. The position estimated from PDR is updated with
the position from the milliradian positioning. The BLE beacon and PDR positionings are mainly used
where the marker is not scanned.
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Figure 10. Flow chart of hybrid positioning algorithm (App. 3) using BLE beacon, PDR,
and marker detection.

4. Performance Evaluation

Experiments have been conducted in the 8th floor corridor and in the 3rd floor hall of the
Department of IT Convergence Building at Chosun University, Korea. The dimensions of the corridor
and the hall are 100 m × 2.25 m and 14 m × 6.5 m, respectively. For the design of smartphone
applications, we collected 3D point cloud data using a 3D laser scanner (Faro Focus3D X 330) and
created 3D indoor space maps as shown in Figure 11. Both testbeds for our experiments were equipped
with BLE beacons and QR code markers are shown in Figure 12. The blue dots and red dots indicate
the position of BLE beacons and QR markers, respectively. In this experiment, we deployed Estimote
beacon devices based on the Bluetooth 4.0 Low Energy (BLE), and the beacon advertising packet
interval was set to 300 ms and the transmission power was set to −8 dBm. We collected the estimated
position data while moving to the usual walking speed (≈1.3 m/s) in the testbed. Table 3 gives the
details of the testbeds.

Table 3. Experimental conditions of testbeds.

Number of
BLE Beacons

Number of
Reference Points

Distance between
Beacons (m)

Distance between
Reference Points (m)

Area
(m2)

Hall 6 35 6.75 1.8 225
Corridor 35 125 6.75 1.8 91

(a) (b)
Figure 11. 3D indoor space map. (a) Indoor scanning to build the 3D map. (b) Sample of rendered 3D
indoor map.
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(a) (b)
Figure 12. Experiment testbeds equipped with BLE beacons and QR marker. (a) Hall of 3rd floor.
(b) Corridor of the 8th floor.

We verified the positioning accuracy of our hybrid IPS using experiments conducted in each
testbed. First, we evaluate the cumulative distribution function (CDF) of position estimation error in
three application types. In the experiments, we measured positioning at different locations 50 times in
each testbed and constructed CDFs of the positioning errors for each application.

Figure 13 and Table 4 show the positioning error results of three types of different positioning
combinations (App. 1–3) performed in each testbed. The App. 1 positioning method produces 54%
and 58% for Pro(Err. ≤ 2 m) which is the probability that the positioning error is less than 2 m in
the hall and corridor, respectively. However, in the App. 2 positioning method, the performance
of the positioning accuracy is improved by the addition of geomagnetic field based positioning to
the App. 1 positioning method. We observed that 70% and 90% Pro(Err. ≤ 2 m) are achieved at
the hall and corridor, respectively. In the App. 3 positioning method using the smartphone camera,
the positioning accuracy could also be improved using milliradian positioning. The results show 68%
and 92% Pro(Err. ≤ 2 m) at each testbed. It is certain that the positioning accuracy could be improved
based on the positioning methods used in App. 2 and 3. App. 1–3 showed average positioning
errors of 1.82, 1.65, and 1.61 m at the hall testbed, and average errors of 1.44, 1.31, and 1.03 m at the
corridor testbed. These results show that our smartphone indoor positioning system can choose a
combination of positioning methods according to the required positioning accuracy and complexity
level for each application.

0 2 4 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

CD
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(b)
Figure 13. CDF of positioning error for each application. (a) Positioning error in the hall. (b) Positioning
error in the corridor.
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Table 4. Positioning accuracy of the proposed IPS for each application.

