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Abstract: The operation of the smart grid is anticipated to rely profoundly on distributed
microprocessor-based control. Therefore, interoperability standards are needed to address the
heterogeneous nature of the smart grid data. Since the IEC 61850 emerged as a wide-spread interoperability
standard widely accepted by the industry, the Sampled Measured Values method has been used
to communicate digitized voltage and current measurements. Realizing that current and voltage
measurements (i.e., feedback measurements) are necessary for reliable and secure noperation of the
power grid, firstly, this manuscript provides a detailed analysis of the Sampled Measured Values protocol
emphasizing its advantages, then, it identifies vulnerabilities in this protocol and explains the cyber threats
associated to these vulnerabilities. Secondly, current efforts to mitigate these vulnerabilities are outlined
and the feasibility of using neural network forecasters to detect spoofed sampled values is investigated.
It was shown that although such forecasters have high spoofed data detection accuracy, they are prone to
the accumulation of forecasting error. Accordingly, this paper also proposes an algorithm to detect the
accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the
proposed methods is experimentally verified in a laboratory-scale smart grid testbed.

Keywords: artificial intelligence; attack detection; cyber security; microgrid; process bus; IEC 61850;
sampled measured values; neural networks; forecasting; message spoofing

1. Introduction

The envisioned smart grid is conceived to be an automated cyber-physical system that integrates
and utilizes high processing power and real-time monitoring and control capabilities to fulfill the
expected requirements (e.g., maximum resilience and economic benefits). This vision includes a myriad
of microgrids operating autonomously and coordinating with each to achieve the necessary objective
functions (e.g., maximize their economic benefits by exchanging power directly, sell/buy power to/from
the utility, or enhance the resilience of the network).

For the aforementioned vision to be realized, a decentralized monitoring and control architecture
is expected to be utilized, or a combination between centralized and decentralized schemes (e.g.,
centralized controller could be utilized in small scale systems combined with a decentralized layer
that manages the centralized controllers). Therefore, in these decentralized topologies, a connection to
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existing industrial standards with interoperable protocols and data structures is needed to govern the
secure and feasible exchange of information in the complex heterogeneous smart grid [1].

The International Electrotechnical Commission’s (IEC) 61850 standard defines comprehensive
and unified data models for electric substations’ automation and control systems. It was developed by
IEEE and the Technical Committee No. 57 Working Group 10 (TC57 WG10) for Ethernet (i.e., IEEE
802.3)-based communication. It’s a well-known and widely accepted standard in the industry, which
offers an inclusive data modeling method and an abstraction approach that unifies the data structure
formats among equipment from different vendors [2]. Moreover, the IEC 61850 requirements presented
a novel approach to allow all sensors measurements to be available simultaneously to all controllers
within a control network by introducing the process bus concept. Hence, IEC 61850 could be adopted
for distributed and decentralized control schemes. As shown in Figure 1, this is achieved by inserting
a communication bus, namely the process bus, which separates the input/output of a controller from
the controller itself, where the logic takes place. In this scheme, the merging units (MU)s are used to
digitize the measurements and publish them to the process bus. The MUs subscribe to the process bus
to get the specific commands with specific IDs to their respective physical device (e.g., boost converter.
Also, the controllers follow the publisher/subscriber model, where they subscribe to the process bus
for their respective measurements with unique ID and publish their commands. Accordingly, all the
measurements are accessible to all IEC 61850-compatible devices within the network of the process bus
in real-time, and in a form that follows the Sampled Measure Values (SMV) protocol.
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Each communication protocol has specific structure for messages. IEC 61850 maps the data to
three different protocols, according to the application. The protocols are:

(1) Manufacturing Message Specification (MMS) protocol, which is utilized in high-level control
layers and automation functionalities;

(2) Generic Object-Oriented Substation Event (GOOSE), which is used in real-time event-driven
situations (e.g., sending a signal to open a circuit breaker);

(3) Sampled Measured Values (SMV) that is utilized in continuous real-time monitoring and control.

According to the above-mentioned description of each protocol, it can be perceived that SMV
could be utilized in smart grid control operations. In this regard, SMV could offer numerous advantages
such as facilitating the interoperability of data and reducing the complexity of the system connectivity.
However, SMV serves real-time applications, which comes at the expenses of the vulnerability to cyber
threats due to the absence of encryption for example. Therefore, in this manuscript, the authors extend
their previous work [3] as follows:
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• The authors’ previous work examined the SMV protocol, its pros and cons, and the feasibility of
incorporating it for smart grid applications. A discussion and explanation of the current cyber
vulnerabilities of the smart grid and the possible counter measures, emphasizing on the SMV
cyber threats were presented. Finally, an investigation of the feasibility of using a Neural Network
Forecaster (NN-F) to detect spoofed SMV packets on a simulated microgrid was presented.

The previous work concluded that although NN-Fs have a high detection accuracy, they could
still be susceptible to the accumulation of the forecasting error. The contributions of this manuscript
can be summarized as follows:

(1) Proposing a lightweight bi-layer algorithm that is able to detect the accumulation of forecasting
error and successfully identify spoofed packets.

(2) Implementing and verifying the proposed bi-layer algorithm on a hardware hybrid microgrid
with microcontrollers running a Linux kernel and communicating over a real IEC 61850 network.

The rest of the paper is organized as follows:

• Section 2 highlights the work related to the applications of artificial intelligence tools (e.g., Machine
learning) in cybersecurity;

• Section 3 discusses the structure of the SMV datagram and gives a general overview about the
SMV advantages;

• Section 4 explains the various types of cyber threats and the possible protection actions.
Also, it emphasizes on SMV spoofing attack and outlines the conducted research regarding
this topic;

• Section 5 introduces a bi-layer forecasting algorithm to detect the SMV spoofing attacks using
NN-F. Also, it discusses in detail the construction of Neural Network Forecaster (NN-F)
detection-based framework;

• Section 6 describes the simulation model used for creating rich training and testing data sets.
• Section 7 discusses the results.
• Section 8 concludes the paper.

