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Abstract: An energy autonomy system is sustained by energy from independent and distributed
sources. This paper presents a robot system that obtains energy from renewable energy sources
distributed over a large area with limited storage capacity. We constructed a linearized charge model
to estimate the required energy node capacity and distribution for the robot to survive. For a robot
to obtain energy from an energy source, it must be able to recognize the energy node and able to
receive energy reliably. We used wireless power transfer to solve conventional contact charging
problems, such as mechanical complexity and unstable contact, and image information was used
to recognize the energy nodes and align the transmission coils accurately. A small scale renewable
energy source was constructed and a charge experiment was conducted to verify the proposed
autonomy system feasibility.

Keywords: robot energy autonomy; renewable energy; charge model; wireless power transfer;
image information

1. Introduction

Mobile robots and drones have found wide applications across many industries, including
agriculture, delivery, search, and exploration. Some mobile robots incorporate combustion engines and
fuel tanks, but most are operated by electric motors and powered by an on-board battery, which requires
periodic recharging as it becomes exhausted. Battery recharging has been an acknowledged problem
for some time. The most common method is to manually charge the battery. Home robots, particularly
vacuum cleaning devices, generally recharge automatically using various systems, with the robot
finding the recharge station using vision [1] or infrared LEDs [2]. Other automatic charging methods
have been proposed to allow robots to intake power or replace a charged battery autonomously [3,4].
Such methods offer a reduced time required for charging, but current mechanisms are complicated
and unreliable. Energy sources used to charge robots are usually commercial power sources, but
various energy sources for mobile robots have also been considered. A typical example is photovoltaic
cells, which are widely used, but difficult to use in the absence of sunlight or when there are payload
limitations, e.g., rotary wing drones. A robot that consumes organic substances as its power supply
rather than electrical energy has been proposed [5], as well as others that harvest their own energy.
However, the latter option only applies for micro robots, e.g., insect-sized robots, because the amount
of available energy is relatively small [6].

Energy autonomy systems are sustained by energy from independent and distributed energy
sources [7]. This paper presents an energy autonomy system in which a robot obtains energy from
a distributed independent external energy sources with limited storage capacity, such as renewable
energy, in the event that the robot does not receive sufficient energy from conventional commercial
power sources. Currently, robotic energy autonomy studies have only been conceptual [8]. Khonji et
al., proposed a drone charging system using wireless power transmission from a solar generator large
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enough to charge the robot directly without storing energy. However, they did not consider the energy
balance between the robot and the energy source [9].

To realize energy autonomy, the robot must be able to recognize the distributed energy sources
itself, which come in a wide range of types and shapes, and be able to successfully transfer energy from
the source to the robot. Conventional automatic charging methods employ mechanical contact, which is
an effective commercial technology. Mobile robots generally do not have sufficient positional accuracy
to make unassisted contact with a recharge station, and hence guide mechanisms around the recharge
station are used to correct robot position and ensure stable contact with the recharge station [1,2].
However, electrical contact is often incomplete in practical outdoor environments, where the charging
terminal can be contaminated by dust, moisture, abrasion, etc. Battery exchange type recharging
stations are difficult to use as distributed small scale energy sources because the exchange mechanisms
are somewhat complicated. Therefore, we adopted wireless power transmission energy transfer to
address conventional energy transfer problems. Wireless charging has previously been regarded as an
auxiliary method due to low efficiency and environmental problems, but has developed significantly
recently to provide a solid charging method option [10]. In the field of mobile communication,
much research on wireless power transfer technology has been reported. Ju et al. have proposed a
system that enables mobile devices to harvest energy and transmit information through Hybrid APs
(Access Points) [11] and Vamvakas et al., proposed a system for supplying energy to mobile devices
through power stations [12]. Several studies have considered wireless power transfer for mobile robots,
proposing automatic charging systems for mobile robots using image information [13,14]. A power
station was practically implemented for automatic charging rotary wing drones [15]. A robot supplied
energy to the sensor network [16] and fellow robots [17]. Although wireless power transfer simplifies
the required connection mechanisms, transmission efficiency remains relatively low and recharging is
time consuming. Hence only a small portion of the energy produced can be used by robots and the
proportion of time spent charging is high compared to total activity time. Therefore, it is essential to
analyze whether the robot has enough energy and time to work.

This study proposes an autonomous robotic system that can survive by acquiring energy from
distributed sources with limited storage capacity, similar to the honey bee behavior. The distributed
energy sources are small-scale, collecting energy in a storage device that is delivered to the robot.
Previous studies considered energy harvesting robots [6], where the energy harvesting device was
inside the robot. In contrast, this study proposes small-scale renewable energy sources outside the
robot, and the robot is retained by acquiring this energy. We constructed a linear charge model
with variables for energy node distribution and capacity, and analyzed whether the robot could
survive. We adopted an induction-type wireless power transfer to solve contact charging problems.
A small-scale thermoelectric energy source was constructed and charging experiments was conducted
to verify proposed energy autonomy system feasibility.