Mode Testbeds Pro(Err. ≤ 4 m) Pro(Err. ≤ 2 m) Average Error [m] Standard Deviation

App. 1 Hall 0.96 0.54 1.82 1.191
Corridor 0.99 0.58 1.44 0.705

App. 2 Hall 0.98 0.70 1.65 0.891
Corridor 0.99 0.90 1.31 0.734

App. 3 Hall 0.97 0.68 1.61 1.051
Corridor 0.99 0.92 1.03 0.740

Next, we conducted another experiment to demonstrate the practical use of our positioning
system for App. 1–3. In this experiment, the positioning data are recorded while a person moves in a
designated path while holding an Android device. The real path that the person traversed and the
estimated path are denoted with a blue line and a red dotted line as shown in Figure 14. Because the
person walked freely inside the experiment area, the real path can be visually uneven compared to the
estimated path.

Real Trajectory
Estimated Trajectory

(a)

Real Trajectory
Estimated Trajectory

(b)

Real Trajectory
Estimated Trajectory

(c)
Figure 14. Estimation of moving trajectory in the corridor. (a) Moving trajectory of user measured with
App. 1. (b) Moving trajectory of user measured with App. 2. (c) Moving trajectory of user measured
with App. 3.

From the figures, we can see that the estimated trajectory using the App. 2 positioning method
is better than the estimated trajectory using the App. 1 method. Even though lower positioning
performance is shown for the App. 2 positioning method, it will still be useful for App. 2 services such
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as pedestrian indoor navigation, path finding, and tracking. Also, from Figures 14c and 15c, we can see
that the estimated trajectory using the App. 3 positioning method has the best accuracy out of all three
application methods. The milliradian positioning estimates the current location with the positioning
accuracy shown in Table 2 from the QR marker and updates it to update the PDR position.

Real Trajectory
Estimated Trajectory

Y
 [m

]

X [m]

(a)

Real Trajectory
Estimated Trajectory

Y
 [m

]

X [m]

(b)

Real Trajectory
Estimated Trajectory

Y
 [m

]

X [m]

(c)
Figure 15. Estimation of moving trajectory in the hall. (a) Moving trajectory of user measured with
App. 1. (b) Moving trajectory of user measured with App. 2. (c) Moving trajectory of user measured
with App. 3.

We classified three types of applications depending on the positioning accuracy and infrastructure
features required for IPS. With estimated positions from each application method, the smartphone
positioning system can be used for each target application. The application service examples (App.
1, App. 2, and App. 3) for which we developed our IPS (indoor navigation, indoor monitoring,
and indoor AR services) are shown in Figure 16.
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(a) (b)

(c) (d)

Figure 16. Indoor location-based services. (a) Indoor navigation service. (b) AR mode indoor
navigation service. (c) Indoor monitoring service (people tracking). (d) Providing statistical data
(people counting).

5. Conclusions

In this paper, we propose a smartphone-based IPS performing three types of applications
(App. 1–3) using four different positioning methods and limited external infrastructure. In the
App. 1 scenario, we use BLE beacons and IMU-based PDR to obtain a 4 m positioning error for
social marketing services such as advertisement and indoor monitoring. In the App. 2 scenario,
we added one more positioning method, geomagnetic field-based positioning, to those of App. 1
for navigation and tracking services. This combination of positioning methods achieves about 2 m
positioning error. Finally, in the App. 3 scenario, the combination of BLE beacon, PDR, and milliradian
positioning is used for indoor entertainment services such as VR and AR games. Specifically, a new
proposed indoor positioning method, milliradian positioning using QR code markers, achieved high
positioning accuracy of less than 2 m positioning error. In this paper, through indoor experimental
results, we showed that the proposed IPS meets the positioning requirements for each application
scenario and demonstrated examples of each application. We believe that the smartphone-based IPS
presented here can become a practical system for increasing indoor service applications.