2. Applications of Artificial Intelligence Tools in Attack Detection

Machine learning has been utilized in power systems for application like forecasting energy
consumption and forecasting the production capacity of renewables [4,5]. Given the recent worldwide
interest in cyber security of the smart grid, researchers from academia and industry have been
extensively exploring uses of machine learning for early attack detection.

Generally speaking, the work in this area could be classified as follows:

• Classification of measurement data as false or legitimate

The work in [6] utilizes data mining approaches to categorize the data of Phasor Measurement
Units as normal or attacked. [7] presents analyzes the performance supervised learning techniques for
classifying measurement data. In [8], in order to detect bad data, the authors introduce a weighted
least square based detection algorithm. The aim of this work was to identify failures in current and
potential transformers. [9] Classifies synchrophasor data as anomalous or not using machine learning
techniques. [10] Compares the performance of several data-stream-mining-based intrusion detection
techniques to detect anomalous behaviour in smart meter data. [11] Provides an integrated anomaly
detection system on the host and network levels to detect attacks on a single substation or on several
substations based on a predefined set of violations indications. [12] Uses common paths mining
to detect intrusions on an electric transmission distance protection system using system data from
synchrophasors and network logs. [13] Uses data mining and forensics tools to identify users’ login
behaviors, thus, preventing, detecting, and blocking insiders or attackers from performing malicious
activities in closed environments.
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• Learning from previous attack activity

In [14], the authors propose an early-warning-system to anticipate the occurrence of distributed
denial of service attacks on wireless smart meter networks by modeling the malicious activity, which
may compromise the privacy of users, as a Gaussian process. Then, this model is utilized to forecast
future attack activity. The work in [15] detects network traffic that deviates from the expected
communication pattern or physical limitations that the system must obey. The work in [16] developed
an intrusion detection system that has the ability to classify substation events as real or fake using
previous data.

• Simulation Model-based attack detection

In [17], a framework was designed to increase the integrity of Automatic Generation Control
(AGC) data using the help of synthetic data. In [18], the authors detected false data injection attacks on
PMUs and smart meters through one-step-ahead state prediction techniques. The work in [19] applies
offline checkup for anomalies by combining the overall system variables using Markov models. [20]
proposes the use of on-the-fly power system dynamics simulation (i.e., power flow analysis) for
command authentication. [21] proposed a method to authenticate commands by faster than real time
simulation using a real time model of the affected subsystem. [22] presents a multi-attribute intrusion
detection system specific for Supervisory Control and Data Acquisition (SCADA) systems.

Since the SMV protocol has specific requirements, such as high data transmission rate, the authors
will analyze the SMV protocol and discuss possible attacks in the following section before outlining
the countermeasures and the proposed defense mechanisms.

3. The Sampled Measure Values Protocol

3.1. Structure of the SMV Datagram

An SMV datagram follows a modified Abstract Syntax Notation One (ASN.1) Basic Encoding
Rules (BER) Tag/Length pair encoding scheme [23]. Figure 2 shows the structure of an SMV datagram.
It is composed of three parts, namely a header, a payload and a checksum. The SMV header starts with
a destination address, which is one of the multicast MAC addresses listed in the IEC 61850 standard
that start with 01 0C CD 04, followed by the source device’s MAC address. IEC 61850-9-2, which
covers the specifications for SMV messaging [24], also recommends the implementation of Virtual Lan
(VLAN) and priority tagging based on IEEE 802.1Q followed by the Ethernet type, which is 0x88BA for
SMV messages [25].
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The payload of an SMV packet is composed of an SV Protocol Data Unit (SVPDU). In its turn,
the SVPDU is composed of an Application ID (APPID) field, which is a unique identifier used to
classify/distinguish SMV messages, a Length field, which is a hexadecimal number that represents the
length of the entire SVPDU, two reserved fields for future use, and an Application Protocol Data Unit
(APDU) field.

In an APDU, there can be several Application Service Data Units (ASDU)s. These are objects
containing information relevant for an individual node. Using several ASDUs allows a single device to
send or receive physical sensor data from several nodes within the power system in the same SMV
message. The number of ASDUs is stored in noASDU [26]. Each ASDU then contains seven subfields
which are as follows [27]:

• svID: Sample Value ID;
• SmpCnt: Counter that increments each time a new sampling value is taken;
• ConfRev: Value that indicates the number of configuration changes;
• SmpSynch: A Boolean value that is true if the SV is synchronized by a clock signal and false if it

is not;
• Seq Data: Sequence of data;
• Data: The actual dataset.

3.2. Advantages of an SMV Process Bus

Conventionally, a device called Merging Unit (MU) is used to convert voltage and current readings
from potential and current transformers, respectively, into digital data and publish them as Sampled
Measured Values. Recently, modern devices called non-conventional instrument transformers have an
Ethernet interface and publish measurements as SMV packets directly to the process bus. SMV packets
are broadcast messages published on a Local Area Network (LAN) that uses switched Ethernet
communication. In depth details are given in IEC 61850-9-2 and the more recent Light Edition of the
Standard. SMV messages are mapped to the Data Link Layer of the Open System Interconnect (OSI)
model. This model was developed in order to provide interoperability to computer networks, and is
divided into seven layers. The Data Link layer is in fact Layer 2 of the OSI model. SMV messages are
broadcast messages and an svID field is utilized to distinguish and classify them. Applications utilizing
SMV messaging follow the publisher/subscriber communication scheme. That is, on one hand, MUs
publish SMV messages to the process bus, and on the other, Intelligent Electronic Devices (IED)s,
the devices that have the control logic, subscribe to one or more SMV message. The IED receives only
the messages it is configured to subscribe to, rather than receiving all SMV messages.