The remainder of this paper is organized as follows. Section 2 presents the problem statement
and subsequent autonomous energy charge model. Section 3 provides numerical evaluations for the
proposed system, and presents experimental results. Section 4 summarizes the paper.

2. Methodology

2.1. Problem Statement

Figure 1 shows a typical robot activity space, comprising work and energy acquisition areas, with
N energy nodes in the energy acquisition area. When the robot energy is close to exhausted, it visits
the energy nodes to recharge its energy.
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2.2. Charge Cycle Model 
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Figure 1. Robot activity space.

Each energy node stores electric energy generated from some source in energy storage (ES),
comprising a battery or super-capacitor with limited capacity, and transmits energy to the robot when
it visits. Figure 2 shows that each energy node includes an energy source, power converter, energy
storage system, and transmitter and coil for power transmission.
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Figure 2. Typical energy node structure.

2.2. Charge Cycle Model

The amount of energy to be generated and transferred are approximated using a linear model
with the amount of energy produced being proportional to time and can saturate the available storage
capacity, and the amount delivered using wireless energy transfer is also proportional to delivery time
as Equations (1)–(3),

εi = satEi

(
gi · tg + εi0

)
, (1)

eiT = µ · tT, (2)

and
eiR = η · µ · tT (3)

where εi is stored energy (initially, εi0), gi is energy generation rate, Ei is energy storage capacity, eiT is
energy transmitted from, and eiR is energy received from energy node i on the robot side; tg is energy
generation duration, µ is wireless power transfer coil energy transfer rate, η is energy transfer efficiency,
tT is transmission duration, and

satL(x) = x, i f x < L

= L, i f x ≥ L.

Since energy the transfer efficiency is <1, only a fraction of the produced energy is used in the
robot. Energy transfer efficiency is the product of wireless power transfer efficiency, η1, and robot
battery energy efficiency, η2, i.e., η = η1 · η2. Wireless power transfer efficiency depends on how well
the transmission and receiving coils are aligned, and we determined experimentally that η1 < 0.8 for
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induction-type systems. Battery energy efficiency is the ratio of the usable energy to energy received
and η2 ≈ 0.8 for Li-ion batteries, but can be significantly lower for other battery types [18].

The robot consumes energy to visit an energy node, and the energy it receives must exceed the
energy consumed to acquire it. Robot power drain during movement, ptrip, consists of power to drive
and power consumed by the controller [19],

ptrip = pm + pc, (4)

where pm is robot power consumption while driving, i.e., by motor(s) and sensors used for navigation,
etc., and pc is power consumption for control, consumed by the controller board.

Work and charge constitute one cycle. Some robots have a sleep function. Power consumption in
the sleep state, ps, is the minimum to maintain the system, and hence significantly less than consumed
in normal operation. The robot can go into a sleep state if energy node production is insufficient.
Figure 3 shows a typical robot system operation–charge cycle.
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Table 1 shows the symbols used in the charge model.

Table 1. Symbols used in the charge model.

Symbol Explanation

gtot Total energy generation rate for all nodes, W
µ Energy transfer rate of wireless power transfer coil, W
η Energy transfer efficiency
pc Robot power consumption for computing, W
pm Robot power consumption for driving, W
pw Average robot power consumption in operation, W
ps Robot power consumption for sleeping, W
d Total trip distance to visit the energy nodes, m
r Robot speed, m/s

Tdock Average time to recognize and dock with an energy node, s
ES Total energy storage capacity, Joule

Emax Maximum energy obtained from the energy nodes, Joule
Rmax Robot energy storage capacity, Joule

We assume

n ps < gtot, i.e., energy consumption rate in the sleep state is less than the total energy generation rate;
n pc < η ·µ, i.e., the energy gained by the robot during charging is greater than the energy consumed

by the robot at rest; and
n robot energy storage capacity is greater than that for energy nodes.