Author Contributions: Conceptualization, J.-Y.P.; Data curation, H.-S.G.; Project administration, H.-S.G.; Software,
H.-S.G.; Supervision, J.-Y.P.; Validation, J.-Y.P.; Writing–original draft, H.-S.G.; Writing–review & editing, J.-Y.P.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Harle, R. A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutor. 2013,
15, 1281–1293. [CrossRef]

2. Sakpere, W.; Adeyeye-Oshin, M.; Mlitwa, N.B. A State-of-the-Art Survey of Indoor Positioning and
Navigation Systems and Technologies. S. Afr. Comput. J. 2017, 29, 145–197. [CrossRef]

3. Deak, G.; Curran, K.; Condell, J. A survey of active and passive indoor localisation systems. Comput.
Commun. 2012, 35, 1939–1954. [CrossRef]

http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.18489/sacj.v29i3.452
http://dx.doi.org/10.1016/j.comcom.2012.06.004


Energies 2019, 12, 3702 19 of 20

4. Li, X.; Pahlavan, K. Super-Resolution TOA Estimation with Diversity for Indoor Geolocation. IEEE Trans.
Wirel. Commun. 2004, 3, 224–234. [CrossRef]

5. Habaebi, M.H.; Khamis, R.O.; Zyoud, A.; Islam, M.R. RSS Based Localization Techniques for ZigBee Wireless
Sensor Network. In Proceedings of the 2014 International Conference on Computer and Communication
Engineering, Kuala Lumpur, Malaysia, 23–25 September 2014; pp. 72–75.

6. Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Non-Parametric and Semi-Parametric
RSSI/Distance Modeling for Target Tracking in Wireless Sensor Networks. IEEE Sens. 2016, 16, 2115–2126.
[CrossRef]

7. Xia, S.; Liu, Y.; Yuan, G.; Zhu, M.; Wang, Z. Indoor Fingerprint Positioning Based on Wi-Fi: An Overview.
Int. J. Geo-Inf. 2017, 6, 135. [CrossRef]

8. Ma, R.; Guo, Q.; Hu, C.; Xue, J. An improved WiFi indoor positioning algorithm by weighted fusion. Sensors
2015, 15, 21824–21843. [CrossRef]

9. Wang, H.; Lenz, H.; Szabo, A.; Bamberger, J.; Hanebeck, U.D. WLAN-Based Pedestrian Tracking Using
Particle Filters and Low-Cost MEMS Sensors. In Proceedings of the 2007 4th Workshop on Positioning,
Navigation and Communication, Hannover, Germany, 22 March 2007; pp. 1–7.

10. Renaudin, V.; Combettes, C. Magnetic, acceleration fields and gyroscope quaternion (MAGYQ)-based
attitude estimation with smartphone sensors for indoor pedestrian navigation. Sensors 2014, 14, 22864–22890.
[CrossRef]

11. Jimenez, A.R.; Seco, F.; Zampella, F.; Prieto, J.C.; Guevara, J. PDR with a foot-mounted IMU and ramp
detection. Sensors 2011, 11, 9393–9410. [CrossRef]

12. Subbu, K.P.; Gozick, B.; Dantu, R. LocateMe: Magnetic-fields-based indoor localization using smartphones.
ACM Trans. Intell. Syst. Technol. 2013, 4, 1–27. [CrossRef]

13. Jang, H.J.; Shin, J.M.; Choi, L. Geomagnetic Field Based Indoor Localization Using Recurrent Neural
Networks. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), Singapore,
4–8 December 2017.

14. Chen, G.; Meng, X.; Wang, Y.; Zhang, Y.; Tian, P.; Yang, H. Integrated WiFi/PDR/Smartphone Using an
Unscented Kalman Filter Algorithm for 3D Indoor Localization. Sensors 2015, 15, 24595–24614. [CrossRef]

15. Wu, Z.; Jedari, E.; Muscedere, R.; Rashidzadeh, R. Improved particle filter based on WLAN RSSI
fingerprinting and smart sensors for indoor localization. Comput. Commun. 2016, 83, 64–71. [CrossRef]

16. Chen, Z.; Zou, H.; Jiang, H.; Zhu, Q.; Soh, Y.; Xie, L. Fusion of WiFi, smartphone sensors and landmarks
using the kalman filter for indoor localization. Sensors 2015, 15, 715–732. [CrossRef]