This concept of the process bus and SMV messaging has a lot of advantages in the context of
microgrid control:

• In terms of system monitoring, the messages stream on a networked process bus will be composed of
well-structured SMV packets, each with its unique identifier. This will allow for easy classification
and improve the visibility of the power network [2].

• In terms of cost, the networked process bus replaces point-to-point analogue connections between
devices as shown in Figure 1b. This will drastically reduce the copper wiring involved, thus
reducing costs and saving on installation and maintenance.

• In terms of control, the SMV process bus facilitates the migration to decentralized and/or distributed
control from the current centralized control scheme, which will enhance the reliability of the power
network. Centralized control is characterized by a single server, which receives measurements from
all the sensors in a system and gives actuation commands. A centralized server is considered as a
single-point-of-failure (i.e., a bottleneck). Decentralized and distributed control avoid this vulnerability.

• In terms of data handling, the SMV process bus provides vendor-independence. That is,
IEC 61850 SMV-compliant devices should abide by the message structure shown in Figure 2.
Therefore, achieving data interoperability.



Energies 2019, 12, 3731 6 of 24

4. Threat Identification and Current Mitigation Strategies

In this section, the IEC 61850 Sampled Measured Values protocol is exploited. We start by a
discussion of the sources of attacks, followed by an explanation of how the attacks work, and a
discussion on viable countermeasures.

SMV messages are directly mapped to Layer 2 of the OSI model. Therefore, they are (1)
non-routable, and (2) non-blocking. In the following, we discuss the threats that could compromise the
SMV process bus.

Attacks on IEC 61850 network could originate from several sources. These include (a) inside
personnel with access to the IEC 61850 network. These individuals have the capability to infect
the system with malware either intentionally (e.g., disgruntled employee), or unintentionally (e.g.,
improper use of infected devices). (b) Attacks can originate from the supply chain. That is, malware
infection occurs during a device’s production phase [28]. (c) An attacker can achieve access to a local
area network through corporate networks or personal devices of the employees. Attackers can use
techniques, such as password cracking, spam emails, and backdoors [29]. Two successful attacks on
industrial control systems and power system control networks, which were publicly disclosed, are the
Stuxnet incident, where the attacks targeted PLCs in a nuclear plant, and the Crash Override incident,
where attackers targeted substations’ networks in Ukraine [30,31]. Once an attacker successfully
penetrates the network, (s)he has the potential to launch several attacks, as described below.

4.1. Denial of Service (DoS)

DoS refers to the time when a device (or a user) is denied access to a service by an attacker.
A possible method to launch a DoS attack could be by flooding the network to delay delivery of
packets beyond the critical flooding rate. This is achieved by clogging the communication channel
and draining the computational resources of the communicating devices. Network flooding can occur
on the Network or the Application layer of the OSI model. In this manuscript, we are interested in
DoS attacks on the process bus. As can be seen in Figure 3, there are two ways to flood a process bus
with unwanted traffic. The first is by transmitting SMV packets with a high transmission rate, which
will delay the transmission of legitimate SMV packets beyond 3 ms. Utilizing the APPID of SMV
messages and monitoring the rate of each message will allow the detection of this for of DoS. Only two
publishing rate are allowed for SMV messages per the recommendations of the IEC 61850-9-2LE
standard. These are: 80 samples/AC cycle or 256 samples/AC cycle for 50 Hz and 60 Hz systems,
respectively. Violating these rates for a certain SMV stream will allow the detection of a DoS attack.
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However, an attacker could still flood the network by utilizing more than one publisher to
transmit SMV messages without violating the aforementioned rates. To defend against that, a list
associating svIDs and the data in the svPDU should be created. This will help identify undefined
svIDs. Additionally, each SMV is associated with a sample counter. Therefore, when an attacker uses
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unregistered IDs, repeated or out-of-sequence sample counters could be detected. This is because an
attacker cannot block messages on Layer 2 of the OSI model.

4.2. Eavesdropping

As shown in Figure 4, eavesdropping refers to when an attacker passively sniffs network traffic.
Thus, the term eavesdrop. Although this is a passive attack, the attacker performs eavesdropping
attacks to increase his/her advantage by gaining knowledge about the power system. Starting from
the IP Layer of the OSI model, encryption can be used to defend against eavesdropping using
techniques, such as Secure HTTP (HTTPS), Secure File Transfer Protocol (SFTP), and Secure Shell
(SSH). Scanning network cards in promiscuous mode as well as monitoring network traffic are viable
defensive measures [32].
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However, IEC 62351-6 standard, which dictates the security recommendations for SMV messages,
recommends that for “applications using SMV and requiring 3 ms response times, multicast
configurations, and low CPU overhead, encryption is not recommended” [24]. Accordingly, SMV
packets are left without encryption and eavesdropping on the process bus is a threat, which gives
attackers an advantage.

4.3. Replay

In this attack, an attacker listens on the network and records the transmitted packets to later
replay them on the network. This is shown in Figure 5. Given that SMV packets are non-blocking and
that there exists a sample counter field for each packet, replayed SMV packets could be detected by
monitoring the process bus for sample counters that are repeated or out-of-sequence.
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4.4. Man-in-the-Middle (MITM)

In an MITM attack, an attacker intercepts traffic between two devices through Address Resolution
Protocol (ARP) Poisoning. ARP is a communication protocol, which is used to convert IP addresses
into MAC addresses [33]. As shown in Figure 6, in ARP Poisoning, an ARP reply is sent by an attacker
to change the IP to MAC addresses mapping on a given the network. Therefore, there will be incorrect
association between IP and MAC addresses. This will allow an attacker to interrupt the messages
transmitted between the communicating devices, and to manipulate them.
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A Man-in-the-Middle attack is not possible on the SMV protocol because SMV messages are
broadcasted on Layer 2. An exception exists if an insider compromised the network.

