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Abstract: The increasing use of electric vehicles connected to the power grid gives rise to challenges
in the vehicle charging coordination, cost management, and provision of potential services to the grid.
Scheduling of the power in an electric vehicle charging station is a quite challenging task, considering
time-variant prices, customers with different charging time preferences, and the impact on the grid
operations. The latter aspect can be addressed by exploiting the vehicle charging flexibility. In this
article, a specific definition of flexibility to be used for an electric vehicle charging station is provided.
Two optimal charging strategies are then proposed and evaluated, with the purpose of determining
which strategy can offer spinning reserve services to the electrical grid, reducing at the same time
the operation costs of the charging station. These strategies are based on a novel formulation of an
economic model predictive control algorithm, aimed at minimising the charging station operation
cost, and on a novel formulation of the flexibility capacity maximisation, while reducing the operation
costs. These formulations incorporate the uncertainty in the arrival time and state of charge of the
electric vehicles at their arrival. Both strategies lead to a considerable reduction of the costs with
respect to a simple minimum time charging strategy, taken as the benchmark. In particular, the
strategy that also accounts for flexibility maximisation emerges as a new tool for maintaining the grid
balance giving cost savings to the charging stations.

Keywords: electric vehicle; flexible demand; model predictive control; spinning reserve

1. Introduction

1.1. Motivations and Aims

Renewable Energy Sources (RES) are increasing worldwide by an average of 2.8%/year [1], thus
leading to a possible imbalance between supply and demand in the electrical grid. The RES uncertainty
has a significant impact on the scheduling of conventional generation [2] and storage [3]. The main
effects of the uncertainty appear both on power system operation and on the need for procuring
sufficient reserve capacity to maintain acceptable levels of reliability and security [4].

In recent years, the participation of the demand in operation scheduling and reserve procurement
has also increased, with the definition of demand response programmes that involve manual or
automatic variation of the demand to reduce the grid risk [5]. The current deployment of the generation
and demand resources to improve the power system operation has been represented in the flexibility
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framework [6]. There is a vast amount of literature about flexibility definitions and applications;
however, according to [7], there is no uniform definition of flexibility. Various definitions of flexibility
have been proposed for the generation side and the demand side. In [8], the operational flexibility in
power systems is defined as the deviation between the nominal power plant output profile and the
actual power output profile. Interactions between flexibility concepts and the diffusion of RES are
discussed in [7]. Various forms of grid-side flexibility are addressed in [9]. The thermal generation
flexibility for individual generators and for the whole system is defined in [6]. On the other hand,
there are viable options to provide flexibility on the demand side. For Thermostatically Controlled
Loads (TCL), the aggregate flexibility of a collection of TCLs is defined in [10]. In [11], TCL flexibility
is defined considering a geometric approach. A mathematical definition of flexibility for residential
demand aggregation is presented in [12], formulated through two demand flexibility indicators by
using the binomial probability model. Other formulations refer to water booster pressure systems [13],
heat pumps [14], multi-energy systems [15], energy hubs [16], energy storage [17], and the aggregation
of electric vehicles (EVs) [18].

In particular, EVs are among the most important deferrable loads in terms of improving RES
integration in the grid [19], smoothing the demand curves [20], providing frequency regulation
services [21], incrementing self-consumption [22], reducing emissions and supporting green
transport [23]. In the last few years, EVs have been becoming a more and more sustainable alternative
for private and public road transport [24]. In addition, national governments offer benefits to the
customers, in terms of subsidies, financing, or facilities constructions [25].

Typically, an aggregator coordinates EV battery charging. The charging of EV batteries can
be managed either in a context where the EVs are not allowed to inject power in the grid, or in
the Vehicle-to-grid (V2G) context, where the EVs can inject power into the grid to support grid
operation needs [26]. In both cases, appropriate coordination strategies for EV battery charging
have to be defined to avoid an inappropriate EV dispatch giving unfavourable impacts to the power
networks [27], e.g., with overcurrents in network branches or voltages out of the normal range at
network nodes [28].

Moreover, given the huge potential for EV integration, it becomes necessary to assess not only the
strategy to streamline the EV battery charging process, but also the possibilities for the electrical grid
to take advantage of the charging process. The aim of this paper is to address appropriate dispatching
strategies for EV charging, in order to provide additional flexibility to the electrical grid operator.
V2G operation is not considered and the related aspects are not discussed.

1.2. Literature Review

A review of EV fleets’ aggregation strategies is presented in [29], assessing the potential
approaches to provide services to electrical grid operators. The challenge is to define how to manage
the EV charging profiles with the purpose of fulfilling the users’ requirements and offering a flexibility
capacity to the system operator for maintaining the energy balance in the grid.

Specifically, the EV flexibility to reduce the RES power fluctuations is quantified in [30].
The flexibility characterisation of EV charging sessions is addressed in [31], with the introduction of
two measures based on flexibility utilisation in terms of energy and duration. A discussion on how
the EV batteries management can unlock the potential of using distributed energy resources (DER)
is presented in [32]. A definition of EV flexibility is proposed in [33] by adapting the framework
introduced in [12] for the flexibility of aggregated residential demand to the case of EVs. EV flexibility
is described in [21] in terms of laxity, that is, the amount of time left until an EV must charge at its
maximum charge rate to reach its minimum scheduled state of charge at the departure time. In [34],
the EV recharging flexibility is included in the EV utilisation model together with the type of trip and
the possible use of a secondary fuel.

For the EV flexibility assessment, the EV dispatch problem has to be evaluated, also by considering
different charging preferences for the EV owners [35]. For instance, a distributed control strategy is
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proposed in [36] based on the Lagrangian relaxation. In [37], risk-aware day-ahead scheduling and
real-time charging dispatch for EVs are studied. The maximisation of the revenues offering secondary
regulation and the maximisation of an EV fleet charging station efficiency are simultaneously addressed
in [38]. The charging scheduling of a large number of EVs at a charging station is proposed in [39].
A time-variant storage model for aggregated EVs has been proposed in [40].

Other studies consider the minimisation of the operating energy cost, in combination with the
dispatching problem. To this aim, in [41], a multi-objective optimisation framework is proposed.
Conversely, [42] focuses on a dynamic programming-based optimisation to provide optimal solutions
to charge an EV fleet.

The identification of energy-flexibility and deadline-flexibility referring to EV coordinated
charging is carried out in [43]. The coordination can include either the EV owner participation
to decide adjustable limits for the EV charging demand [44], or the incorporation of vehicle-originated
signals [45].

On the other side, the EV problem has some peculiar characteristics, concerning the uncertainty
on arrival and departure times [46]. To this aim, [47] formulates it as an intrinsically stochastic
optimisation problem, intended to help the aggregator in reducing expensive peak charging costs or to
avoid penalties for not fully charging the batteries of its clients. However, such an implementation
proved to be computationally demanding, and characterised by a dimensionality only attackable by
using heuristic methods. In [46], a Model Predictive Control (MPC) based power dispatch approach,
based on the combination of updated current EV charging information with a short-term forecasting
model, addresses the operational cost minimisation while accommodating the EV charging uncertainty.
In addition, a framework to address a wide range of uncertainties and variability (e.g., renewable
energy, and customer preference) is provided. However, in [48], the MPC strategy together with a
stochastic and robust approach is developed for optimising the economic performance of a microgrid
with EV integration considering uncertainty in the EV charging request. Interestingly, [49] highlights
how, especially concerning uncertain parameters as electricity prices, energy demand and driving
patterns, forecasts should always find a balance between long prediction horizons (implying a higher
computation time) and how much money can be saved.

1.3. Contributions

This paper proposes a framework for the evaluation and maximisation of power consumption
flexibility in Electric Vehicles Charging Stations (EVCS), together with a dispatch strategy that
minimises operation costs. An EVCS and its chargers are modelled and controlled as flexible loads.
The EVCS is entrusted with charging all the incoming EVs, whose State of Charge (SoC) must reach at
least the minimum amount desired by the EV owners at the departure time. From this perspective,
the authors follow up the formulation they recently introduced in [50,51] for the operation cost
minimisation, and propose a novel charging strategy based on the maximisation of the flexibility
provided by EV chargers, taking into account the preferences of the EV users and the uncertainty in
the arrival time and SoC. These strategies are compared with a typical minimum time strategy as a
benchmark, in order to adjust the profiles of the charging power delivered to the EVs through the
battery chargers. Meanwhile, a specific definition of flexibility for EV battery chargers is provided by
adapting the concept of operational flexibility in power systems used in [8]. This flexibility definition,
differently from [8], leverages the ramp rate in kW/min to describe the variations. Furthermore,
considering an analysis with time steps in the order of minutes, for the EV battery chargers, it is
possible to adjust the power from the maximum power to zero (and vice versa) in one time step.
Subsequently, EV chargers do not require a ramp rate constraint for varying the injected power.