17. Faragher, R.; Harle, R. Location Fingerprinting with Bluetooth Low Energy Beacons. Sel. Areas Commun.
2015, 33, 2418–2428. [CrossRef]

18. Gozick, B.; Subbu, K.P.; Dantu, R.; Maeshiro, T. Magnetic maps for indoor navigation. IEEE Trans.
Instrum. Meas. 2011, 60, 3883–3891. [CrossRef]

19. Haverinen, J.; Kemppainen, A. Global indoor self-localization-based on the ambient magnetic field. Robot.
Auton. Syst. 2009, 57, 1028–1035. [CrossRef]

20. Nazemzadeh, P.; Fontanelli, D.; Macii, D.; Palopoli, L. Indoor Localization of Mobile Robots Through QR
Code Detection and Dead Reckoning Data Fusion. IEEE/ASME Trans. Mechatron. 2017, 22, 2588–2599.
[CrossRef]

21. Ma, Y.; Soatto, S.; Kosecka, J.; Sastry, S.S. An Invitation to 3-D Vision: From Images to Geometric Models; Springer:
New York, NY, USA, 2012; ISBN 978-0387008936.

22. Woodman, O.; Harle, R. Pedestrian localisation for indoor environments. In Proceedings of the 10th
International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 114–123.

23. Klingbeil, L.; Wark, T. A Wireless Sensor Network for Real-Time Indoor Localisation and Motion Monitoring.
In Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN 2008),
St. Louis, MO, USA, 22–24 April 2008; pp. 39–50.

24. Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. Comput. Graph. Appl. 2005, 25, 38–46.
[CrossRef]

25. Lee, S.W.; Mase, K. Recognition of walking behaviors for pedestrian navigation. In Proceedings of the 2001
IEEE International Conference on Control Applications (CCA’01), Mexico City, Mexico, 7 September 2001;
pp. 1152–1155.

http://dx.doi.org/10.1109/TWC.2003.819035
http://dx.doi.org/10.1109/JSEN.2015.2510020
http://dx.doi.org/10.3390/ijgi6050135
http://dx.doi.org/10.3390/s150921824
http://dx.doi.org/10.3390/s141222864
http://dx.doi.org/10.3390/s111009393
http://dx.doi.org/10.1145/2508037.2508054
http://dx.doi.org/10.3390/s150924595
http://dx.doi.org/10.1016/j.comcom.2016.03.001
http://dx.doi.org/10.3390/s150100715
http://dx.doi.org/10.1109/JSAC.2015.2430281
http://dx.doi.org/10.1109/TIM.2011.2147690
http://dx.doi.org/10.1016/j.robot.2009.07.018
http://dx.doi.org/10.1109/TMECH.2017.2762598
http://dx.doi.org/10.1109/MCG.2005.140


Energies 2019, 12, 3702 20 of 20

26. Zeng, Q.; Wang, J.; Meng, Q.; Zhang, X.; Zeng, S. Seamless Pedestrian Navigation Methodology Optimized
for Indoor/Outdoor Detection. IEEE Sens. 2018, 18, 363–374. [CrossRef]

27. Zhuang, Y.; El-Sheimy, N. Tightly-Coupled Integration of WiFi and MEMS Sensors on Handheld Devices for
Indoor Pedestrian Navigation. IEEE Sens. 2016, 16, 224–234. [CrossRef]

28. Lee, S.; Kim, B.; Kim, H.; Ha, R.; Cha, H. Inertial Sensor-Based Indoor Pedestrian Localization with Minimum
802.15.4a Configuration. IEEE Trans. Ind. Inform. 2011, 7, 455–466. [CrossRef]

29. Liu, H.H.; Liu, C. Implementation of Wi-Fi signal sampling on an android smartphone for indoor positioning
systems. Sensors 2018, 18, 3. [CrossRef]