4.5. SMV Spoofing

In an SMV spoofing attack, an SMV packet with changed data field(s) is transmitted to the process bus
by an attacker’s device, while keeping the MAC address of the legitimate publisher unchanged, as depicted
in Figure 7. This is feasible since SMV packets are not encrypted. An attacker can record an SMV packet,
decode its contents, manipulate certain fields, and retransmit the spoofed message to the process bus.
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To counterfeit is attack, the IEC 62351 standard recommends the use of RSA-based signatures for
authenticating SMV packets and ensuring their integrity. However, since RSA-based authentication
is computationally expensive, it is unfitting for the SMV protocol. This is because the SMV protocol
requires an end-to-end time delay of utmost 3 ms [34,35].

IEC 62351 ale recommends the use of a Hash-based Message Authentication Code (HMAC).
HMAC was found to have an average latency in the 100 microseconds range. As indicated in [36], this
latency increases drastically with the increase in the size of the packet. The experiments on latency that
were reported in the literature were executed on high-end processors, such as Intel core i7 processors
and FPGAs [36,37]. Such processing power is expensive and is seldom an option in IEDs and MUs,
especially not on current devices I the field.

Additionally, in applications requiring broadcast communication, such as the process bus,
non-repudiation is not provided by MAC authentication [36]. For instance, any device can craft a
message with a spoofed MAC address and publish it mimicking the original publisher. Here, the attacker
needs to have knowledge about the secret key. Attacks reported in the literature, such as length
extension attacks, internal state attacks, key recovery attacks, and forgery attacks can make this
possible [38–40].

Although an attacker can publish a spoofed SMV message, and a subscriber can verify it,
the original SMV packet cannot be blocked from being also published by the legitimate publisher.
In such an event, the subscribing device will receive an SMV packet that has a repeated or an
out-of-sequence sample counter. The issue at hand could confuse the subscribing device since it cannot
identify the legitimate packet. Replay attacks will put the subscribing devices in the same situation.

5. Feasibility Study and Detailed Description of Using Neural-Network-Forecasters in Power
Systems for Detection of SMV Spoofing Attacks

In the aforementioned discussion, it can be noticed that the SMV protocol structure along with
the related IEC 62351-6 recommendations ensure the safety and resiliency of the SMV process bus
against various types of cyber-attacks. Yet, knowledgeable attackers with enough time and effort could
successfully interrupt a power system’s operation and trigger a sequence of unwanted events (e.g.,
tripping Circuit breakers, which leads to a cascaded failure).

In this section we will address the following:

- Firstly, describe the system understudy and the flow/exchange of data within this system;
- Secondly, explain the SMV spoofing attack formulation;
- Finally, introduce a bi-layer Neural-Network-forecasting algorithm to detect and prevent

such attacks.

5.1. System Understudy

The system being studied is a DC microgrid tied to an AC microgrid by a bidirectional inverter,
introduced in Figure 8. The AC microgrid comprises:

- Generators 1 and 2 with ratings 13.8 KVA and 10.3 KVA, respectively. Both are 230 V;
- Two variable loads, each has 10 steps (300 W to 3 kW). Both loads were set to 600 W during

the experiment;
- Measurement and protection devices: each bus has a 3-phase input/output relay, and each phase

has its own potential and current transformer for measurements.

The DC side (i.e., DC microgrid) contains:

- A DC source resembling a DER;
- A 60 ohms constant DC load and a 12 ohms resistive pulse DC load.

The two microgrids exchange power to maintain demand/generation balance, when necessary.
This takes place by adjusting Id (i.e., the current direct component) within the inverter controller,
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which could be observed in Figure 9. The typical dq transformation is utilized to acquire the abc
currents’ references from the dq currents’ references. Then these generated abc currents’ references
are compared to the actual measured abc currents. The output errors are used to adjust the switching
and accordingly adjust the actual abc currents to the desired references through a hysteresis current
controller. This controller operates the voltage source inverter in a current control mode. The software of
all the MUs and the IEDs were coded in C++ on embedded microcontrollers running on a Linux-kernel.
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5.2. SMV Spoofing Attack Scenario

To have effective detection mechanisms for cyber-attacks, we proposed to add a physical-based
layer forecaster to the cyber layer, as shown in Figure 10. The typical cyber layer checks the standard
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conditions (e.g., repeated sample counters). However, in our algorithm, the physical-based layer relies
on the incoming SMV measurements from the physical system (e.g., digitized currents) and utilizes the
Neural-Network-Forecaster to detect and prevent an SMV spoofing attack.
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Having the proper knowledge of the structure of the SMV datagram, it is feasible to create a
malware that targets precisely the measurements being sent through the process bus. The breakdown of
the malware attack stages could be seen in Figure 11. Initially, on the LAN, the malware sniffs packets
and looks for an SMV packet. Once an SMV Ethertype is verified, the malware takes out the header
information and stores it. Then it will start publishing spoofed packets, containing false measurements,
through the process bus using the stored header fields to make the message appears legitimate. In other
words, the malware spoofs the header of an SMV message and uses it to construct a new SMV datagram
with a fake data field, which is the field that contains the measurements. Finally, it publishes it to the
process bus. In this paper, Python along with packet crafting and network sniffing libraries from Scapy
were used to write/code the malware.
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5.3. The Bi-Layer Neural-Network-Forecasting Algorithm to Detect Spoofed SMV Attack

Earlier it was discussed that injecting a spoofed SMV will cause an out of sequence or a repeated
sample counter, which makes the detection seems to be trivial. However, it should be noted that the
subscribing-device will be unable to decide which message contains the true measurement value.
To re-iterate, the spoofed message will have the MAC address of the original sender. Therefore, this
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subsection examines the feasibility of utilizing neural-network-forecasters to distinguish between
spoofed and legitimate messages.