The EV battery charging strategies are based on different optimisation criteria for the charging
power profiles, namely:

• minimise the EVCS operation cost, by varying the charging power depending on the energy
prices and the charging duration;
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• maximise the flexibility capacity (based on Definition 1, presented in Section 2.3), while
minimising the EVCS operation cost.

The performance of such an approach depends on the accuracy of the input parameters shaping
the devised model. To this aim, the two proposed solutions leverage an MPC that explicitly
considers some relevant sources of uncertainty affecting the problem, in order to improve the control
performance [52]. However, the performance of such an approach depends on the modeling accuracy
of the variables that have an inherent uncertainty [53]. Specifically, in the presented modeling,
we consider as the main uncertain parameters the EV arrival time as well as the state of charge at the
arrival. In order to provide a practical framework for the definition of the MPC algorithm, the departure
time is assumed to be known (from the EV owner request) and is included as a deterministic variable.

In summary, the main contributions of this paper are:

1. a dynamic model of an EV battery charger as a flexible load;
2. a specific flexibility definition for EV battery chargers;
3. a novel formulation for minimising the EVCS operation cost; and
4. a novel optimal strategy that maximises the flexibility capacity of EV battery chargers while

minimising the EVCS operation cost that leads to providing spinning reserve services.

1.4. Paper Organisation

The rest of the paper is organised as follows. Section 2 describes the problem faced by an ECVS,
how it operates, the charger dynamics model, and introduces the proposed EV flexibility analysis
and how to take into account the uncertainties. In Section 3, the EV battery charging strategies are
illustrated and thoroughly described. In Section 4, an application case study is shown, along with the
related numerical results. Finally, the conclusions are presented in Section 5.

2. The Electric Vehicle Charging Station Problem

An Electric Vehicle Charging Station (EVCS) is composed of various EV battery chargers, to which
EVs approach and connect. The problem faced by a typical EVCS for managing the charge of the
connected EVs, is twofold:

(i) chargers scheduling, also taking into account the uncertainty of the EV arrival time and initial
state of charge of the EV battery; and,

(ii) EV load profile management.

The first problem refers to the assignment of a charger to each EV approaching the charging
station, as well as their charging time. Secondly, the EV load profile, namely, the charging power
delivered by each charger at each time slot defined for the analysis, must also be considered.

In this study, the EVCS works with a centralised infrastructure to collect EV information and
to deliver power to each vehicle, i.e., EV battery chargers can be considered as flexible loads in the
energy consumption. Consequently, an EVCS can be modeled as an aggregator that is capable of
modulating the energy delivered by the chargers. The EV owner willing to recharge the EV battery
goes to the charging station and takes part in the program managed by the aggregator. At the departure
time specified by the EV owner, the battery will be charged according to the agreement between the
aggregator and the EV owner. In the time period in which the EV is managed by the aggregator,
the aggregator provides flexibility to the system without the direct action of the EV owner.

In this section, the station operation process and then the EVCS problem formulation are presented.
Then, a flexibility evaluation is presented, leading to a novel EV battery charger flexibility definition.
For the sake of completeness, Table 1 summarises the notation adopted for the system variables.
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Table 1. Notation of the Electric Vehicle Charging Station variables.

Type Name Symbol Units

Independent Time slot k -variable

State State of Charge in charger i xi,k kWhvariable

Flexibility capacity of the station Fk kW
Output Flexibility capacity in charger i Fi,k kW
Variables Power delivered by the station PT,k kW

State of Charge in EVj SoCj,k kWh

Decision Downward flexibility capacity in charger i LF
i,k kW

Variables Power delivered to charger i Pi,k kW
Upward flexibility capacity in charger i UF

i,k kW

Parameters

Battery capacity in EVj Cj kWh
Electric vehicle j EVj -
Prediction horizon H h
Number of EV battery chargers I -
Number of EVs J -
Actual SoC in EVj at aj SoCj,aj kWh
Actual SoC in EVj at dj SoCj,dj

kWh
Maximum EVj SoC at the request (at rj) }SoCj,rj kWh
Minimum EVj SoC at the request (at rj) ySoCj,rj kWh
Minimum desired SoC in EVj (at dj) }SoCj,dj

kWh
Maximum possible SoC in EVj (at dj) ySoCj,dj

kWh
Random arrival SoC in EVj used in H ĄSoCj,aj kWh
EVj arrival time aj h
EVj arrival time in the request ãj h
Energy Price ck ${kWh
EVj departure time dj h
Time for charging at maximum power dm h
EVj charger request time rj h
Operation time of the station β h
EVs SoC information before aj γ {kWh, . . . , kWh}
Maximum arrival delay δ min
Information provided by the EVj χj {h, h, kWh, kWh}
Information provided by all EV χT set{h, h, kWh, kWh}
Remuneration Price of the UF

i,k πU
k ${kWh

Remuneration Price of the LF
i,k πL

k ${kWh
Schedule of charger i ξi,k {0,1}
Schedule of all chargers in the station ξT,k set{0,1}
Sampling time ∆t min

2.1. Charging Station Operations

The EVCS goal is to charge all the EVs connected to the battery chargers, within their own
charging time, achieving a SoC between the minimum SoC desired by the owners at the departure
time and full charge (100%). To this aim, an aggregator is responsible for scheduling the charging
patterns of an EV group (see Figure 1).

Given a typical EVCS, let us assume that there are I chargers, whose load patterns have been
programmed through the aggregator for the next H hours. Notice that these load patterns are affected
by uncertainty in the arrival time and the initial SoC of each EV. Furthermore, the operation time of the
station is divided into K discrete time intervals with equal length, each of them being a discrete time
slot k“ 1, . . . , K, lasting a sampling time ∆t in minutes. Finally, for each day, it is expected to serve J
EVs, where for each EVj, its charging time spans from the arrival time aj to the departure time dj.
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Figure 1. Electric Vehicle Charging Station operation.

A typical EVCS workflow starts with the users, i.e., the EV owners, requesting an available
charger, possibly through a mobile application (let us say, EVApp), at least one hour before arriving at
the station. This recharge request includes the EVj relevant information, collected in χj,

χj “ tãj, dj, ySoCj,rj ,
}SoCj,dj

u, @j “ 1, 2, . . . , J; (1)

}SoCj,dj
being the minimum SoC desired by the EVj owner at the departure instant dj, ySoCj,rj

the EVj SoC at the request time rj, and ãj the reported arrival time. Then, the EV owner looks for
booking an EV charger from ãj to dj. Finally, all the EV information to be sent to the charger scheduling
algorithm is collected in χT:

χT “ tχ1, χ2, . . . , χJu. (2)

For the purpose of this study, it is assumed that the actual arrival SoC is higher than zero,
i.e., SoCj,aj ą 0. In Figure 2, the request time rj, the expected arrival time ãj, the actual arrival time aj,

and the actual departure time dj of an EV are presented considering the SoC at the request ySoCj,rj ,

the expected SoC at the arrival ĄSoCj,aj , the actual SoC at the arrival SoCj,aj , the minimum SoC desired

by the owner at the departure }SoCj,dj
, and the actual SoC at the departure SoCj,dj

. Then, notice that

the actual arrival SoC and the reported SoC at the request are generally different, i.e., SoCj,aj ‰
ySoCj,rj

(see Figure 2a).
Then, the EV arrival SoC and the EV arrival time are uncertain variables that must

be managed by the aggregator. Then, the mobile app collects and sends the information
γ“tSoC1,r1 , SoC2,r2 , ¨ ¨ ¨ , SoCJ,rJu to the aggregator. The timings are considered by introducing
practical assumption for serving the EV:

• in case of early arrival, nothing changes with respect to the scheduled charging starting instant
(ãj); the EV will wait until the scheduled time slot;

• in case of late arrival, up to a given delay δ, the charging procedure can be performed guaranteeing
a departure SoC within the requested limits (see feasible condition Equation (16), presented in
Section 3.2);

• in case of late arrival, greater than a given delay δ, the vehicle is still accepted, but the requested
final SoC cannot be guaranteed; and

• the departure time dj is fixed by the EV owner request, and is considered as a deterministic
variable (see Figure 2b).
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Time
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Figure 2. Expected and actual time and state of charge for the jth electric vehicle. (a) Arrival.
(b) Departure.

