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Abstract: Electric vehicles (EVs) are designed to improve the efficiency of energy and prevent the
environment from being polluted, when they are widely and reasonably used in the transport system.
However, due to the feature of EV’s batteries, the charging problem plays an important role in the
application of EVs. Fortunately, with the help of advanced technologies, charging stations powered
by smart grid operators (SGOs) can easily and conveniently solve the problems and supply charging
service to EV users. In this paper, we consider that EVs will be charged by charging station operators
(CSOs) in heterogeneous networks (Hetnet), through which they can exchange the information with
each other. Considering the trading relationship among EV users, CSOs, and SGOs, we design their
own utility functions in Hetnet, where the demand uncertainty is taken into account. In order to
maximize the profits, we formulate this charging problem as a four-stage Stackelberg game, through
which the optimal strategy is studied and analyzed. In the Stackelberg game model, we theoretically
prove and discuss the existence and uniqueness of the Stackelberg equilibrium (SE). Using the
proposed iterative algorithm, the optimal solution can be obtained in the optimization problem.
The performance of the strategy is shown in the simulation results. It is shown that the simulation
results confirm the efficiency of the model in Hetnet.

Keywords: electric vehicles; heterogeneous networks; demand uncertainty; power optimization;
Stackelberg game

1. Introduction

Recently, electric vehicles (EVs) with low gas emission and environment protection have attracted
much attention and have been widely applied in some countries when harsh environment problems
are exposed in the world, such as energy shortage, air pollution, and the greenhouse effect [1–4].
Considering the increasing number of EVs, many more charging stations have been built to supply
charging service. However, charging stations always have to confront the overload problem of charging
EVs with a large amount of charging power demand. Then, EVs cannot be charged in time, which will
restrict EV users’ quality of experience (QoE) [5,6].

Due to the limited capacity of batteries, EVs usually have to be charged with low SOC. Recently,
charging stations have attracted much attentions and have been recognized as an available approach
to supply charging service [7]. However, confronting the growing number of EV users, both waiting
time and the power bill account for a major part of their payment. Though some different incentive
mechanisms have been developed so far, there are still some problems, i.e., the optimal strategy of
power management is usually designed based on the demand-side of EV users, which neglects the
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performance of wireless communication, e.g., wireless sensor networks (WSN) and vehicular-grid
networks (V2G) [8].

With the development of communication technology, more and more wireless communication
technology has been used in EVs and charging stations, e.g., vehicular ad-hoc networks (VANETs) and
cognitive radio networks are applied to make the routing choice for EV users [9,10]. Different from the
existing works, we study how to control the power supply among EV users, charging station operators
(CSOs), and smart grid operators (SGOs) in the heterogeneous networks (Hetnet). Through Hetnet,
there are many advantages for the charging system: (i) CSOs can exchange the real-time information
with EV users, by which it helps EV users avoid the charging peak periods and reduce the expenditure
of charging service. (ii) The power efficiency can be improved based on the optimal strategy to be
designed in Hetnet, which can solve the problem of limited power supply. (iii) It can conveniently
supply power to EV users and improve the profits of SGOs with less gas emission [11].

However, in order to improve the quality of experience (QoE), there are still some challenges to
be improved and studied in the charging system when adopting the wireless communication [12,13].
These challenges include how to design the optimal strategy for CSOs, while benefiting both EV users
and power retailers, respectively. At the same time, few works have been performed to make the
optimal strategy in Hetnet [14–16]. Currently, many different power management approaches have
been developed in the literature, aiming for scheduling the power supply with high efficiency [17–19].
In the existing works, the proposed approaches cannot directly be used in our paper, which have been
designed without consideration of the performance of wireless communication.

In this paper, we propose the optimal incentive decision-making scheme to charge EVs in Hetnet.
Firstly, the network model is designed in Hetnet, through which EV users can conveniently be
supplied by CSOs. Then, based on the trading relationship among EV users, CSOs, and SGOs,
we design the utility function for each of them in this charging system, respectively. In this function,
the performance of Hetnet is integrated with the waiting time of EV users. Taking the bit error ratio
(BER) in Hetnet, the load uncertainty is also analyzed and studied. In addition, in order to obtain the
optimal strategy, we propose a four-stage Stackelberg game scheme. Namely, this charging power
problem is formulated as an optimization problem. Through the back induction method, we get the
Stackelberg equilibrium (SE), in which we also analyze and prove its existence. With less computation,
we present an iterative search algorithm to obtain the optimal solution. Finally, simulation results
demonstrate the effectiveness of our proposal.

The contributions of our paper are summarized as follows:

• In order to supply convenient charging service for EV users, the network model is designed.
Through Hetnet, the information of each one in this charging system can be obtained. Here, as an
important criterion in Hetnet, BER is taken into account, by which power loss is brought about.

• Based on the interaction among EV users, CSOs, and SGOs, we develop the utility function of
each one in the charging system, respectively. Simultaneously, load uncertainty is studied and
analyzed, by confronting BER in Hetnet. In order to schedule the power supplied from SGOs,
we propose a four-stage Stackelberg game scheme. Then, the charging problem is formulated as
an optimization problem. Through the theoretical analysis, we prove the existence and uniqueness
of Stackelberg equilibrium (SE) in the proposed scheme.