5.3.1. Layer 1: The Neural-Network-Forecaster

In the framework proposed, shown in Figure 12, there are mainly publishers, subscribers, and the
process bus. The publisher (e.g., MU) receives the instantaneous analogue measurements from potential
(PTs) and/or current transformers (CTs), then digitizes them via A/D converter, and finally publishes
them as SMV packets over the LAN to the process bus. The subscriber (e.g., the control agent/IED)
subscribes to the process bus with a unique SMV ID to access these measurements. During this process,
if the control agent detected an anomaly (e.g., a sample counter is repeated), it passes the suspected
two samples to the first layer, which is the Neural-Network-Forecaster (NNF).

Energies 2019, 12, x FOR PEER REVIEW 12 of 24 

 

5.3.1. Layer 1: The Neural-Network-Forecaster 

In the framework proposed, shown in Figure 12, there are mainly publishers, subscribers, and 
the process bus. The publisher (e.g., MU) receives the instantaneous analogue measurements from 
potential (PTs) and/or current transformers (CTs), then digitizes them via A/D converter, and finally 
publishes them as SMV packets over the LAN to the process bus. The subscriber (e.g., the control 
agent/IED) subscribes to the process bus with a unique SMV ID to access these measurements. During 
this process, if the control agent detected an anomaly (e.g., a sample counter is repeated), it passes 
the suspected two samples to the first layer, which is the Neural-Network-Forecaster (NNF). 

 
Figure 12. Algorithm of Layer 1. 

There are four main categories under which cybersecurity work could be classified: 

(1) Prevention: to develop cyber security solutions that ensure resilient delivery of energy. Work in 
this area includes authentication, encryption, key management and storage, and others. 

(2) Detection: to develop cyber security solutions that are capable of identifying the occurrence of 
cyber incidents. Work in this area includes anomaly detection, detection of false (or spoofed) 
data injection attacks, detection of password cracking attempts, and others. 

(3) Response: to develop cyber security solutions that take appropriate measures in response to the 
detected cyber incidents. 

(4) Recovery: to develop tools and techniques that allow the restoration of energy and other services 
that were lost due to cyber incidents. 

In this manuscript, the proposed algorithm falls into the second and third categories. This is 
because it detects spoofed SMV messages and then responds by discarding the spoofed messages 
and utilizing the legitimate ones. 

The detection and response functionality of this layer could be briefly laid out as follows: the 
NNF predicts the future value of the incoming measurements using N-previous samples (e.g., 
digitized measurements from CTs/PTs). Then an error comparison will be performed between the 
received suspected samples from the control agent and the forecasted one from the NNF. Finally, the 
received SMV that comes out to be associated with an error greater than a predefined limit will be 
discarded and the other SMV is considered as legitimate. 

Figure 12. Algorithm of Layer 1.

There are four main categories under which cybersecurity work could be classified:

(1) Prevention: to develop cyber security solutions that ensure resilient delivery of energy. Work in
this area includes authentication, encryption, key management and storage, and others.

(2) Detection: to develop cyber security solutions that are capable of identifying the occurrence of
cyber incidents. Work in this area includes anomaly detection, detection of false (or spoofed) data
injection attacks, detection of password cracking attempts, and others.

(3) Response: to develop cyber security solutions that take appropriate measures in response to the
detected cyber incidents.

(4) Recovery: to develop tools and techniques that allow the restoration of energy and other services
that were lost due to cyber incidents.

In this manuscript, the proposed algorithm falls into the second and third categories. This is
because it detects spoofed SMV messages and then responds by discarding the spoofed messages and
utilizing the legitimate ones.

The detection and response functionality of this layer could be briefly laid out as follows: the NNF
predicts the future value of the incoming measurements using N-previous samples (e.g., digitized
measurements from CTs/PTs). Then an error comparison will be performed between the received
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suspected samples from the control agent and the forecasted one from the NNF. Finally, the received
SMV that comes out to be associated with an error greater than a predefined limit will be discarded
and the other SMV is considered as legitimate.

In this work, we consider the current waveform as a single-variable time-series. Generally speaking,
let x be the variable representing the value of the current and t be time. Therefore, moving backward
from time t, our aim is to predict the value of the current at some point in the future (t + s∆t), where
∆t is the time-step used in sampling:

x(t + s∆t) = f ( x(t), x(t− ∆t), x(t− 2∆t), . . . .) (1)

Since we are forecasting the value of one incoming sample, the forecasting window s = 1 in
Equation (1). Therefore, Equation (1) becomes:

x(t + ∆t) = f ( x(t), x(t− ∆t), x(t− 2∆t), . . . , x(t− n∆t) (2)

Eventually, the problem becomes a function approximation problem, where n previous values of
x are utilized as input to predict the future values of x.

Before we proceed, it is important to mention the difference between time-series analysis and
time-series prediction/forecasting. In time-series analysis, which is also referred to as descriptive modelling,
a time-series is modelled in order to determine its components in terms of seasonal patterns, trends,
relation to external factors, etc. Whereas, time series forecasting uses the information in a time series (e.g.,
history data) to forecast future values of that series [41]. Although understanding a dataset (i.e., time-series
analysis) can help enhance forecasting, it is not required and can result in a large technical investment in
time and expertise not directly aligned with the desired outcome, which is forecasting the future [41].