In this context, the arrival time is considered as a random variable uniformly distributed within
a given time range around the scheduled time. The arrival SoC is taken into account as a random
variable uniformly distributed between zero and the SoC at the request SOCj,rj .

The aim is to dispatch the J requests to the I chargers, via an allocation algorithm. This algorithm
provides two output data sets: (i) the IDi of the assigned charger (if any), sent to the user, and (ii) a
binary state signal ξi,k, sent to the aggregator. This signal indicates the schedule of the ith charger,
i.e., if at the kth time slot, an EV is plugged into it. Hence, at time slot k, it holds:

ξi,k “

#

1, if the charger i has a plugged-in EV,
0, if the charger i does not have a plugged-in EV.

(3)

The decision variables used for the energy dispatch design are the power signals Pi,k describing
the power delivered by each charger i to the EV connected to it at the time step k. This power can
be adjusted for each time slot, in a way consistent with the “Smart charging” concept defined in [54]
as charge speed changes in order to match with a control signal or frequency regulation and vehicle
parameters. In a smart grid environment, smart charging provides flexibility to the grid, allowing
demand response services. Smart charging strategies have been used in [21] by comparing different
strategies with the aim of providing frequency regulation services, in [45] in conjunction with the
provision of vehicle-originating signals to minimise the variability of the aggregate power pattern
with respect to a predefined reference, in [55] to minimise the cost of the charging schedule by
taking into account the trading on the intraday electricity market. From a technical point of view,
the implementation of dynamic EV charging is discussed in [56] considering different solutions for AC
charging, Chademo and Combined Charging System (CCS)/COMBO. Moreover, the Open Charge
Alliance has issued the Open Charge Point Protocol [57], in which, while charging is in progress,
the connector will continuously adapt the maximum current or power according to the charging
profile. Further recent developments on EV charging have been presented in [58].

Therefore, the instant power extracted from the grid, at each time slot k, is:

PT,k “

I
ÿ

i“1

Pi,k @k “ 1, 2, . . . , K. (4)

As a matter of fact, the aim of the aggregator is to define the load profiles Pi,k by maximising the
operation benefits. To this aim, the EV chargers are considered as flexible loads, in terms of power
consumption, which can provide some ancillary services to the electrical grid.
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2.2. The Charger Dynamics Model

The SoC dynamics of a vehicle j connected to the charger i, namely, the evolution of the energy
stored in the EV battery, can be modeled as:

SoCj,k`1 “ SoCj,k ` ∆tPi,k, (5)

where ∆t is the sampling time, and SoCj,k is the accumulated energy in the EV battery through the
integration of the charging power Pi,k. No efficiency losses or nonlinearities are considered. Likewise,
battery degradation estimation [59] is not considered because the time steps used in the analysis are
relatively short (i.e., tens of minutes, for a period of analysis of one day).

Letting xi,k be the state variable representing the SoC of the EV connected to the ith charger,
it holds:

xi,k`1 “ ξi,kxi,k ` ξi,k∆tPi,k. (6)

Hence, when a vehicle is plugged in, namely ξi,k“ 1, the charger dynamics matches Equation (5),
i.e., xi,k“ SoCj,k. Note that, over the course of a day, a charger can charge several EVs. Thus, it is
convenient to use the charger SoC as the state variable in the model. As a result, xi,k has a switching
behaviour, depending on ξi,k, and characterised by jumps either from 0 to ĄSoCj,aj , at each EV arrival,
or from SoCj,dj

to 0, at the EV departure. Therefore, the chargers dynamics xi,k`1 can have three
different conditions:

xi,k`1 “

$

’

&

’

%

xi,k ` ∆tPi,k if ãj ă k ă dj,
ĄSoCj,aj if k “ ãj,
0 if ξi,k “ 0 _ k “ dj.

(7)

The first condition in Equation (7) must hold until the vehicle SoC reaches a value between the
minimum SoC desired by the owner and the maximum allowed one. Moreover, considering the third
condition in Equation (7), the duration ∆t of the time slot k is assumed to be consistent with the time
required for an EV finishing the charging process to go away and for another EV to arrive to the
same charger.

2.3. Flexibility Evaluation

Considering smart grids, it is possible to provide a service within the energy system by varying
the power consumption at the demand side, without affecting significantly the overall service provided
by the load. This is known as flexibility [60]. As a matter of fact, a certain degree of flexibility is
allowed because there are different ways to charge EV batteries, fulfilling the departure state of charge
}SoCj,dj

constraint and maximum power limits.
Generally speaking, flexibility enhances electrical grid security. For example, when a renewable

energy source is connected to the grid, fluctuations can imbalance the grid itself. In these cases,
a flexible load management system can favorably counteract these effects. Provided that a certain
degree of flexibility is available, the system operator can adopt different ancillary services to avoid
system instabilities, depending on the component that unbalances the system [10]. In [61], grid
ancillary services are classified into four categories based on their response time, as very short duration,
from milliseconds to 5 min; short duration, from 5 min to 1 h; intermediate duration, from 1 h to 3 days;
and long duration, several months. According to [62], the Federal Energy Regulatory Commission
definitions of reserves applied in North America are:

• Regulation: This service can be provided by units that respond within 15–30 s for fast changes in
frequency [63]. In North America, markets like Pennsylvania-New Jersey-Maryland (PJM) [64]
and New England [65] call this service Frequency Regulation. Power delivery in this service
should last between 10 and 15 min [66].
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• Spinning: It is provided by units synchronised to the grid. Units must be fully online within 10 min
to provide this service. In addition, this service should be maintained for at least 105 min [67].

• Non-spinning: It is similar to a spinning reserve; the difference is that a non-spinning reserve does
not require the permanent synchronisation of the unit to the grid. Units must be totally available
within 10 min. Moreover, spinning reserve is more valuable economically for the system operator
because it is usually worth 2 to 8 times as much as a non-spinning reserve on an annual average
basis [67]. In addition, this service should be maintained for at least 105 min [66].

• Replacement: This service must be supplied within 30 min at the latest, and should be maintained
for four hours [68].

From this perspective, the current EV battery charger technology allows for adjusting the power
supply within a second; then, EV battery chargers could provide both frequency regulation and reserve
services to the grid. However, given that a centralised infrastructure is considered, the communication
between the system operator and the EVCS is limited by a few-minute response [69,70]. This implies
that, among the many ancillary services, an EVCS can provide spinning or non-spinning reserve,
and replacement reserve. In turn, we will focus on spinning reserve, being the most economically
valuable one [67]. With the spinning reserve service, a charging station restores the generation and
load balance, in the event of a contingency, in a matter of minutes [62]. Then, in order to provide
spinning reserve services through an aggregator that takes advantage of the EV flexibility, the concept
of flexibility must be evaluated.

Availability of a specific definition of the flexibility of EV battery chargers may help improving
the EV schedule and the ancillary services an EVCS can offer. Therefore, a novel definition of flexibility
for EV battery chargers is provided as follows.

Definition 1. Given a nominal charging profile Pi,k for k “ 1, . . . , K, the flexibility Fk of an EVCS, for each
time slot k, is defined as:

Fk “

I
ÿ

i“1

Fi,k “

I
ÿ

i“1

´

UF
i,k ` LF

i,k

¯

, @ k“1, 2, . . . , K, (8)

where

UF
i,k “

#

Pi,max ´ Pi,k if ξi,k “ 1 ^ k ă dm,
0 if xi,k “ xi,max _ xi,k “ 0 _ k ě dm,

(9a)

LF
i,k “

#

Pi,k if ξi,k “ 1 ^ k ă dm,
0 if xi,k “ xi,max _ xi,k “ 0 _ k ě dm.

(9b)

Note that the flexibility is the maximum power deviation that the profile can reach either upward
or downward.

Therefore, a charger is said to be upward-flexible (UF
i,ką 0), when it can increase the power injected

to the connected EV. It happens whenever the power delivered by the charger is lower than Pi,max,
and the SoCj,kă xi,max. On the other hand, a charger is downward-flexible (LF

i,ką 0) if it can decrease
the power injected to the connected EV (see Equation (9b)). Since the V2G concept is not considered,
the charging station problem works only in a unidirectional system, thus Pi,kě 0.