• With less calculation, we present an iterative search algorithm to achieve SE with maximum
profits of each in the charging system. At last, the simulation results verify the effectiveness of our
proposed algorithm.

The rest of the paper is organized as follows. Section 2 presents a brief overview of the related
work. In Section 3, we design the system model and reveal how to exchange the information in Hetnet.
In Section 4, a Stackelberg game model is proposed to schedule the power supply. Meanwhile, an
iterative search algorithm is presented to achieve optimal solutions. Both simulation results and related
analysis are provided in Section 5, and then, the conclusions are given in Section 6.
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2. Related Work

Based on the development of wireless communication, both charging service for EV users and
advanced communication technologies have been integrated. Through this approach, the QoE of
EV users can be greatly improved with the efficiency of supplying power. Manshadi et al. in [20]
studied how to operate the charging station based on the relationship between the electricity network
and the transportation network. In order to supply the efficient and stable charging service to EV
users, Sun et al. in [21] designed a novel software-defined framework. Yang et al. in [22] proposed a
flexible real-time power management protocol for charging EVs based on the cooperation of each EV.
In the process of managing power, the charging and discharging decision of each EV could be chosen
in real time. Considering the charging problem based on the wireless sensor network, Zhang et al.
in [23] formulated the wireless charging problem as an NP-hard scheduling problem. Hu et al. in [24]
designed an energy management scheme for charging stations to utilize energy efficiently in the
software-defined V2G network. However, the proposed algorithm in the above works mainly focused
on how to schedule the power for EV users and power retailers, neglecting the power supply from
the power grid. The performance of wireless communication is not taken into account, which is very
important in scheduling the power for EV users.

Due to the performance of EV users’ stochastic arrival and departure from charging stations,
the queuing model is widely used to analyze this problem [25]. In order to solve the charging
schedule, researchers studied many methods based on the different objectives. N. Liu et al. in [13]
proposed a novel heuristic algorithm to schedule the power in the commercial building microgrid.
The state of charge (SOC) of EV batteries was considered with the output of PV and the charging rate.
W. Yuan et al. in [19] studied the charging strategy to maximize users’ utility based on the two-stage
Stackelberg model by using the queue model ofM/G/K, in which the location of charging facility and
electrical price were discussed at the same time. I. Bayram et al. in [26] presented the pricing strategy
to satisfy EV users’ power demand based on the QoS, while shifting the power supply shortage during
peak hours. M. Karbasioun et al. in [27] proposed the control policy with the minimal cost for the
operator based on the real-time pricing scheme. C. Jin et al. in [28] investigated the charging schedule
of the electric vehicles with the energy storage in the electricity market under the real-time price.
M. Ismail et al. in [29] studied the profits of operators with queue theory and the proposed search
algorithm to find the optimal outlets and capacity size in the charging facility. A. Ovalle et al. in [30]
presented the charging schedule of EVs with the forward dynamic programming and game theory
approach with the given constraints related to EVs. In addition, considering the driving routing of EV
users with its corresponding constraints, artificial intelligence algorithms are usually used to decide
the optimal strategy in power management [27]. In the existing works, they only considered that the
dynamic event triggering affected the charging power, except the queue waiting time. Though the
optimal solution could be obtained, they neglected users’ different interests with the waiting space
size [31,32].

In contrast, to the best of our knowledge, there are few works on power management with Hetnet.
In this paper, we take EVs with recharged batteries into account and present the optimal strategy in
Hetnet. Firstly, considering the relationship among them composed of EV users, CSOs, and SGOs, we
develop different utility functions with the load uncertainty and BER in Hetnet. In order to obtain the
optimal strategy, we propose a four-stage Stackelberg game scheme, in which SGO is set as the leader,
while both EV users and CSOs are set as followers. Through a back induction method, we get the SE in
the proposed game scheme, by proving its existence and uniqueness. Using the presented iterative
search algorithm, the optimal solutions are achieved with maximum profits in this charging system.
The performance of our proposed algorithm is shown in the simulation results. It demonstrates the
effectiveness of our proposal, through which it can benefit each player in the game.
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3. System Model

3.1. Network Model

In this section, we design the network model in Hetnet to describe the communication in
the charging system. Then, based on the trading relationship among EV users, CSOs, and SGOs,
we develop the utility function of each. Driven by maximum profits, a four-stage Stackelberg game
scheme is proposed to study the optimal strategy.

As shown in Figure 1, we assume that EV users equipped with on-board units (OBU) can
communicate with each other, while they can share real-time information by road side units (RSU).
In order to serve EV users conveniently, the base station (BS) deployed by CSOs is also used
to communicate with EV users in Hetnet, including the power price, power demand, and total
power supply. Based on Hetnet, EV users can be charged with less waiting time than that without
communication technology. In this charging system, we assume that EV user k will be charged by COS
m, which is supplied by SGO i, denoted as ∀k ∈ Jm,Jm = {1, . . . , Jm}, and ∀m ∈ M,M = {1, . . . , M},
respectively. In this paper, SGO i is assumed to supply power to multiple CSOs.