To solve the problem of approximating f , there a several methods that could be used. The most
popular methods in the literature are Auto Regression (AR), Moving Average (MA), Autoregressive
Moving Average (ARIMA) and ARIMA-based techniques (e.g., Seasonal ARIMA (SARIMA), SARIMA
with Exogenous Regressors (SARIMAX), . . . ). Put in simple terms, these methods approximate f as a
liner function of the differenced observations and residual errors at prior time steps. Other methods,
such as Simple Exponential Smoothing (SES), and Holt Winter’s Exponential Smoothing (HWES)
approximate f as an exponentially weighted linear function of observations at prior time steps.

The above-mentioned methods are best used in order to give an indication of the trend that the
time-series follows. For example, they could be utilized to forecast an increase or a decrease in sales of
a certain brand, or an increase or a decrease in demand for energy in a certain area.

In our specific application, the current data we are trying to forecast is highly non-linear.
Also, we are interested in predicting the value of the current in an incoming SMV sample. In order to do
that with very high accuracy, we need to use non-linear approximation methods for f . Since Lapedes
and Farber published their work in 1987, neural networks have repeatedly proven themselves as
promising forecasting tools [42]. Not only do NNs capture the complex underlying relationship in many
real-world problems, but also, they can be retrained and adapted, online, to learn new characteristics
of the data that could appear with time [43].

According to the discussion above, a feedforward neural network was selected as the forecaster in
our proposed algorithm.

The NNF contains three main layers: input, hidden, and output layers. Let the input layer be
X1[I + 1] = {x11, x12, . . . , x1i, 1}, where i ∈ {1, I}, I is the input layer dimension, and x1I+1 = 1 is its bias.
Within this layer, inputs are multiplied by weights (w1h,i) to obtain N1[H] = {n11, n12, . . . , x1h} vector,
which will be inputted to the hidden layer. H is the dimension of the hidden layer and h ∈ {1, H}. N1
vector’s elements are being calculated according to (3):

n1h =
I+1∑

i = 1

x1i ×w1h,i (3)
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Then, each of elements will be handled via a neuron in the next layer (i.e., hidden layer). This will
result in vector X2[H + 1] = {x21, x22, . . . , x1h, 1}. X2’s elements are then obtained through (4) and (5):

x2h =
2

1 + e−n2h
− 1 (4)

x2H+1 = 1 (5)

The bias of the hidden layer is x2H+1. Equation (4) is the activation function for the neurons in the
hidden layer. It is a sigmoid function.

Lastly, X2 gets processed though the output layer to obtain the output vector, S[K] = {s1, s2, . . . , sk}.
The output vector’s elements are obtained according to (6):

sk =
2

1 + e−
∑H+!

h=1 x2h×w2h,k
− 1 (6)

where K is the dimension of S and k ∈ {1, K}. w2h,k represent the weights between the hidden and
output layers. The sigmoid function is also utilized for the neuron in the output layer as in (4).

In order to train, verify, and test the NNF, various data sets were generated from the MG described
earlier in Section 5.1, for the NNF to be able to distinguish between legitimate and spoofed SMV
messages, before being implemented in the hardware experiment. The data sets correspond to normal
operation of the MG, various fault events such as tripping of transmission lines, and contingencies such
as disconnection of generating units. All the data sets were collected in a history log file. Portion of
the data was gathered directly from the hardware experiment, and to generate a rich set of data,
a simulation approach was used. In this approach a Simulink based model of the MG was used to
acquire the data for the rest of the contingency and fault events. Further details regarding model
accuracy is discussed in Section 6.

NNF Structure: in this paper, the NN utilizes 20-previous samples to predict the value of sample
21. Hence, the NNF has 20 neurons in the input layer and one in its output layer. Ten neurons were
utilized in the hidden layer. The reason behind this is founded on an empirical study of the NNF
accuracy verses its computational time and it came out that using 20, 10, and 1 neuron/s in the input,
hidden, and output layers, respectively, would yield least computational time with highest accuracy.

NN Type Utilized: the neural network used is a feed forward neural network trained with the
sliding window approach. Starting from the 1st sample, 20-samples were counted as input and sample
No. 21 was set to be forecasted (i.e., set as the target output). Next, the window slide/ move one
sample, where the input samples will then become No. 2 to 21, inclusive, and the forecasted sample
now (i.e., target output) is sample No. 22, and the sliding-forecasting process continues. The general
process is explained in Figure 13.
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Setting the Decision Threshold: earlier we mentioned that an error comparison will be performed
between the received suspected samples from the control agent and the forecasted one from the NNF.
In order to set the decision threshold whether an SMV packet is legitimate or not, a Monte-Carlo-analysis
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was done for over 2500 test cases for current waveforms that were gathered from Load 1 (could be seen
in Figure 8). Each test case contains 2001 samples of measurement.

In order to train the NNF to distinguish between legitimate and fake samples, for each of the test
cases’ data, at different instants, fake random data was inserted according to (7). This fake data that
was randomly injected ranged between 4 and –4 Amps, which is 1.5 times the rated current of the MG
system described earlier:

f ake data = (B−A) × rand() + A (7)

where A = −4, B = 4, and rand() is pseudo-random number function that generates a random value
between 0 and 1. Then, the error between the forecasted sample of the neural network and the fake
sample inserted was recorded. It was found that the highest accuracy for detecting a spoofed sample is
at a 2% decision threshold.