A detailed view of EV battery charger flexibility is presented in Figure 3. The structure of the
figure is consistent with the framework presented in [32] for EVs, which considers SoC on the vertical
axis, while the operational flexibility framework introduced in [8] (not referring to EVs) has a similar
representation, but the vertical axis is expressed in MW for power system studies. In particular,
Figure 3a shows the EV SoC behaviour during the charging time. The continuous green line is an
example of an EV Generic Charging (GC) profile, and the dashed-blue and the dash-dotted red lines
represent the limits of the SoC area. These limits are described by two charging profiles. First, of all,
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the Minimum Time (MT) strategy (dashed blue line), obtained by injecting the maximum power Pi,max,
immediately at the EV arrival time, until the full charge.

(a)

a
j

d
m

d
j

Time [h]

0

P
i,max

Po
w

er
 [

kW
] GC

MT
MD

(b)

Figure 3. SoC area in an EV charger. (a) SoC area with an example of a SoC profile (continuous green
line). (b) Charging power profile.

Secondly, the Most Delayed (MD) strategy (dash-dot red line) suggests that, starting from time dm,
only the maximum allowed power Pi,max lets the SoC reach the (minimum) desired departure value
}SoCj,dj

(in this case, no flexibility is possible from dm to dj). Figure 3b depicts the power injected by
strategies GC, MT, and MD for creating the SoC area. Note that there are no idle losses due to the short
time horizon, and no negative power flows are considered as this work does not take into account
V2G applications.

In short, the upward flexibility is the capacity of increasing the charging power up to Pi,max, while
the downward flexibility is the capacity of charging with lower power or renounce to charge. Finally,
the EV should depart with a charge level xi,dj

P r}SoCj,dj
, xi,maxs, where xi,max corresponds to the full

charge condition.
In addition, in Figure 4, the flexibility areas for the three strategies are shown, highlighting the

upward (U) and the downward (L) flexibility. Although the downward (L) flexibility is positive,
for better representation, it is plotted as a negative value to indicate a power reduction, i.e., –L is
depicted. In the MT case (Figure 4a), it is possible to achieve downward flexibility (´LMT) only,
due to the possibility of reducing power (up to Pi,max). However, after fully charging the EV, no
flexibility is allowed. In the MD case (Figure 4b), it is possible to achieve upward flexibility (UMD)
only, due to the possibility of increasing power to Pi,max. However, after dm, charging at maximum
power Pi,max is needed to reach }SoCj,dj

. Consequently, no charging flexibility is allowed after that
instant. In the GC case (Figure 4c), the upward (UGC) and the downward (´LGC) flexibilities are
shown. The filled parts indicate the area where the power charging profiles can be adjusted, following
profiles of Pi,k P r0, Pi,maxs that guarantee not to violate the constraints. It is noteworthy that the SoC
might also remain constant for a certain period, e.g., when the EV is not charged, according to the
aggregator needs.
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(a)

(b)

(c)

Figure 4. Flexibility in an EV charger. (a) Flexibility area for MT. (b) Flexibility area for MD.
(c) Flexibility area for GC.

As a result, the flexibility assessment turns out to be crucial to maintaining the electrical grid
balance. Consequently, the aggregator can provide a balancing service, restricted by the defined GC
profiles, admitting the possibility of having zero flexibility capacity in some time slots. Note that,
with the defined GC power exemplified in Figure 3b, it is possible to achieve a flexibility Fi,k“Pi,k at all
plugged-in time, i.e., all time steps (see Figure 4c).

Therefore, the charging station problem, given the power design variables (namely, the power
supply sequence Pi,k and the flexibility capacities UF

i,k and LF
i,k), consists of selecting the optimal power

load profile P˚
i,k, for each charger i, for all the time slots up to the total operation time of the charging

station β. Interestingly, the aggregation decision might also be based on the electricity price ck and
reserve prices, assumed to be known from bilateral contracts (with the aggregator that manages the
charging station) and variable hourly. As such, no uncertainty is considered for these prices. In this
framework, the optimisation problem formulation will aim at guaranteeing a flexibility capacity, while
minimising operational costs, and ensuring a departure SoC within the requested limits for each EV.

3. Solution Strategies

In this section, three strategies to attack the EV charging station problem are discussed:

1. Minimum Time (MT), as a standard approach, here adopted as a benchmark;
2. economic Model Predictive Control (eMPC), whose basics were presented in our previous

works [50,51]; and,
3. Optimal Control with minimum Cost and maximum Flexibility (OCCF), a novel strategy based

on the Definition 1 presented in Section 2.3.
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In the eMPC and OCCF strategies, uncertain parameters such as EVs’ initial SoC at the arrival
and their arrival times are considered. Both strategies are based on MPC formulations. The MPC
strategy (also known as Receding Horizon Control) makes explicit use of a plant model to obtain the
optimal control signal by minimising an objective function. MPC exploits forecast values together
with new information to establish the future evolution of the system, handling the constraints in an
efficient way. The main advantages of the MPC strategy are: (i) it introduces feed-forward control
implicitly, to compensate disturbances and measurement noise rejection; (ii) it is not conceptually
complex to treat the constraints over inputs, states, outputs and slew-rate variables; (iii) single-variable
and multi-variable cases are easily treated; and (iv) it is appropriate to address single-objective and
multi-objective control, and signal following.

3.1. Minimum Time as a Benchmark

A straightforward strategy to charge EVs in an EVCS is based on the charging time minimisation.
In short, each vehicle is charged at the maximum allowed power Pi,max, until it reaches its full capacity
SoCi,max. However, this strategy does not take into account the time-varying energy price, nor the
possibility to provide ancillary services to the electrical grid. To sum up, the charging power Pi,k is
determined as:

Pi,k “

#

Pi,max if 0 ă xi,k ă xi,max,
0 otherwise,

, (10)

where xi,max is the maximum admissible SoC in the EVj. For example, by considering an EVCS
with charging power levels 2 (semifast) and 3 (fast), and an EV with a battery capacity of 50 kWh,
the charging time is expected to be around six hours for level 2 and one hour for level 3 [71], depending
on the SoC at the arrival. Note that, for achieving the minimum SoC }SoCj,dj

(full SoC capacity with
this strategy) at the departure time, only the EVj charging feasibility in a time-span from aj to dj is
required. This is clarified below.

3.2. Economic Model Predictive Control

A novel formulation for the cost minimisation strategy based on a MPC algorithm is presented in
this section. The MPC path to the solution of the charging station problem looks for adjustments in the
injected power Pi,k, at every time slot k, in each charger i, considering the time-variant energy prices
ck, the uncertainty in the EV arrival time and SoC at the arrival time, i.e., aj and SoCj,aj . Hence,
the optimality here refers to a charging profile that minimises the EVCS operation costs, while
guaranteeing for all EVj the minimum }SoCj,dj

at the departure time dj. Thus, by recalling Equation (3),
Equation (4) and Equation (7), it holds:

min
Pi,k

∆t
H´1
ÿ

k“0

˜

ck

I
ÿ

i“1

Pi,k

¸

(11a)

s.t. xi,k`1 “

$

’

&

’

%

xi,k ` ∆tPi,k if ãj ă k ă dj,
ĄSoCj,aj if k “ ãj,
0 if ξi,k “ 0 _ k “ dj,

(11b)

}SoCj,dj
ď xi,dj

ď ySoCj,dj
,

0 ď Pi,k ď Pi,max,

0 ď xi,k ď xi,max,

@ k “ 1, 2, . . . , H, i “ 1, 2, . . . , I, j “ 1, 2, . . . , J.

Notice that the dynamic constraint considers the reported arrival time ãj in the request, and a
random initial state ĄSoCj,aj given with a uniform distribution between the minimum }SoCj,rj and the

SoC at the request time ySoCj,rj . Therefore, the actual arrival SoC is lower than the one at the request,
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i.e., SoCj,ajă
ySoCj,rj . In addition, the actual arrival time aj is known within the time interval previous

to the connection of the EV to the charger.
In Equation (11), the aggregator problem is an optimal control strategy in open loop. Specifically,

for the kth time slot, xi,k is the state variable corresponding to the ith charger SoC, while Pi,k is the
commanded variable corresponding to the delivered power profile. It is worthwhile to notice that
the problem parameters in Equation (11) are affected by uncertainties on arrival time and SoC of
the EVs. An open loop strategy cannot consider the future unknown behaviors, leading to possible
unfeasibilities in the optimal solution. Therefore, the solution strategy should take these uncertain
behaviors into account, and possibly recompute the control signal, even at each time step if needed.
For this reason, a model predictive control strategy is proposed, following the receding horizon
principle. In a nutshell, the idea is to compute, at time k, an optimal control sequence, over the
complete time-interval, e.g., rk, k`H´ 1s, taking into account the current and future constraints.
Nevertheless, only the first step in the resulting optimal control sequence is applied. Then, in the
next time slot k` 1, once the chargers’ information is updated with the new measures, the aggregator
recomputes the sequences, thus iterating the process.