SG

RSU

CS

BS

EV 
RSU

RSU

RSU

EV 

EV 
EV 

EV 

EV 
EV 

EV 

RSU：Road Side Unite

BS：Base Station

CS：Charging Station

SG：Smart Grid

EV：Electric Vehicle

：Communication Link.Coverage of BS;：

Figure 1. Network model in the heterogeneous network.

3.2. Utility Model for Electric Vehicles

In the power market, one of the economic criteria is clients’ satisfaction with respect to the
supplied power. Here, we suppose that the utility function can be defined by the difference between
EVs’ satisfaction and the payment for COS m, which is expressed by:

GEV(X) =
Jm

∑
k=1

(
U1(xk,m, pi

m)− C1(xk,m, pi
m)

)
(1)

s.t. xmin
k,m ≤ xk,m ≤ xmax

k,m (2)

Here, pi
m denotes the power price offered by CSO m; X is the set of power demands, X =

(x1,m, . . . , xJm ,m); U1(xk,m, pi
m) denotes the satisfaction; C1(xk,m, pi

m) denotes the payment for charging
service. xk,m denotes the power demand of EV user k with the constraints of a proper upper limit xmax

k,m
and a proper lower limit xmin

k,m .
Based on the requirement of charging service, EV users can acquire higher satisfaction with less

waiting time and a lower power price. Thus, U1(xk,m, pi
m) should monotonically decrease on waiting
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time Wm and pi
m, respectively. In contrast, it will increase on the amount of charging power xk,m.

According to [33], we design U1(xk,m, pi
m) as a logarithmic function shown by:

U1(xk,m, pi
m) = γ1

xk,m

ςm
+ (Ak −

Wm

Wmax
pi

m) ln(1 + xk,m) (3)

where γ1 denotes the preset economic parameter; ςm is the discount of charging service; Ak is a preset
parameter to ensure this function is non-negative; Wm is the waiting time in CSO m, which is bounded
by the maximum waiting time Wmax.

Meanwhile, EV user k will pay for the charging power supplied from CSOs, including the cost in
the driving distance. Therefore, C1(xk,m, pi

m) is defined by:

C1(xk,m, pi
m) = pi

mxk,m + δk,mdk,m (4)

where δk,m denotes the average economic parameter for EV user k; dk,m is EV user k’s driving distance
to CSO m in Hetnet.

Then, substituting (2) and (3) into (1), we have:

GEV(X) =
Jm

∑
k=1

[
γ1

xk,m

ςm
+ (Ak −

Wm

Wmax
pi

m) ln(1 + xk,m)

− pi
mxk,m − δk,mdk,m

]
(5)

3.3. Utility Model for Charging Station Operators

Meeting the power demand, each CSO can acquire profits through selling the power to EV users.
In order to maximize their profits, CSOs will analyze how to decide the optimal strategy. Here, we
assume that the unstable communication in Hetnet leads to the loss of power in transmission, which
implies that the power demand of EV users received by CSOs will be x̂k,m = (1− ζm)xk,m + ζmθm. ζm

is the probability of the loss of power and θm denotes the load uncertainty in this charging system. θm

is supposed to be a zero-mean random variable with variance σ2
θ . The utility function of CSO m with

its constraints is defined by:

GCS(Y) =
M

∑
m=1

( Jm

∑
k=1

Rk,m(pi
m, xk,m)− C2(ym,i, pi)

)
(6)

s.t.
Jm

∑
k=1

x̂k,m ≤ ym,i (7)

Here, the set of CSOs’ power demand is Y, denoted by Y = (y1,i,, y2,i, . . . , yM,i). C2(ym,i, pi)

denotes the cost for the power supply ym,i from SGO i, which can be designed by:

Rk,m(pi
m, xk,m) = (pi

m −
γ1
ςm

)x̂k,m (8)

C2(ym,i, pi) = piym,i (9)

In order to ensure the balance between the power demand and supply, we define that the
probability of charging power supplied to EV users exceeding the power bought will be less than a
small requirement level, in which a threshold is used to denote the amount of EV users’ power demand
beyond the power supply. Thus, according to (7), it can be further expressed by:
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Pr

{
Jm

∑
k=1

(ηmxk,m + ζmθm)− ym,i ≥ τm

}
≤ ϑm (10)

Here, ηm is the quality of service in Hetnet QoS, denoted by ηm = 1− ζm; τm is the threshold
value; ϑm is a smaller value as the requirement level.

Therefore, substituting (8) and (9) into (6), we have:

GCS(Y) =
M

∑
m=1

[
(pi

m −
γ1
ςm

)
Jm

∑
k=1

(ηmxk,m + ζmθm)− piym,i

]
(11)

3.4. Utility Model for Smart Grid Operators

Based on the above statement, SGOs can also obtain the payoff through selling power to CSOs,
besides the necessary investment in generating electricity. We formulate the utility function as the
difference between the payoff and investment, expressed by:

GSG(pi, Y) =
M

∑
m=1

(
Rm,i(pi, ym,i)− C3(ym,i)

)
(12)

s.t.
M

∑
m=1

ym,i ≤ Θ (13)

where pi is the power price offered by SGO i; Rm,i(pi, ym,i) is SGO i’s payoff; C3(ym,i) denotes the
investment for power supply ym,i. Based on (8) and [24,25], we have:

Rm,i(pi, ym,i) = piym,i (14)

C3(ym,i) =
ai
2

y2
m,i + biym,i + vi (15)

where ai denotes the variable acceleration of the cost function curve; bi is the rate of the variety of the
cost function curve; vi denotes the fixed cost.