Let E(n) denote the energy the robot obtains from the energy nodes, and R(n) denote robot energy
level after the n-th charge cycle. And

R(n) = Rtot(n) −Ro, (5)
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where Rtot(n) is the total energy stored in the robot, and Ro is the bottom energy, i.e., the minimum
energy to ensure robot energy is not completely exhausted while moving to obtain energy, regardless
of the order the nodes are visited. The time spent in a charge cycle is sum of robot working time, twork,
sleeping time, tsleep, and time taken to acquire energy, tcharge. Hence, not considering energy saturation
at nodes,

E(n) = η ·
(
gtot ·

(
twork(n) + tsleep(n) + tcharge(n)

)
−Rs(n) + Rs(n− 1)

)
, (6)

where Rs(n) is the energy remaining in the energy nodes when the n-th charge cycle is completed, i.e.,
the obtained energy is the sum of the energy produced during one cycle and the energy remaining in
the previous cycle minus the energy remaining in this cycle. Let τni be the visit time for the i-th energy
node in the n-th charge cycle, and τnb be the time to return to the base station after charging. Thus,
energy remaining at the i-th node, εri, and residual energy Rs (n) are

εri(n) = gi · (τnb − τni), (7)

and
Rs(n) =

∑
εri(n). (8)

The time to get energy, tcharge, is the sum of travel time between nodes, time to recognize and dock
nodes, and time to receive energy,

tcharge(n) =
d
r
+ N · Tdock +

E(n)
η · µ

. (9)

We can obtain R(n) for the robot by subtracting energy consumed to obtain the energy from E(n).
The consumed energy is the sum of energy used moving toward the node and at rest during charging
from Equation (4),

Consumed energy =

(
d
r
+ N · Tdock

)
· (pm + pc) +

E(n)
η · µ

· pc. (10)

Suppose the N energy nodes are uniformly distributed over a square area with length D m of
one side, and are visited following the Hamiltonian cycle. The distance to be traveled, d, can be
approximated as [20]:

0.625D < lim
N→∞

N−
1
2 · d < 0.922D. (11)

2.3. Survival Condition

The survival condition for a robot with sleep function is that enough energy is produced during
sleep time. On the other hand, robots without a sleep function must obtain more energy than they
consume using only energy produced during working hours. If a robot with a sleep function is kept in
a sleep state except for the time it takes to obtain energy, then

twork = 0, tsleep = R(n− 1)/ps, (12)

whereas
twork = R(n− 1)/pw, tsleep = 0 (13)

for a robot without sleep function. We approximate Rs (n) ≈ Rs (n − 1) in Equation (6) to obtain a linear
model, i.e., the energy remaining in the nodes is almost constant, and by rewriting Equations (6), (9),
(10), (12) and (13),

R(n) = A · E(n) − B, (14)
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and
E(n) = C · E(n− 1) + D, (15)

where
A = 1−

pc

η · µ
,

B =

(
d
r
+ N · Tdock

)
· (pm + pc),

C = η · gtot ·
A

P∗ ·
(
1− gtot

µ

) ,

and

D =
η · gtot(
1− gtot

µ

) · (d
r
+N · Tdock −

B
P∗

)
,

with P* = ps for a robot with sleep function and P* = pw without. From the assumptions in Section 2.2,
A, B and C > 0, and D > 0 for robots with a sleep function. Thus, the solution for Equation (15) can be
expressed as

E(n) =
(
E(0) −

D
1−C

)
Cn +

D
1−C

, (16)

where E(0) = (R(0)+B)/A, and R(0) is the initial robot energy.
Since energy node storage capacity is limited, total energy storage is saturated over time. Assuming

that the storage amount of each node is proportional to the node energy generation rate, energy
saturation for the entire node can be approximated by the saturation function. If 0 < C < 1,

E(n) → min
(
Emax,

D
1−C

)
. (17)

If 1 ≤ C, E(n) reaches Emax and if energy obtained > energy consumed for a robot with a sleep
function, then the extra energy can be used for work. When R(n) < 0 in both cases, robot energy
is depleted.

2.4. Sleep Strategy

A robot that does not have a sleep function needs to visit an energy node when its energy reaches
zero while operating; whereas if the robot has a sleep function, it can enter a sleep state when energy
production is insufficient. We present a sleep strategy to obtain a high utilization rate, u, i.e., the ratio
of time spent working to the entire time,

u =
twork

twork + tsleep + tcharge
. (18)

The proposed sleep strategy is to obtain maximum energy per charge cycle with minimum sleep
time. We assume the robot is under survival conditions with C ≥ 1, hence extra energy is generated for
work. The time to enter sleep state, Tentry, is obtained from robot energy after charging in the previous
cycle, to obtain maximum energy, Emax. If the energy level entering sleep state is Rsleep, then

twork = H
(
R(n− 1) −Rsleep

)
·

(
R(n− 1) −Rsleep

)
/pw (19)

and
tsleep = min

(
R(n− 1), Rsleep

)
/ps, (20)
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where H (·) is a Heaviside step function. When charge and work are balanced, where Eeq is balanced
obtained energy, Req is the balanced robot energy,

Eeq = η · satEs

(
gtot ·

(
twork + tsleep + tcharge

))
, (21)