Thereupon, in the eMPC problem framework, finding the problem solution requires to analyse,
at each time slot, the system dynamics, and the future energy prices, while taking into account the
current SoC and the arrival and departure times for each vehicle, as per Equation (11). Notice that
both uncertain parameters (the arrival time and the initial SoC) are revealed when the EV arrives
at EVCS and is plugged in. After this, there is no more uncertainty in the EV state, leading to an
appropriate power profile schedule. As indicated in Section 1.3, using time slots of the order of minutes,
the possible variations with respect to the scheduled values are compensated in the first time slot of
the MPC algorithm.

The parameters (price sequence ck, reported arrival time ãj, and SoC at the request ySoCj,rj ) are
assumed to be known, while Pi,max depends on the maximum power that either the charger can deliver,
or the EV can accept. Moreover, the actual SoCaj is known when the EV connects to the charger;
then, the prediction model is developed considering the expected value ãj for each EV (see Figure 2a).
Regarding ξi,k, it is determined by using the requested times ãj and dj. Notice that both the arrival
time and arrival SoC of each EV can be different at the actual connection time step.

The eMPC strategy looks for input sequences minimising the total cost of the EVCS, as per
Equation (11), in a time window of H hours, for each EV. To this aim, the dynamic constraint
Equation (11b), i.e., when ξi,k“ 1 while ãjă kă dj, can be expressed in an extended form as:

x̂k`1 “ diagpξi,kq
loooomoooon

Ak

x̂k ` diagpξi,k∆tq
loooooomoooooon

Bk

P̂k, (12)

where
x̂k “ rx1,k x2,k . . . xI,ks

T, P̂k “ rP1,k P2,k . . . PI,ks
T. (13)

Hence, the evolution of all xi, throughout the prediction horizon H, reads:

x “ Ax̂k `GP, (14)
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where

x “

»

—

—

—

—

–

x̂k`1
x̂k`2

...
x̂k`H

fi

ffi

ffi

ffi

ffi

fl

, P “

»

—

—

—

—

–

P̂k
P̂k`1

...
P̂k`H´1

fi

ffi

ffi

ffi

ffi

fl

, A “

»

—

—

—

—

–

Ak
Ak Ak`1

...
Ak ¨ ¨ ¨ Ak`H´1

fi

ffi

ffi

ffi

ffi

fl

,

G “

»

—

—

—

—

–

Bk 0 0 0
Ak`1Bk Bk`1 0 0

...
...

. . . 0
Ak`1 ¨ ¨ ¨ Ak`H´1Bk Ak`2 ¨ ¨ ¨ Ak`H´1Bk`1 ¨ ¨ ¨ Bk`H´1

fi

ffi

ffi

ffi

ffi

fl

.

(15)

Notably, the system in Equation (14) is time variant, since xi,k`1 in the prediction horizon has a
switching behavior. In addition, x̂k is the initial condition, it contains the current EV SoC when ξi,k“1
and zero when ξi,k“0. Moreover, the cost function in Equation (11a) is linear in Pi,k, and the dynamic
Equation (14) is a linear equality constraint in Pi,k. Furthermore, the other constraints in Equation (11)
are linear inequalities that bind the feasible region described as a polytope. Then, the aggregator
deals with a Linear Programming (LP) convex problem, which can be efficiently solved by Simplex or
interior point methods.

Furthermore, it is noteworthy that the devised eMPC strategy might be affected by feasibility
issues related to the charging time. As a matter of fact, it is assumed that the resulting charging
time, when the eMPC formulation is employed, must be greater or equal than in the Minimum Time
charging case. Thereby, the optimal control problem Equation (11) is said to be feasible if and only if:

pdj ´ ajqPi,max ą
}SoCj,dj

´ SoCj,aj . (16)

In short, Equation (16) implies that the time an EV spends plugged-in (from aj to dj) is at least
enough to charge it with maximum power Pi,max. From the feasibility condition Equation (16), how
the economic MPC strategy will generally increase the time spent at the charging station premises
appears, although a certain reduction of the recharge operating costs is guaranteed. Regarding the
uncertain parameters, they must be inside the feasible region; otherwise, the problem is not feasible
and the EV cannot be charged up to the minimum state }SoCj,dj

. However, an EV that arrives too late
with respect to the request is still allowed to be charged, without guaranteeing that the minimum
}SoCj,dj

will be reached.
In order to assess the complexity of the problem, it can be noticed that:

• the size of the decision and the state variables, Pi,k and xi,k respectively, is I ¨H;
• the number of constraints in Pi,k is 2 ¨ I ¨H, for each time slot, half for the lower bounds, and half

for the upper bounds;
• the number of constraints in xi,k is 3 ¨ I ¨H, for each time slot; equally allocated among the lower

and the upper bounds, and the charger dynamics;
• the number of constraints in xi,dj

, related to the minimum SoC requirement }SoCj,dj
at the departure,

is I.

It is evident that the problem complexity grows linearly with H. This implies that, by scaling
up the number of chargers, the number of constraints and decision variables would also increase
accordingly, possibly impinging on the optimisation solution efficiency.

3.3. Optimal Control with Minimum Cost and Maximum Flexibility

In this subsection, a novel strategy for the charging station problem solution, based on flexibility
maximisation, is proposed. The aim of this novel strategy is to offer a power flexibility capacity to
the electrical grid, while guaranteeing the minimum SoC requirement }SoCj,dj

at the departure time.
The uncertainty in the EV arrival time and SoC at the arrival time are considered as in Section 3.2.
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According to Definition 1, the concept of (upward or downward) flexibility Fk is determined
with respect to a nominal charging profile Pi,k, whereas Fk“ 0 implies that no ancillary service may be
offered to the grid. Hence, it could be crucial to set-up a charging strategy that always guarantees a
certain amount of flexibility capacity. To pursue such an objective, two parallel paths can be developed,
involving the flexibility as either an optimisation constraints or part of the cost function.

In fact, on the one hand, the optimisation constraints in Equation (11b) can be properly rephrased,
in order to impose a minimum flexibility capacity to the chargers. Specifically, such an approach
envisages two possible strategies for the constraint reformulation. In the first strategy, the equation
in Equation (11b) binding the vehicle charging power Pi,k is adapted to guarantee a certain degree of
flexibility Fi,k,

Fi,k ď Pi,k ď Pi,max ´ Fi,k, where Fi,k “
Fk

řI
i“1 ξi,k

, (17)

Fi,k being a parameter defining the flexibility requested to charger i at time slot k, while Fk is the
overall flexibility offered by the EVCS, at the k time slot. It is worth noting that the constraint
Equation (17) implies the same upward and downward flexibility, achievable for

řI
i“1 ξi,kě 1.

Moreover, all the I chargers provide the same flexibility level at each time slot.
The second strategy for the constraints reformulation mainly consists of adding a new constraint

to Equation (11b), binding the aggregated power PT,k, yet leaving unmodified the single-vehicle power
limits. Such a further constraint reads:

Fk ď PT,k ď

I
ÿ

i“1

`

ξi,k ¨ Pi,max
˘

´ Fk, @ k“1, 2, . . . , K. (18)

Note that, by introducing Equation (18), the flexibility of each charger can be different. Indeed,
the idea is to impose a gap in the power requested to the grid.

Finally, in spite of its capability to grant some level of flexibility, and, in turn, some extra energy
service to the grid, a solution of the EVCS optimisation problem including the constraints Equation (17)
or Equation (18) might result in being infeasible. In fact, the maximum flexibility FCT,k achievable by
the EVCS is not known in advance. Indeed, this capacity depends on the state behavior.