Therefore, substituting (14) and (15) into (12), it can be rewritten as:

GSG(pi, Y) =
M

∑
m=1

(
piym,i −

ai
2

y2
m,i − biym,i −vi

)
(16)

3.5. A Four-Stage Stackelberg Game Model

We study and analyze the trading interaction among EV users, CSOs, and SGOs, while the utility
function of each in this charging system is developed, respectively. Due to selfishness, each of them in
this system aims to maximize its own profits without consideration of others’ payoff. However, with
rationality, each of them studies how to maximize its own profits, based on others’ decisions in this
system. Therefore, in order to decide the optimal strategy, we adopt game theory to study the charging
problem, where a four-stage Stackelberg game scheme is developed in Figure 2. In Stage I, SGO i as the
leader will determine the power price pi and broadcast this information to CSOs. The proper amount
of power ym,i (∀m ∈ M) will be decided by each CSO in Stage II, given pi in Stage I. Then, in order to
obtain higher revenue, CSO m will decide its price pm,i and the supply power to EV users in Stage III.
At last, in Stage IV, EV user k (∀k ∈ Jm) will decide its power demand xk,m based on pm,i.
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Stage I: Determine the power 

price offered to CSOs. 

Stage II: The amount of power 

demand bought from SGO i. 

Stage III: The power price offered 

to EV users. 

Stage IV: The amount of power 

demand bought from CSOs 

CSOs 

SGO i

EV Users

Figure 2. Four-stage Stackelberg game scheme. CSO, charging station operator; SGO, smart grid
operator.

For EV users, the relationship among them is non-cooperative and competitive. The objection of
each EV user is to maximize its profits based on the price offered by CSOs. Thus, this problem can be
formulated as an optimization problem shown by:

X∗m = arg max GEV(Xm) (17)

Here, the set of optimal power demand supplied by CSO m is X∗m, denoted by X∗m =

(x∗1,m, x∗2,m, . . . , x∗Jm ,m).
Then, CSOs aim to make the optimal pricing plans, with consideration of EV users’ power demand

bounded by the constraints shown in (2). Similarly, this optimization problem is formulated as:

pi∗
m = arg max GCS(Y, pi

m) (18)

where pi∗
m is the optimal pricing strategy offered by CSO m.

In addition, each CSO will determine the amount of power supplied from SGOs with maximum
profits. Following the optimal pricing strategy pi∗

m , CSO m studies how to obtain the power demand
from SGO i, given the power price pi. In this case, the optimization problem is formulated as:

y∗m,i = arg max GCS(Y, pi
m) (19)

where y∗m,i is the optimal power demand strategy for CSO m powered by SGO i.
Finally, driven by maximum profits, SGOs analyze how to make decisions on the optimal pricing

strategy. Following (19), this problem is formulated as an optimization problem shown by:

p∗i = arg max GSG(pi, Y) (20)

where p∗i is the optimal pricing plan of SGO i offered to CSOs.
Through the above analysis, the optimal solution can be decided by the proposed four-stage

game-theoretical scheme. In this game, SE will be solved to maximize their own profits. In this case,
each of them will not tend to change its optimal decisions.

4. Four-Stage Stackelberg Game Analysis

In this section, we will analyze the game-theoretical scheme and obtain the SE through backward
induction. First of all, we discuss how EV users adjust their power demand to maximize their profits
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in Stage IV. Then, based on EV users’ power demand, we will analyze how CSOs make decisions
on the power pricing for EV users and the amount of power demand from SGO in Stages III and II,
respectively. At last, we exploit how SGO decides the powering strategy in Stage I.

4.1. Power Demand of EV Users in Stage IV

Based on the price broadcast by CSOs, EV users make optimal decisions to maximize their profits,
besides the necessary payment for power demand. In order to determine the optimal strategy, this can
be achieved through solving the following optimization problem shown by:

max
∀k∈Jm ,xk,m≥0

GEV(X)

=
Jm

∑
k=1

[
γ1

xk,m

ςm
+ (Ak −

Wm

Wmax
pm) ln(1 + xk,m)

− pmxk,m − δk,mdk,m

]
(21)

Here, without loss of generality, pm is usually decided to be larger than γ1
ςm

, e.g., pm > γ1
ςm

. Thus,
we take the first derivation of GEV(X) with respect to xk,m as follows.

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

(Ak − Wm
Wmax

pm

1 + xk,m
+

γ1
ςm
− pm

)
(22)

Then, taking the second derivation of GEV(X) with respect to xk,m, we have:

∂2GEV(X)

∂x2
k,m

= −
Jm

∑
k=1

Ak − Wm
Wmax

pm

(1 + xk,m)2 (23)

Since Ak − Wm
Wmax

pm is larger than zero in (3), we can know that ∂2GEV(X)

∂x2
k,m

< 0, which implies that

the first derivation of GEV(X) is strictly decreasing on xk,m. Thus, we divide it into two cases to analyze
the optimal strategy.