30. Tong, X.; Liu, K.; Tian, X.; Fu, L.; Wang, X. Fineloc: A fine-grained self-calibrating wireless indoor localization
system. IEEE Trans. Mob. Comput. 2018, 18, 2077–2090. [CrossRef]

31. Santosh, S.; Hui-Seon, G.; Nak-Yong, K.; Suk-Seung, H.; Jae-Young, P. Improving Indoor Fingerprinting
Positioning with Affinity Propagation Clustering and Weighted Centroid Fingerprint. IEEE Access 2019, 7,
31738–31750. [CrossRef]

32. Amirisoori, S.; Daud, S.M.; Ahmad, N.A.; Aziz, N.S.N.A.; Sa’at, N.I.M.; Noor, N.Q.M. WI-FI Based Indoor
Positioning Using Fingerprinting Methods (KNN Algorithm) in Real Environment. Future Gener. Commun.
Netw. 2017, 10, 23–36. [CrossRef]

33. Wang, Q.; Sun, R.; Zhang, X.; Sun, Y.; Lu, X. Bluetooth positioning-based on weighted K-nearest neighbors
and adaptive bandwidth mean shift. Distrib. Sens. Netw. 2017, 13, 1–8. [CrossRef]

34. Yadav, R.K.; Bhattarai, B.; Gang, H.S.; Pyun, J.Y. Trusted K Nearest Bayesian Estimation for Indoor Positioning
System. IEEE Access 2019, 7, 51484–51498. [CrossRef]

35. Jimenez, A.R.; Seco, F.; Prieto, C.; Guevara, J. A comparison of Pedestrian Dead-Reckoning algorithms using
a low-cost MEMS IMU. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing,
Budapest, Hungary, 26–28 August 2009; pp. 37–42.

36. Misra, P.; Enge, P. Global Positioning System: Signals, Measurements and Performance, 2nd ed.; Ganga-Jamuna
Press: Lincoln, MA, USA, 2010; ISBN 978-0970954428.

37. Chung, J.; Donahoe, M.; Schmandt, C.; Kim, I.J.; Razavai, P.; Wiseman, M. Indoor Location Sensing Using
Geo-magnetism. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and
Services, Bethesda, MD, USA, 28 June–1 July 2011; pp. 141–154.

38. Basiri, A.; Amirian, P.; Winstanley, A. The Use of Quick Response (QR) Codes in Landmark-Based Pedestrian
Navigation. Navig. Obs. 2014, 2014, 1–7. [CrossRef]

39. Google. ZXing. Available online: https://opensource.google.com/projects/zxing (accessed on 8 August 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSEN.2017.2764509
http://dx.doi.org/10.1109/JSEN.2015.2477444
http://dx.doi.org/10.1109/TII.2011.2158832
http://dx.doi.org/10.3390/s18010003
http://dx.doi.org/10.1109/TMC.2018.2871206
http://dx.doi.org/10.1109/ACCESS.2019.2902564
http://dx.doi.org/10.14257/ijfgcn.2017.10.9.03
http://dx.doi.org/10.1177/1550147717706681
http://dx.doi.org/10.1109/ACCESS.2019.2910314
http://dx.doi.org/10.1155/2014/897103
https://opensource.google.com/projects/zxing
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Indoor Positioning System
	Design Goals for Indoor Positioning System
	Operation of Indoor Positioning System
	Positioning Techniques for the Indoor Positioning System
	Bluetooth Low Energy (BLE) Based Fingerprinting
	Pedestrian Dead Reckoning-Based Positioning (PDR)
	Magnetic Field-Based Fingerprinting 
	Vision Based Positioning

	Hybrid Positioning Algorithm
	App. 1: Marketing Service
	App. 2: Navigation and Tracking Service
	App. 3: Entertainment Service


	Performance Evaluation
	Conclusions
	References