On the other hand, in a second path to approach the charging problem improving the flexibility
capacity, the optimisation problem formulation is re-framed according to an optimal control strategy,
aimed to simultaneously maximise the charging flexibility and minimise the operational cost of the
EVCS. This formulation assumes that remuneration factors πU

k (upward) and πL
k (downward) for the

flexibility offered by the station are driven by prices.
To sum up, the aggregator deals with an optimal control problem, i.e.:

min
Pi,k ,UF

i,k ,LF
i,k

∆t
H´1
ÿ

k“0

˜

ck

I
ÿ

i“1

Pi,k ´ πU
k

I
ÿ

i“1

UF
i,k ´ πL

k

I
ÿ

i“1

LF
i,k

¸

(19a)

s.t. xi,k`1 “

$

’

&

’

%

xi,k ` ∆tPi,k if ãj ă k ă dj,
ĄSoCj,aj if k “ ãj,
0 if ξi,k “ 0 _ k “ dj,

(19b)

}SoCj,dj
ď xi,dj

ď ySoCj,dj
, (19c)

LF
i,k ď Pi,k ď ξi,kpPi,max ´UF

i,kq, (19d)

0 ď UF
i,k ď Pi,max, (19e)

0 ď LF
i,k ď Pi,max, (19f)

0 ď xi,k ď xi,max, (19g)

@ k “ 1, 2, . . . , H, i “ 1, 2, . . . , I j “ 1, 2, . . . , J.
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In this case, the aggregator decision variables are the optimal profile Pi,k and the flexibilities
UF

i,k and LF
i,k of the ith charger. Concerning UF

i,k and LF
i,k, in Equation (19), two new constraints are

introduced. Indeed, UF
i,k and LF

i,k are considered as lower-bounded by zero and upper-bounded by
Pi,max. Then, the charging power Pi,k is always positive.

This formulation allows for finding solutions that maximise both upward UF
i,k and downward

LF
i,k flexibilities. Furthermore, the resulting charging strategy may lead to non-symmetric flexibility

capacities, consistently with Definition 1.
Finally, the dynamic constraint for the SoC in xi,k being in line with Equation (11b), its evolution

can be again consistently expressed as per Equation (14). Taking into account the discussion
after Equation (15) about linearity in the problem Equation (11), note also that the cost function
in Equation (19a) is a linear function of Pi,k as Equation (11a) and the new constraints are linear as well.
Then, like for the eMPC case, the aggregator faces an LP convex problem. Similarly, the feasibility
condition presented in Equation (16) also holds for the problem formulation Equation (19). From this
perspective, it can be noticed how the approach Equation (19), in the worst-case scenario, would not
allow any flexibility, thus reducing to the same outcome of the eMPC model in Equation (11).

To conclude, it is expected that this innovative OCCF strategy, with flexibility maximisation,
generates higher expenses for the EVCS with respect to the eMPC one because the energy value is not
the only element of the cost function. Nonetheless, it can provide to the grid a significant flexibility
capacity. In turn, such additional flexibility would allow the generation of relevant extra revenues for
the EVCS, due to the aggregator service in maintaining the electrical grid balance.

4. Case Study and Results

In this section, a case study with several simulation results is presented, with the aim of evaluating
the performance of the three charging strategies:

1. Minimum time (MT).
2. Economic MPC (eMPC).
3. MPC with minimum cost and flexibility maximisation (OCCF).

For this purpose, the EV charging profiles Pi,k, the charger SoC xi,k, the flexibility capacities
LF

T,k and UF
T,k, and the resulting operation costs for each strategy are compared. An EVCS sampling

time of ∆t“ 10 min is employed in order to provide spinning reserve service. The solution of the
resulting optimization problems is obtained with the CVX package [72]—specifically, the convex LPs
in Equation (11) and Equation (19), with a one-day simulation length, thus β“ 24 h (144 time steps).

The EVs considered in the case study are the electric taxis that circulate in Bogotá, Colombia.
In fact, all the EVs have the same characteristics, namely, they are BYD e6 cars with a battery capacity of
80 kWh and a nominal charging rate of 8 kW. They can also support a fast charging rate of 50 kW [71].
Concerning the minimum desired SoC at the departure, a full charge condition is requested in all the
simulations (}SoCj,dj

“ySoCj,dj
), in order to make a meaningful comparison with the MT strategy, in which

the EVs are fully charged at the end of the period. Regarding the uncertain parameters, the actual
arrival time aj for each EV is generated as a sample of a random variable with uniform distribution,
mean value given by the declared arrival time ãj, and support between ãj ˘ δ, with δ“20 min.
This variability leads to a feasible problem, considering that the minimum interval an EV owner
can book a charger is 2 h (see Equation (16)). Then, in the worst case, a charging time of 1 h and
40 min is enough time for charging an EV with the given characteristics, by injecting the maximum
feasible power. Moreover, the actual EVj arrival state of charge SoCj,aj is generated as a sample of a

uniform distribution with support between the reported SoC at the request ySoCj,rj and }SoCj,rj , where,

without loss of generality, ySoCj,rj is a random number between 15% and 40% of the EV capacity,

and }SoCj,rją0. In addition, for the MPC algorithm, the expected value ĄSoCj,aj is considered as a

random value lower than ySoCj,rj and higher than zero.
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The adopted simulation parameters, characterising the optimisation models, are reported in
Table 2. Concerning the optimisation scenario configuration, a prediction horizon of H“ 6 h (36 time
steps) is assumed as the maximum time an EV can spend at the charging station premises. Furthermore,
in these tests, two different energy price sequences are considered. They are hourly sampled
time-variable prices, named c1,k (Figure 5a) and c2,k (Figure 11), corresponding to real data taken
from the Colombian stock market. They allow for assessing the potential diversity in the aggregator
responses. Moreover, in line with the Colombian energy market regulation and without loss of
generality, the benefit price granted to the EVCS for its flexibility capacity is assumed to have the same
price as the traded energy [73], i.e., πU

k “πL
k “ ck.

Table 2. Case study simulation parameters.

Name Symbol Value Notes

EVCS sample time ∆t 10 min -
Operation time of the station β 24 h (144 iterations)
Maximum arrival delay δ 20 min -
Prediction horizon H 6 h (36 iterations)
Battery capacity in EVj Cj 80 kWh -
Charging power (time slot k) Pi,k 8 kW Semifast (Level 2)
Charging power (time slot k) Pi,k 50 kW Fast (Level 3)
Minimum SoC in EVj (at departure) }SoCj,dj

80 kWh xi,dj
“Cj

Energy price 1 (time slot k) c1,k
0.0577 ${kWh Mean value
0.0252 ${kWh Std dev.

Energy price 2 (time slot k) c2,k
0.0614 ${kWh Mean value
0.0115 ${kWh Std dev.

Remuneration price (time slot k) πU
k , πL

k c1,k or c2,k -

4.1. Charger Flexibility Analysis

In order to perform a worthwhile analysis of the proposed charging strategies, a simulation
campaign is set up, considering first a deterministic scenario and then a setting with uncertainty.
The simulated charging station considers three chargers, and 11 EV re-charge requests, with the energy
price sequence c1,k, as per Table 2. Specifically, Table 3 lists the 11 electric taxis requests, with their
request arrival time ãj and departure time dj, their SoC at the request ySoCr,j, and the identification
number IDi of the charger assigned by the scheduler. The actual information on the arrival time aj and
arrival state of charge SoCa,j is also reported.

Table 3. EV charger schedule.

EVj EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11

ySoCj,r,j 28.0 23.0 32.0 13.0 23.0 17.0 22.0 26.0 24.0 18.0 30.0
SoCj,a,j 8.4 21.7 17.1 7.6 6.9 3.2 3.4 n/d 6.6 16.3 21.5
ãj 3:30 5:30 5:30 7:30 10:30 10:30 11:30 13:30 15:30 16:30 20:30
aj 3:40 5:20 5:40 7:20 10:10 10:20 11:20 n/d 15:30 16:30 20:20
dj 5:30 8:30 9:30 10:30 15:30 15:30 14:50 n/d 19:30 19:30 23:30
IDi 1 2 3 1 2 3 1 n/a 1 2 1

Let us notice that the taxi EV8 could not be served (i.e., its request was not accepted), all the three
chargers already being in use at the EV8 requested time; for that reason, the charger ID of the taxi
EV8 is marked as not available (n/a), and the variables corresponding to its arrival are marked as not
defined (n/d).

In the following subsection, the behaviour of charger number 1 is analysed to benchmark the
tested solution strategies, due to its high activity in this simulation (five electric vehicles served: EV1,
EV4, EV7, EV9, and EV11).
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Figure 5. The behaviour of the three charging strategies in charger 1, considering only request
parameters. (a) Energy price sequence c1,k. (b) Power profiles P1,k with the different strategies.
(c) Charger SoC x1,k with the different strategies.

4.1.1. Deterministic Performance

In order to perform a deterministic analysis of the proposed charging strategies, the first simulation
campaign takes into account a full information approach. It is assumed that: (i) an Oracle informs the
aggregator about the actual arrival SoC of each EV, i.e., it knows the information since the moment
when a request is performed, that is, at least H hours in advance; and (ii) the EV arrival time is the one
reported in the request.