Case 1: CSOs will announce the lower price to EV users to be charged.

If the power price pm is lower than
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
in (22), we have:

lim
xk,m→0

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

[
Ak +

γ1
ςm
− pm(

Wm

Wmax
+ 1)

]
> 0 (24)

lim
xk,m→∞

∂GEV(X)

∂xk,m
= −

Jm

∑
k=1

(
pm −

γ1
ςm

)
< 0 (25)

Therefore, based on the results in (24) and (25), this implies that the utility function is firstly
increasing with the increase of xk,m. Then, it continuously decreases with the increase of xk,m. It
will prove that the utility function in (21) is a concave function and that the optimal strategy exists.
Correspondingly, we can obtain the optimal strategy.

Case 2: CSOs will announce the larger price to EV users to be charged.
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If the power price pm is not less than
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
, similar to the method used in Case 1,

we have:

lim
xk,m→0

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

[
Ak − pm(

Wm

Wmax
+ 1)− γ1

ςm

]
≤ 0 (26)

lim
xk,m→∞

∂GEV(X)

∂xk,m
= −

Jm

∑
k=1

(
pm −

γ1
ςm

)
< 0 (27)

From (26) and (27), we can know that the utility function in (21) decreases with the increase of
xk,m, which implies that the optimal strategy also exists. The optimal strategy for EV users is:

x∗k,m = 0 (28)

Based on the above analysis, we can know that GEV(X) is a strictly concave function on X.

The optimal strategy will be obtained through solving
∂GEV(X)

∂xk,m
= 0, and we have:

x∗k,m =


(AkWmax−pmWm)ςm
(ςm pm−γ1)Wmax

− 1, i f pm < (Akςm+γ1)Wmax
(Wm+Wmax)ςm

0, others
(29)

Due to the requirement of protecting batteries’ healthy, each EV user’s power demand is larger
than zero, which means that the power demand of EV users is larger than zero. As a result, the optimal
strategy is obtained as follows.

x∗k,m =
(AkWmax − pmWm)ςm

(ςm pm − γ1)Wmax
− 1 (30)

4.2. Power Price Offered by Charging Station Operators in Stage III

In this subsection, we will study how CSOs make pricing decisions to improve their profits, on the
condition that the power demand of EV users can be decided in Stage IV. Considering the fixed expense
and the power price offered by SGO, CSOs should adjust their power price for EV users driven by
more profits. Due to the impact of uncertain load, we have:

E{GCS(Y, Pi)}

=
M

∑
m=1

{ Jm

∑
k=1

ηm

[
AkWmax − pm(Wm + Wmax)

Wmax
+

γ1
ςm

]
− piym,i − εmLm

}
(31)

s.t. Pr

{
Jm

∑
k=1

[
ηmx∗k,m + ζmθm

]
− ym,i ≥ τm

}
≤ ϑm (32)
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Here, it is worthy to note that (31) implies that the utility function of CSOs is monotonically
decreasing with the increase of pm, which means that the optimal strategy will exist on the condition
that the constraints can be known. Substituting (30) into (32), we have:

Pr

{
Jm

∑
k=1

(ηmx∗k,m + ζmθk,m)− ym,i ≥ τm

}
≤ ϑm

=⇒ Pr

{
Jm

∑
k=1

θk,m ≥
1

ζm
(ym,i + τm −

Jm

∑
k=1

ηmx∗k,m)

}
≤ ϑm

=⇒ 1
2

Pr

{
ζm|

Jm

∑
k=1

θk,m| ≥ ym,i + τm −
Jm

∑
k=1

ηmx∗k,m

}
≤ ϑm (33)

=⇒ 1
2

(ζmσθ)
2 Jm

(ym,i + τm −
Jm
∑

k=1
ηmx∗k,m)

2

≤ ϑm

=⇒ pm ≥
ηm

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
ym,i + τm −

√
Jm

2ϑm
ζmσθ + ηm Jm(

Wm+Wmax
Wmax

)
+

γ1
ςm

which implies that the optimal price is shown by:

p∗m =
γ1
ςm

+

ηm
Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
ym,i + τm −

√
Jm

2ϑm
ζmσθ + ηm Jm(

Wm+Wmax
Wmax

)
(34)

4.3. Power Supply of Charging Station Operators in Stage II

Based on the price and power demand for EV users, the objection of operators will improve their
profits besides the payment for electricity retailers. In this stage, CSOs decide the power supply to be
procured from SGO. Substituting (34) into (11), we have:

E{GCS(Y, Pi)}

=
M

∑
m=1

{ Jm

∑
k=1

[
ηm Ak −

η2
m

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
ym,i+Ωm

Wm+Wmax
Wmax

]
(35)

− γ1ηm Jm(Wm + Wmax)

ςmWmax
− piym,i

}
where:

Ωm = τm −

√
Jm

2ϑm
ζmσθ + ηm Jm(

Wm + Wmax

Wmax
) (36)
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In order to obtain the optimal solution in (35), we should exploit and discuss its existence given the
price offered by SGO. Similar to the method in Stage IV, we take the first derivative of E{GCS(Y, Pi)}
with respect to ym,i as follows.