Layer 1 was implemented and tested on the control IED managing CB 9 of Load 1. Fake SMV
packets with current measurement were injected according to (7). In Figure 14, it can be observed that
the NNF has a high forecasting accuracy for the incoming measurement value. The conducted study
reveals that utilizing an NNF has a good potential to identify and respond to spoofed messages based
on learning the system’s characteristics. However, over time, forecasters are vulnerable to the buildup
of the forecasting error. Knowing that, attacker/s could publish spoofed messages such that they don’t
exceeds the 2% threshold. If the control IED uses the fake SMV message, the buffer used by the NNF to
forecast the next measurements will have an incorrect misleading entry. In this case, the control IED
will become indecisive. Based on the results from Layer 1, when the control IED receives an SMV with
a repeated or out of sequence sample counter, and is unable to distinguish the spoofed message, it will
activate Layer 2 of the defense mechanism. The accumulation of the forecasting error is shown later
along with the results of Layer 2, in Figure 17.
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5.3.2. Layer 2: Enhancing the Resiliency of the Neural Network Forecaster

• Attacker Sends One Spoofed Message

As mentioned earlier, if the IED uses the fake message to forecast the new sample, the buffer used
to forecast the incoming measurements will have a misleading entry. Eventually the accumulation
of the forecasting error with time, will lead the NN-F to start discarding legitimate messages, thus,
disrupting the control operation of the IED. To re-iterate, when an attacker sends one spoofed message
that doesn’t violate the detection threshold of the NN-F, the control IED will have two SMV packets,
but it cannot decide which one is legitimate.

To address this problem, the IED will hold onto the suspected samples. For the sake of simplicity,
let us call them sample A and sample B. The IED will then receive 5 new consecutive samples. For every
one of the new samples, the error between the forecasted sample and the received one will be recorded.
Then the error derivative will be calculated. If the derivative indicates that the error is increasing, a flag
is issued. At this stage, thread 2 of the control agent is activated. Thread 2 will create two datasets:

(1) The first set contains one of the suspected samples (Sample A), five previous samples, and the
five new samples, which were monitored.

(2) The second dataset contains the other suspected sample (Sample B), five previous samples,
and the five new monitored samples.

The IED will then calculate the mean, the variance and the standard deviation of these datasets.
These datasets are all from the measurements received over the network.

Simultaneously, the control agent sends the flag and the position of the suspected sample to
thread 2 of the MU agent over an out-of-band trusted network. The MU will assemble a similar dataset
composed of the suspected sample, five previous, and five later samples. However, this dataset will be
from the local digitized data that hasn’t been altered (i.e., these messages are trusted).

Note: In this work, we trust that the measurements that are directly read by the MU through
Analogue Inputs are correct. The MU is the source of collection of the measurements. There are still
cases where, for example, saturation of CTs and/or PTs occur resulting in bad data (as a result of CT
saturation and not cyber-attack). However, there are solutions that could detect such incidents, such as
the solution presented in [8]. In this manuscript, we assume that the data digitized by and saved in the
MU’s memory is correct.

Similarly, thread 2 of the MU agent will calculate the mean, the variance, and the standard
deviation of the assembled (trusted) dataset, and will send them to the control agent over the trusted
network. Finally, the control agent will compare the received set of indicators with the results of the set
containing Sample A and the results of the set containing Sample B. The dataset which has matching
statistical indicators is the one bearing the legitimate sample. This process is shown in Figure 15.

• Attacker simulates a fault condition or hides a fault condition by replaying normal condition.

The NN-F is trained to forecast measurement values under fault conditions and other contingencies.
The attacker could inject spoofed messages simulating a fake fault and the NN-F could identify them
as legitimate. The attacker simulates a fault, one sample after the other. The attacker sends the 1st
packet, which doesn’t violate the threshold. If the IED uses it, in the next time step, the NN-F will
forecast a higher current value (fault) and will discard the legitimate message.

In this case, if two repeated or out-of-sequence samples are detected after each other, then
Layer 2 is activated to decide if this is a real fault or not. Similar to Case 1, the IED will create two
datasets. One dataset has the samples that correspond to the fake fault, while the other has the normal
measurements. The dataset which has matching statistical indicators with the MU will be the legitimate
one. Conversely, the attacker could hide an actual fault by replaying measurements corresponding to
the normal condition. Following the same procedure, the IED could decide which message stream is
valid and which is not.
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• Selection of the Statistical Indicators

The purpose of the statistical module is to create a small yet indicative feature vector of the two
datasets generated by the control IED and the MU. The selected statistical features for the two datasets
are the mean, variance, and standard deviation. In order to select the appropriate number of samples
for the IED to hold on to, the following study was performed. Consider the current data shown in
Figure 16a. Various spoofed data were injected at the peak of the sine wave ranging between ±0.5 to
±1.5 times of that sample.
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Next, five samples were taken before and after the peak sample and the mean, variance,
and standard deviation were calculated. The same were also calculated to the same sample from
the original data (i.e., with the actual value instead of the fake sample). The error of both statistical
vector indicators was then calculated for all the fake data cases. Next, the dataset size was increased to
10 before and 10 after the fake sample and the error was calculated. The same procedure was then
repeated reaching a dataset size of 60 samples before and 60 samples after the fake sample. The same
procedure was repeated at all the critical locations in the sinusoid: the minimum, negative/positive
rising/falling edge, and zero crossing. All the error data were then averaged for each data set size and
are plotted in Figure 16b. As shown in Figure 16b the most indicative dataset (largest errors) was for
5 samples before the suspected sample and 5 samples after it.
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Figure 16. (a) Performed fake data injection attack study; (b) selection of indicators.

6. Model Development and Verification

As mentioned earlier, the NN-F was trained using datasets for different operational
states/contingencies of the microgrid collected from history recorded data or from simulation data.
To ensure the fidelity of the simulation model, the simulated microgrid developed in Matlab/Simulink
was verified by comparing bus voltages, currents, and power measurements with experimental data.
Table 1 shows that the simulated microgrid accurately describes the real one.

Table 1. Simulated model verification.