In Figure 5, the most relevant aspects of the three charging strategies are shown and compared.
Figure 5a depicts the simulated time-variable energy price sequence c1,k adopted in this simulation,
as reported in Table 2. Figure 5b shows the power profile delivered by charger 1, namely P1,k, to the
5 EVs it serves. As expected, the P1,k profiles are always positive or equal to zero. By definition, the MT
strategy (red line) charges the vehicles with a constant power Pmax“ 50 kW, until the battery SoC
reaches a full condition, i.e., x1,dj

“ 80 kWh (100%). Conversely, the eMPC solution (dashed-green line)
envisages different power levels taking into account the energy prices, while ensuring the 100% SoC
target at the departure time. Finally, in the OCCF strategy (dash-dot blue line), the charging power is
continuously adjusted while the algorithm tries to achieve the same upward and downward flexibility,
by keeping P1,k close to a medium level, roughly 25 kW. Nevertheless, for EV1, in Figure 5b, between the
arrival time a1“ 3:30 a.m. and the departure time d1“ 5:30 a.m., a medium power level cannot be
maintained, due to the shorter charging time (2 h) given by the EV owner request. In the last 30 min,
the energy price increases, and the OCCF strategy takes into account this fact to schedule lower power
in that period. Figure 5c shows the resulting SoC evolution, x1,k, of the EVs served by the charger.
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As expected, the MT strategy reaches a full charge condition faster. On the other side, by comparing
Figure 5a,c, it is worthwhile to notice how the eMPC strategy strives to limit as much as possible its
charging level at high price hours. Conversely, the OCCF solution, which depends on both flexibility
and economic aspects, achieves a trade-off between energy cost reduction and flexibility generation.

Figure 6 depicts the charger 1 flexibility level, referring to the three strategies. The MT strategy
cannot offer any upward flexibility capacity (UMT), but it can offer a downward one (-LMT). Conversely,
the eMPC strategy has the possibility to offer an amount of upward (UeMPC) and downward
(-LeMPC) flexibility, but it cannot provide both flexibilities at the same time for the majority of the
time slots. However, the OCCF strategy according to the problem formulation (see Equation (19a)
and Equation (19b)), which includes the flexibility in the cost function, offers both upward (UOCCF)
and downward (-LOCCF) flexibilities at almost all the time steps when there is a connected EV.
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Figure 6. Flexibility capacity provided by charger 1.

From the results shown in Figure 6, it is clear that charger 1 can provide ancillary services to the
grid, e.g., a spinning reserve service, for a relevant amount of time. The best option to offer this service
is with the OCCF charging strategy. For example, by comparing the trends in Figurs 5b and 6, let
us notice that, between hours 13:10 and 14:20, the charger can offer its maximum flexibility capacity
(F1,k“ 25 kW). Indeed, in that interval, the delivered charging power is roughly in the middle of the
maximum one P1,max“ 50 kW. In different time intervals, no flexibility might exist (see Definition 1),
for instance between hours 5:20 and 5:30 or 23:20 and 23:30.

To conclude, the overall results of this simulation campaign are summarised in Table 4—specifically,
the total aggregator cost, the savings of the two MPC strategies with respect to the MT solution and both
upper and downward flexibilities capacities. It can be seen how the OCCF solution, maximising the
flexibility levels, is an attractive solution for the aggregator.

Table 4. Three strategies’ overall simulation results (three chargers, 11 EV requests)

Strategy Charging Cost UF
T,k Capacity LF

T,k Capacity
Cost [$] Savings [%] [kWh] [kWh]

Minimum Time (MT) 272.55 ´ 0.00 4300.00
economic Model Predictive Control (eMPC) 216.98 20.39 3226.06 4073.94
Optimal Control with Minimum Cost and 257.34 5.55 6097.77 3902.23Maximum Flexibility (OCCF)

4.1.2. Results with Uncertainty in Arrival SoC and Arrival Time

In the second set of simulations, the same conditions of the previous subsection are maintained,
considering the set up presented in Table 2. There is no oracle providing the exact EV information about
arrival time aj, departure time dj, and initial SoC SoCj,aj . These parameters are generated randomly as
described at the beginning of the section. Then, the eMPC and OCCF strategies can, in the prediction
step, over or underestimate the time required to fully charge an EV. However, the feedback structure
of the MPC solution is able to overcome the uncertainty as shown in the following.

Figure 7 shows the performance of the three charging strategies. Figure 7a shows the power
trajectories P1,k. Figure 7b shows the SoC x1,k of charger 1, where the purple asterisks (*) indicate the
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reported arrival time ãj and EV SoC (ySoCj,rjq at the request time, i.e., the expected arrival time with the
maximum expected SoC at the arrival.
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Figure 7. The behaviour of the three charging strategies in charger 1, with arrival SoC and time
uncertainties. (a) Power profiles P1,k with the different strategies. (b) Charger SoC x1,k with the
different strategies. (c) Flexibility capacity provided by charger 1.

Comparing the power consumptions in Figure 5b with the ones presented in Figure 7a,
for strategies eMPC and OCCF, it can be seen that they have similar behaviours, especially when the
prediction error is small, as for EVs 4, 7 and 11. However, for EVs 1 and 9, the prediction is far from
the actual arrival SoC and the arrival time is also different. Note that the aggregator assumes that
EV1 (a1“3:40, d1“5:30) and EV9 (a9“15:30, d9“19:30) were arriving with a high SoC. Then, the power
curves show a peak during the first sample times, while the MPC strategies correct the mismatch;
then, they follow an optimal charging profile, similar to the exact information case. Interestingly,
the flexibility offered by charger 1, shown in Figure 7c, is just marginally affected by the prediction
error. There is always a symmetric capacity, with a small deviation during the first sample times.

The results of the complete simulation (EVCS with all its chargers) are summarised in Table 5.
The aggregator operation cost with different strategies is shown. In addition, the savings of the eMPC
and OCCF strategies are calculated in comparison with the MT strategy. As expected, the OCCF
strategy maximises the flexibility capacities. Furthermore, there is no relevant difference for the eMPC
and OCCF strategies between knowing or not in advance the EV arrival SoC. Indeed, for this case,
the charging cost for the eMPC strategy increases by just 0.17%, while, for the OCCF, it increases by
0.06%. Therefore, this suggests that the MPC strategies are robust in front of the EV arrival time and
initial SoC information.
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Table 5. Strategies’ overall simulation results, with uncertainty in the arrival time and initial SoC (three
chargers, 11 EV requests).

Strategy Charging Cost UF
T Capacity LF

T Capacity
Cost ($) Savings (%) (kWh) (kWh)

MT 272.63 - 0.00 4300.00
eMPC 217.34 20.27 3241.46 4058.54
OCCF 257.50 5.54 5997.95 3902.05

4.2. Savings, Benefits, and Flexibility in the EVCS

Now that the main characteristics of the proposed strategies have been highlighted in a small
example, an extensive simulation campaign is presented, reproducing an EVCS with 25 chargers and
110 EV re-charge requests to be fulfilled in one day. These simulations are developed considering
uncertainty in the arrival SoC and arrival time. The main results are shown in Figure 8. In Figure 8a,
the number of EVs arriving at the station (red line) and the number of EVs connected (dashed-blue
line) at each time slot are shown. In Figure 8b, the time history of the delivered charging power is
shown for the three solution strategies. Consistently with the preliminary case, the OCCF solution
generates the smoothest behaviour. Then, Figure 8c focuses on the overall station operational cost at
each time slot. Specifically, it provides further evidence that, although the eMPC strategy might be
the more expensive one at certain time intervals, by considering the overall daily operations, it is the
cheapest solution. This is in line with the preliminary results listed in Table 5.
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Figure 8. The behaviour of the three charging strategies in the EVCS. (a) EV arrival and EVs connected
in the operational time. (b) Power delivered. (c) EVCS cost.
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Figure 9 shows the flexibility capacity that the EVCS can offer to the system operator at each
time slot k, with the three strategies, along the operation time of the station. As already mentioned,
the upward and the downward flexibilities in the OCCF strategy are maximised, according to the
optimal problem formulation. Interestingly, by comparing this simulated result with the outcome in
Figure 7c, the OCCF strategy offers a certain level of flexibility at every time interval, allowing for
providing spinning reserve service to the grid all day long. This evidence suggests that the more EVs
are connected, the higher is the algorithm capability to achieve charging flexibility.