∂E{GCS(Y, Pi)}
∂ym,i

=
M

∑
m=1

[η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax(ym,i + Ωm)2 − pi

]
(37)

Following, taking the second derivative of E{GCS(Y, Pi)} with respect to ym,i, we have:

∂2E{GCS(Y, Pi)}
∂y2

m,i
= −

M

∑
m=1

[2η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax(ym,i + Ωm)3

]
(38)

Since Ak > Wm
Wmax

pm and pm > γ1
ςm

, we can know that Ak > γ1Wm
ςmWmax

. In addition, due to the

non-negative parameters in (35), it means that the second derivative of E{GCS(Y, Pi)} is less than
zero. Based on (35)–(38), this implies that the optimal solution can be achieved when the following
conditions is satisfied.

lim
ym,i→0

∂E{GCS(Y, Pi)}
∂ym,i

> 0

=⇒
M

∑
m=1

[η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
WmaxΩ2

m

]
−Mpi > 0 (39)

=⇒ pi <
1
M

M

∑
m=1

[
η2

m Jm(Wm + Wmax)

WmaxΩ2
m

( Jm

∑
k=1

Ak −
γ1 JmWm

ςmWmax

)]
and:

lim
ym,i→∞

∂E{GCS(xk,m, pk,m)}
∂ym,i

= −Mpi < 0 (40)

Thus, the utility function of E{GCS(Y, Pi)} is a concave function when both the inequalities (39)
and (40) are satisfied. It proves that the optimal strategy exists, which can be achieved as follows.

∂E{GCS(Y, Pi)}
∂ym,i

= 0

⇐⇒
η2

m Jm(Wm + Wmax)
Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax(ym,i + Ωm)2 = pi (41)

⇐⇒ y∗m,i =

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax pi

−Ωm
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Meanwhile, based on (34) and (41), we can obtain the following results.

p∗m <
(Akςm + γ1)Wmax

(Wm + Wmax)ςm

=⇒ γ1
ςm

+

ηm
Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
ym,i + Ωm

<
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
(42)

=⇒
ηmςm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
AkWmaxςm − γ1Wm

−Ωm < y∗m,i

=⇒pi <
Jm(ςmWmax min Ak − γ1Wm)2

ς2
mWmax(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
In addition, driven by more profits, the power price for EV users to be charged is larger than that

offered by SGO when the same amount of power procured from CSO will be sold to EV users by CSOs,
e.g., pm ≥ pi.

4.4. Power Price Offered by the Smart Grid Operator in Stage I

Given the power price and power demand offered by CSOs, SGO should decide the power price
for CSOs to obtain more profits. This pricing problem can be formulated as an optimization problem.
Based on (16), (41) and (42), this optimization problem can be expressed by:

max GSG(P) =
M

∑
m=1

(
piy∗m,i −

ai
2

y∗2m,i − biy∗m,i −vi

)
(43)

s.t.
M

∑
m=1

y∗m,i ≤ Θ (44)

Substituting (41) into (43), we take the second derivative of GSG(P) with respect to pi, and
we have:

∂2GSG(P)
∂p2

i

= −
M

∑
m=1

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax

×
[

ai
4

(
4p−3

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax

(45)

− 3p−
5
2

i Ωm

)
+

1
4

p−
3
2

i +
3bi
4

p−
5
2

i

]
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Then, based on the requirement of CSOs’ power supply obtained in Stage II, we have:

y∗m,i =

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax pi

−Ωm ≥ 0

=⇒pi ≤
η2

m Jm(Wm + Wmax)
Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
WmaxΩ2

m
(46)

=⇒∂2GRet(pi)

∂p2
i

< 0

As a result, this implies that GSG(P) is a concave function on pi, and it also proves that the optimal
strategy exists. Similar to the method above, the optimal strategy can be obtained as follows.

∂GSG(P)
∂pi

= 0

⇐⇒ 1
2

M

∑
m=1

p−
1
2

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
Wmax

×
(

1 + bi p−1
i

)
+

p−2
i aiη

2
m Jm(Wm + Wmax)

2Wmax

Jm

∑
k=1

(
Ak −

γ1Wm

ςmWmax

)
(47)

=
M

∑
m=1

ai
2

p−
3
2

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak −

γ1Wm
ςmWmax

)
WmaxΩ2

m
+ Ωm

Then, by solving (47), the SGO can make the optimal pricing strategy with maximum profits.
In conclusion, based on the proposed game-theoretical scheme, we obtain the optimal solutions

in the charging system. Due to the analysis mentioned above in the four-stage game, it holds that
GEV(x̃∗k,m) < GEV(x∗k,m) for random x̃∗k,m in Stage IV, satisfying ∀k ∈ Jm and ∀m ∈ M; for random
p̃∗m, it holds that GCS( p̃∗m) < GCS(p∗m) in Stage III, satisfying ∀m ∈ M; for random ỹ∗m,i, it holds that
GCS(ỹ∗m,i) < GCS(y∗m,i) in Stage II, satisfying ∀m ∈ M; for random p̃∗i , it holds that GSG( p̃∗i ) < GSG(p∗i )
in Stage I. Here, x̃∗k,m, p̃∗m, ỹ∗m,i, and p̃∗i denote other different values, except x∗k,m, p∗m, y∗m,i, and p∗i ,
respectively. Therefore, it proves that SE exists in our proposed game-theoretical scheme with the
optimal solutions shown by (30), (34), (41), and (47), respectively.