G1 Bus G2 Bus AC Load 1 AC Load 2 DC Microgrid

S E S E S E S E S E

Irms 2.1 2.6 0.7 0.8 1.5 1.2 1.3 1.5 0.4 0.4

Vrms 120 119 120 120 116 116 118 119 118 118

P (W) 761 758 243 255 431 435 441 442 170 170

Note: E: Experimental; S: Simulation.
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In practice, each utility or system operators has their own tools to model their power systems for
internal studies. Such models and tools can be used to generate training data.

7. Results and Discussion

To study and analyze the effectiveness of the proposed framework, we implemented a MU at Load
1 and an associated control agent that receives current measurements of Load 1 on the other side of the
process bus. Several experiments were performed to assess the effectiveness of the different modules
in this framework against spoofed measurement attacks and the results are reported in this section.

7.1. Experiment 1

The malware script was used to inject a small perturbation to the current value at sample 1200.
In this small perturbation attack, the NN forecasting error started to accumulate. At this stage, the AI
module monitored the rate of change of the error of the next few samples. As seen in Figure 17, the error
derivative was increasing indicating that indeed an accumulation of the forecasting error between the
received and forecasted samples was occurring. Therefore, the IED sent a flag to the merging unit
including the position (i.e., sample 1200) of the suspected sample to activate layer 2 of the proposed
framework. Both the control agent and its merging unit performed the statistical study explained
earlier. The results of the statistical analyses showed a difference in the calculated mean, variance,
and standard deviation. This means that the forecasting error accumulated due the perturbation attack.
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7.2. Experiment 2

The malware script was used to inject spoofed messages simulating a fake fault. As seen in
Figure 18, the attacker injected current measurement values corresponding to a fake fault condition.
Since the first spoofed sample does not violate the detection threshold, it is assumed that the IED uses
it to forecast the next sample. The next forecasted sample will be closer to the fault condition, rather
than the legitimate SMV. Therefore, the IED will forecast that there is a fault, and will act accordingly.
However, given the proposed cyber and physical defense mechanism, when the IED noticed two
SMV messages, one after the other, each with repeated sample counters, it performed the algorithm
in Section V B. Based on comparing the statistical indicators it received from the MU and the ones it
calculated, it was able to identify that there is an attack and that this was a fake fault condition.
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7.3. Experiment 3

Finally, the latency of the complete detection process including the information exchange over the
out-of-band network and the hardware time required for packet crafting was assessed.

For the hardware implementation, the authors used the open source libIEC61850 library to
program two Odroid C2 microcontrollers. One was programmed as an IED that subscribes to SMV
packets, whereas the other was programmed as a MU that publishes SMV packets. The bi-layer
algorithm was implemented on those devices as shown in Figure 15 of the manuscript.

In order to calculate the latency of the proposed algorithm, the following experimental setup was
prepared. A High logic value was put on the digital input of the Odroid device representing the IED.
The device was programmed to send the flag to the MU once a High value is detected on its digital
input. The device then calculated its own statistical indicators, waits until it received the output of
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the MU, and takes a decision. Once the decision is made, the IED generates a logic High on one of its
digital outputs. The digital input and the digital output of the IED were connected to the oscilloscope
shown in Figure 19 in the manuscript.

In Figure 19, t1 is the time starting from the instant of issuing the flag, the time to calculate the
two statistical vectors in the control agent. t2 is the time it takes the first packet, which contains the
flag, to reach the MU. t3 + t4 is the time for calculating the statistics vector by the MU and the time
for the packet, which contains the statistics, to reach the control agent, and finally issuing a decision.
Therefore, the total detection latency is calculated in Equation (8):

tT = t1 + t2 + t3 + t4 = 0.4 + 0.25 + 0.25 + 0.3 = 1.2 ms (8)
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8. Conclusions and Recommendations for Future Work

8.1. Conclusions

In this paper, an analysis of the SMV process bus was presented. An overview of the process bus and
its benefits was first given, along with the detailed structure of the SMV datagram. Then, a discussion
of the vulnerabilities of the SMV protocol was presented, and the current security countermeasures
were outlined, such as those stipulated in IEC 62351. After that, the reliability of utilizing neural
network forecasters to detect spoofed messages was studied. The results of this study showed that
although they have a high detection accuracy, they could still be prone to the accumulation of the
forecasting error. Accordingly, this paper also presented a lightweight algorithm, based on statistical
indicators, to enhance the reliability of the neural network forecaster in terms of detecting spoofed SMV
packets. This algorithm is considered as a second line of defense, complementing the cyber security
methods, such as encryption and authentication. The studies were conducted on a laboratory-scale
hardware microgrid with a commercial network switch to be more representative of the microgrid
environment than event-based simulation models.
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8.2. Recommendations for Future Work

Finally, there are two layers on which the proposed algorithm can be implemented. One is the
network layer, and the other is the host layer. Network-based systems monitor the entire traffic flowing
in and out of a network, and they are most likely to be placed at the data entry and exit points, such as
routers and switches. Host-based systems, on the other hand, monitor data coming to and going from
a certain device in a network. Therefore, they are implemented on the device itself.

Each of the network-based and host-based systems has its advantages and disadvantages. The main
focus of this manuscript is to conduct a feasibility study of using neural network forecasters to detect
spoofed SMV packets. We chose to experimentally verify our proposed bi-layer algorithm on an IED
and a MU as a proof of concept. However, the actual implementation in the field (i.e., real systems)
could be improved. For example, on the network level, we could monitor the cyber-side information
(ID and counters), and if an anomaly is detected (repeated counters for instance) then the specific IED
could be triggered. Thus, each IED will be responsible for verifying the integrity of the SMV packets
coming into it.

9. Patents

The U.S. Patent US10362056B1 (23 July 2019) entitled “Content-aware spoofed sensor measurement
data detection in microgrids” is a result of part of the work reported in this manuscript.
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