2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

-1000

-500

0

500

1000

P
o

w
e
r 

[k
W

]

U
MT

-L
MT

U
eMPC

-L
eMPC

U
OCCF

-L
OCCF

Figure 9. EVCS flexibility capacity.

To sum up, Table 6 lists the overall results of this second simulation scenario. Once again, it is
shown that the higher flexibility capacity levels are achieved by the OCCF solution. Concerning the
savings of the MPC solutions with respect to the MT strategy, the values are of the same order of
magnitude of the preliminary case in Table 4. This might imply that those savings are independent of
the amount of plugged-in EVs, yet dictated by the chosen solution strategy and energy price evolution.

Table 6. Three strategies’ overall simulation results, considering uncertainties (25 chargers, 110 EV
requests).

Strategy Charging Cost UF
T,k Capacity LF

T,k Capacity
Cost ($) Savings (%) (kWh) (kWh)

MT 2913.13 - 0.0 47,600.00
eMPC 2322.36 20.28 40,979.68 42,620.32
OCCF 2706.40 7.10 61,059.26 42,240.74

4.3. Monte Carlo Analysis

The performance of the proposed EVCS operation strategies is evaluated through a Monte Carlo
simulation, where the EVs SoC, arrival and departure times are randomised, and the resulting overall
savings with respect to the outcomes of the MT strategy are analysed. To this aim, the optimal decision
problem for an EVCS with 25 chargers and 110 EV requests is solved for 500 realisations of random EV
arrival and departure times, aj and dj. In more detail, the EV arrival flow is assumed to be a random
variable with uniform distribution during the day, considering that electric taxis operate 24 h and can
be charged at any time. Then, in the simulation, ãj is generated as a random variable, with uniform
distribution between hour 1:30 a.m. and hour 20:30. Note that, for another type of user, it would
be possible to identify the distribution that better represents it [74], for example, analysing historical
data [75]. Moreover, dj is also randomly generated, constrained to guarantee a charging time between
2˜ 6 h; 2 h is the minimum interval guaranteeing a feasible charging procedure, and 6 h as a reasonable
time for resting between work shifts. Two price sequences, c1,k and c2,k as per Table 2, are considered,
allowing for evaluating the sensitivity of the strategies to the energy cost.

In the MT and eMPC strategies, no remuneration factor is considered. In particular, the results of
the eMPC strategy are to avoid or reduce the consumption at high energy prices, thus increasing the
upward capacity available and reducing the downward capacity available. This available capacity
is calculated from a purely technical point of view. Conversely, the OCCF algorithm, as per the
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Formulation Equation (19), finds a trade-off between energy cost and flexibility capacity, thus
distributing the energy consumption throughout all the time-slots. In turn, this leads to a schedule
with the EV charging station operating during high-cost hours, thus making the overall charging
process more expensive but guaranteeing an almost symmetrical flexibility at all times.

In the OCCF strategy, the remuneration is given to provide flexibility. The remuneration factor is
assumed to be higher when the energy price is high because, without an appropriate incentive, nobody
would provide flexibility in the higher energy price periods. Thereby, it is reasonable that the trend of
the remuneration factor follows the energy price sequence.

A comparison is introduced here in the form of parametric analysis, in which the remuneration
factor is chosen at different percentages of the energy prices. In this way, the overall cost savings
of providing flexibility with respect to the MT strategy are quantified. When the price sequence c1,k
(see Figure 5a) is considered in the Monte Carlo simulation, the probability density function (PDF)
of the overall savings is shown in Figure 10. The other cases for the OCCF strategy are formulated
with remuneration factors of 10%, 20%, and 30% of the energy price (the further case with 100% is
not shown but is included in Table 7). By definition, with null remuneration factor, the solution is the
same as in the eMPC. By introducing remuneration, the energy costs of the different solutions increase,
but the benefits due to remuneration are higher, and the solutions become more profitable. Indeed,
when the remuneration is equal to the energy price, the overall savings are very high (even though
these savings refer to the MT strategy, such values higher than 100% are conceptually feasible).

Figure 10. Overall savings for different strategies and remuneration factors based on c1.

When the energy price sequence c2,k is used (Figure 11), the most relevant outcomes of the Monte
Carlo trials are shown in Figure 12.
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Figure 11. Energy price sequence c2,k.



Energies 2019, 12, 3834 24 of 29

Figure 12. Overall savings for different strategies and remuneration factors based on c2.

The results summarised in Table 7 show that the average savings for the set-up with price c1,k are
higher than for the price c2,k. This can be explained by the difference in the ratio between the standard
deviation and the mean value of the energy prices, 0.44 for c1,k and 0.19 for c2,k (see Table 2). Hence,
the higher the variability of the energy cost profile, the higher the capability of the MPC strategies to
achieve more convenient schedules on a daily basis, charging the vehicles principally at the cheapest
time slots. When the remuneration factor increases, the mean overall savings increase, and the standard
deviation of the overall savings also increases. Furthermore, the overall savings found starting from
the two different energy price sequences tend to be similar when the remuneration factor increases.
This is due to the fact that, with high remuneration factors, the power profiles tend to be more constant
(see Figures 7a and 8b). This happens already when the remuneration factor is 30% of the energy price
for the two energy price sequences, and, for this reason, the results shown in Figures 10 and 12 are
shown up to 30%.

Table 7. Mean value and standard deviation of the overall savings with respect to the MT strategy.

Strategy and Overall Savings Strategy and Overall Savings
Remuneration Factor Mean (%) Std (%) Remuneration Factor Mean (%) Std (%)

eMPC, π “ 0 19.8 1.6 eMPC, π “ 0 10.6 0.8
OCCF, π “ 0.1 ¨ c1 44.5 2.1 OCCF, π “ 0.1 ¨ c2 35.3 1.3
OCCF, π “ 0.2 ¨ c1 59.5 2.4 OCCF, π “ 0.2 ¨ c2 53.9 2.2
OCCF, π “ 0.3 ¨ c1 81.6 3.4 OCCF, π “ 0.3 ¨ c2 80.6 3.0

OCCF, π “ c1 257.9 10.2 OCCF, π “ c2 257.9 10.1

5. Conclusions

This work has proposed two novel strategies for the scheduling of the charging power of a
Electric Vehicle Charging Station (EVCS) that can be used by an aggregator. The first strategy
looks for minimising the EVCS operation costs via an economic Model Predictive Control (eMPC).
The second strategy develops an Optimal Control with minimum Cost and maximum Flexibility
(OCCF) formulation, where the EV charger flexibility capacity is defined as the power deviations
attainable by the charger with respect to a given nominal charging profile. Following a smart grid
standard approach for charging EVs, these strategies can adjust the power at each time slot, which
could be carried out through available technologies and solutions such as the open charge point
protocol. In both eMPC and OCCF strategies, the effect of uncertainty on the arrival time and on the
state of charge of the EV battery at the arrival are taken into account. The two charging strategies
were benchmarked against the simple Minimum Time (MT) charging strategy. Interestingly, the OCCF
charging strategy was found not only to reduce the EVCS operating costs with respect to the MT
benchmark case, but also to maximise the load profile flexibility, giving the possibility of offering
ancillary services to the grid, like spinning reserve, through upward/downward power deviations at
each time slot. In addition, a dynamic model of an EVCS charger as a flexible load was developed.
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The model has a switching behaviour, according to whether there is an EV plugged in to the charger
or not.

A wide range of numerical simulations based on the electric taxi service used in Bogotá (Colombia)
were presented, considering two sequences of energy spot prices, taken from the Colombian market.
We found that, in all cases, the two proposed strategies reduce the operation costs with respect to
a minimum charging time solution, although the time spent at the station premises is increased.
However, the OCCF strategy is slightly more expensive. It was shown that the cost reduction is not
affected when the arrival time and SoC of the EVs are not precisely known in advance.

While the eMPC solutions offer some flexibility in the power demand, the upward and downward
flexibility capacity offered by the OCCF strategy is more balanced, has smooth variations during the
day and limits the power peaks that may occur with the other strategies. As such, the OCCF strategy
becomes of particular interest for the EVCS to benefit from offering ancillary services through demand
response programs, generating additional revenues.

As future work, the strategies used by the aggregator will be improved by considering renewable
sources providing energy to the charging station as well as the use of real data of EV usage. In addition,
longer time periods of analysis will be considered and the EV battery degradation cost will be
included in the optimization cost function. However, these future features do not modify the proposed
formulation of the flexibility.
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