4.5. Algorithm Design to Obtain Stackelberg Equilibrium

According to the above analysis, it is proven that there is a unique SE in our proposed Stackelberg
game, which can be able to maximize the profits in the charging system composed of EV users, CSOs,
and SGO. We adopt the backward method to obtain the optimal solutions. In order to simplify the
calculation, we propose an iterative algorithm to achieve the SE, which is shown in Algorithm 1. In this

presented iterative algorithm, we induce the convergence criteria ||p
t
i−pt−1

i ||
||pt−1

i ||
≤ $ to obtain the precise

solutions, in which $ is a small threshold value, i.e., $ = 10−4.



Energies 2019, 12, 325 14 of 20

Algorithm 1 : An iterative algorithm for SE.

Input: For SGO i, a random price pi is announced to CSOs with the maximum power supply

ym,i < Θ.
Initialization: p0

i = pi.
Repeat the iteration.
for t = 0 : 1 : tmax do

if pt
i is satisfied based on (42) then

We will calculate the revenue for SGO i and power supply for CSOs.
if The constraints in (32) and (42) are satisfied. then

Power price for EV users are able to be obtained based on (34).
if The power price offered by CSO m is satisfied based on (42), which is also smaller than γ1

ςm
.

then

We can calculate the amount of power supply for EV user k based on (30).
else

Break the loop.
end if

else

Break the loop.
end if

else

Break the loop.
end if
SGO i will update its power price based on the following equations:

rt = pt
i − h̄

G
′
SG(pt

i)

G′′SG(pt
i)

(48)

pt+1
i = pt

i − G
′
SG(pt

i)/
[

1
ν

G
′′
SG

(
pt

i +
ν

2
(rt − pt

i)

)
+ (1− 1

ν
)G
′′
Ret(pt

i)

]
(49)

Here, G
′
SG(pt

i) = ∂GSG(pt
i)/∂pt

i , G
′′
SG(pt

i) = ∂2GSG(pt
i)/∂(pt

i)
2. h̄ and ν denote the iterative step,

in which h̄ is a very small value and ν is bounded by 0 < ν < 1.
end for
Until ||pt

i − pt−1
i ||/||p

t−1
i || ≤ $.

Output the SE including x∗k,m, p∗m, y∗m,i, and p∗i , which can be achieved.

5. Simulation

5.1. Simulation Scenario

In this section, we demonstrate numerical results to verify the performance of the strategy
proposed in this paper. Based on [34], we suppose that BER will be no more than 0.1. The cost for
waiting to be charged is 0.3 $/h and 0.4 $/h in CSO 1 and CSO 2, respectively. Here, assuming that for
EV users to be charged arriving at the charging station, λ = 4.8/h, µ = 1.2/h. Other parameters are set
in Table 1. The total number of EV users to be charged by CSO 1 is 15, in which Ak(k = 1, 2, 3) is equal
to 40. For the rest of the EV users, Ak is equal to 50. The average driving distance for each EV user and
CSOs is 10 km and 15 km, respectively. Similarly, the total number charged by CSO 2 is 10, in which
Ak{k = 1, 2, 3} is equal to 45. For the rest of the EV users, Ak is equal to 50. Other parameters are set
as follows: τ1 = 0.02 MW·h, τ2 = 0.01 MW·h, σ1 = σ2 = 2, ϑ1 = ϑ2 = 0.1.
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Table 1. Simulation parameters.

Parameter Value

Wmax for EV users to be charged {0.7 h, 0.7 h}
The minimum power demand for EV users 0 MW·h
The maximum power demand for EV users 0.5 MW·h

γ1 for each CSO 2 $/h
γ2 for each CSO 0.3 $/h

Discount charging amount for each EV user {10 MW·h}
ai for SGO i 0.5
bi for SGO i 0.1
ci for SGO i 80

5.2. Simulation Results

Given the preset parameters above, through the proposed game-theoretical scheme strategy,
we study how BER plays an important role in the decisions on the optimal strategy. Figure 3 shows the
relationship between the optimal price decided by electricity retailer i and BER in Hetnet. Obviously,
from the simulation in Figure 3, this demonstrates that the price becomes smaller with the increase of
BER, which implies that BER affects the pricing decision.

Figure 3. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10,
C1 = C2 = 3, and S1 = 6, S2 = 7, respectively.

For the same example with η1 = 0.95 and η2 = 0.99 set in Figure 3, Figure 4 illustrates the pricing
strategy of electricity retailer i with respect to the iteration step. We can observe that the value of price
will converge to a stable value through several iteration steps. In Figure 4, we can also know that the
optimal price will be obtained in various cases with different waiting capacities. Similar to Figure 4,
Figure 5 illustrates that the power price will be smaller with the increase in the number of outlets
supplied by CSOs. This implies that the waiting time will be smaller compared with smaller waiting
capacities, which will monotonically increase the optimal price. On the contrary, the power price will
decrease with the decreasing waiting time, based on the number of outlets supplied by CSOs.

In order to evaluate how SGO i makes decisions on the optimal pricing strategy with various
initial prices, we get the simulation shown in Figure 6 through the proposed game-theoretical strategy.
Figure 6 illustrates that the power price offered by SGO i will be adjusted to a higher ideal value
through several iteration steps when it is initially set as a smaller value, such as pi = 5 and pi = 10,
respectively. On the contrary, the power price will converge to a smaller ideal value through several
iteration steps when it is initially set as a higher value. From Figures 3–6, we see that it will converge
to a stable value as long as the initial price is offered.
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Figure 4. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10 $/MW·h,
η1 = 0.95, η2 = 0.99, and C1 = C2 = 3, respectively.

Figure 5. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10 $/MW·h,
η1 = 0.95, η2 = 0.99, and S1 = 6, S2 = 7, respectively.

Figure 6. SGO’s price compared with the iteration step, given η1 = 0.95, η2 = 0.99, and C1 = C2 = 3,
S1 = 6, S2 = 7.
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In addition, we investigate the optimal strategy for EV users to be charged based on the price
given by CSOs. Following the price given by CSOs, Figure 7 demonstrates how EV users adjust their
power demand to maximize their benefits. From Figure 7, we can observe that the value of power
demand converges to the optimal value through several iteration steps, by using the proposed strategy.
Meanwhile, we can also obtain that the amounts of power demand are different from each other.
For example, power demand for EV users with Ak = 40 is smaller than that with Ak = 50, when all of
them will be charged by CSO 1. The results for EV users charged by CSO 2 is the same as the above.
This implies that power demand for EV users with a higher satisfaction degree is larger than that
with a lower satisfaction degree. From the simulation results in Figures 5 and 6, we can know that it
matches the existence of SE for our proposed game-theoretical scheme in Section 5, through which it
also can be obtained.

Figure 7. CSOs’ power demand brought from CSOs compared with the iteration step, in which
ζ1 = 0.05 and ζ2 = 0.01, and its initial price pi = 10 $/MW·h, Wm1 = 0.3 h, Wm2 = 0.4 h, respectively.

From the results in Figures 2 and 3, we investigate the effect of BER and the outlets on the
power price. This imposes that it can benefit both CSOs and EV users through adjusting the outlets
and improving the performance of wireless communication. According to the simulation results in
Figures 4–6, this means that both EV users and CSOs can also obtain the optimal solution, while a
random initial power price offered by SGO is given.

Based on the above simulation results, we can know that our algorithm mainly focuses on the
power supply in SGO. It also describes that the total utility of all parts in the charging system will
be fixed, which cannot be affected with the increasing total power supply from SGO. This proves
the existence and uniqueness of SE in our proposed game-theoretical scheme, which imposes the
effectiveness of our proposal.

Finally, we compare the performance of the proposed optimal strategy with the existing scheme,
with the same parameter setting in the simulations above. We adopt a uniform allocation scheme and
a random allocation scheme to calculate the benefits of all EV users, respectively. Based on the utility
function of EV users, we calculate the benefits of EV users with various total power demand supplied
by SGO i, shown in Figure 8, using these three different methods. From Figure 8, we can observe that
the benefits in the proposed scheme are higher than those in the other two schemes with increasing
total power demand. This proves the effectiveness of our proposed algorithm in this paper.
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Figure 8. Total utility for EV users with different schemes, in which ζ1 = 0.05 and ζ2 = 0.01, and its
initial price Pi = 10, Wm1 = 0.3, Wm2 = 0.4, respectively.

In order to integrate the study in our paper with the practical application, it will be interesting
to develop a smart power decision system (SPDS) to charging the service according to the limited
power supply from SGO. The smart decision system is divided into two parts: (1) software: our
proposed algorithm is designed as the major part of the optimal strategy, including the analysis of the
data processing; (2) hardware: in order to satisfy many more EV users’ power demand, the online
information of EV users, CSOs, and SGOs is seen as the input of software in SPDS, respectively. At the
same time, both the waiting time in CS and delay in Hetnet are taken into account. Further, it would
be interesting to modify our proposed algorithm associated with the dynamic renewable power in the
smart grid.

6. Conclusions

This work presents a game-theoretical approach to provide EVs with charging services supplied
by CSOs, considering BER in Hetnet. A four-stage Stackelberg game scheme is developed to make
optimal decisions for this charging system, composed of EV users, CSOs, and SGO. Considering the
interaction among them, the utility function of each one is designed, while the load uncertainty is taken
into account. Then, the SE can be obtained through the proposed iteration search algorithm, matching
its existence and uniqueness in our proposed algorithm. Simulation results have been presented to
demonstrate the performance of our proposal. For future work, it is interesting for us to extend our
proposed algorithm with virtual technology, confronting realistic problems, i.e., the dynamic arrival of
EV users and the delay of charging power in the queue.
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