Req = A · Eeq − B (22)

and hence,
twork = H

(
Req −Rsleep

)
·

(
Req −Rsleep

)
/pw, (23)

tsleep = min
(
Req, Rsleep

)
/ps, (24)

and

tcharge =
d
r
+ N · Tdock +

Eeq

η · µ
. (25)

This piecewise linear equation has solution Eeq = Emax when

Rsleep =

(
Emax ·

(
1

η · gtot
−

A
pw
−

1
η · µ

)
+

B
pw
−

d
r
−N · Tdock

)
/
(

1
ps
−

1
pw

)
, (26)

and Rsleep ≥ 0 and Rsleep ≤ Emax ·A− B.
For minimum R∗sleep that satisfies Equation (26), we obtain Tentry, the sum of twork and tsleep, as

Tentry = H
(
Req −R∗sleep

)
·

Req −R∗sleep

pw
+

min
(
Req, R∗sleep

)
ps

. (27)

Thus, the proposed sleep strategy is:
Sleep Rule 1:
For elapsed time t after starting work and current robot energy R(t),

1 Work state→ Sleep state

n If t + R(t)/ps ≤ Tentry , Enter sleep state
n else, maintain the work state

2 Sleep state→ Charge state

n If R(t) ≤ 0, Enter charge state

3. Results

3.1. Numerical Evaluation

3.1.1. Finding Survival Area

The survival area was obtained using the energy generation rate, gtot, and total travel distance as
variables. The parameters used for numerical evaluation were r = 1 m/s, Tdock = 30 s, µ = 50 W, pc = 10
W, pm = 20 W, pw = 25 W, ps = 2 W, and η = 0.5. Figure 4 shows the survival area for the robot from
Equation (14) with respect to gtot and distance traveled to obtain energy. Figure 4a,b show the survival
area for the robot when total energy storage = 450 and 2500 kJ, respectively.



Energies 2019, 12, 3851 8 of 16
Energies 2019, 12, x FOR PEER REVIEW 8 of 16 

 

. 
(a) 

 
(b) 

Figure 4. Robot survival region. (a) Total energy storage capacity 450 kJ; (b) Total energy storage 
capacity 2500 kJ. 

3.1.2. Simulation 

For the simulation study we set up 10 energy nodes in a 200 m × 200 m area with total capacity 
ES = 870 kJ. The mobile robot visits nodes along the shortest distance Hamiltonian path, with total 
distance = 668.5 m. Each energy node has a random energy generation rate and total energy 
generation rate ݃௧௢௧ = 2, 15 and 35 W, representing non-viable, viable with sleep function, and viable 
without sleep function, respectively. Figure 5 shows the robot energy stored with a sleep function 
after every recharge cycle. Figure 5a shows the amount of energy in the robot when the robot keeps 
the sleep state after charging. The robot became energy depleted for the non-viable condition. Figure 
5b shows the robot energy when the robot works after charging. The tasks performed by the robot 
consume 1–50 W, 25 W average, and working times are 10–60 s. Sleep state is entered if necessary 
according to the proposed sleep strategy during operation. 
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3.1.2. Simulation

For the simulation study we set up 10 energy nodes in a 200 m × 200 m area with total capacity
ES = 870 kJ. The mobile robot visits nodes along the shortest distance Hamiltonian path, with total
distance = 668.5 m. Each energy node has a random energy generation rate and total energy generation
rate gtot = 2, 15 and 35 W, representing non-viable, viable with sleep function, and viable without
sleep function, respectively. Figure 5 shows the robot energy stored with a sleep function after every
recharge cycle. Figure 5a shows the amount of energy in the robot when the robot keeps the sleep
state after charging. The robot became energy depleted for the non-viable condition. Figure 5b shows
the robot energy when the robot works after charging. The tasks performed by the robot consume
1–50 W, 25 W average, and working times are 10–60 s. Sleep state is entered if necessary according to
the proposed sleep strategy during operation.
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Figure 5. Robot energy after charge cycle. (a) Robot energy: sleep state maintained before charging; (b)
Robot energy: work and sleep if necessary before charging.

Figure 6 shows the utilization rate for fixed energy and proposed sleep methods with an energy
generation rate = 15 and 35 W. For the fixed energy-level sleep strategy, the robot enters sleep
state when energy falls below the predetermined level (130 kJ). However, the proposed method has
superior utilization.
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3.2. Experiments

3.2.1. Experimental Setup

The puspose of the experiment was to verify the feasibility of the proposed energy nodes and
energy transfer method. The experimental energy node comprised a thermoelectric module (TEM),
generating electricity using waste heat. The robot knows the approximate position of the energy node,
recognizes the node in that vicinity using image information, and aligns transmitting and receiving
coils accurately. Figure 7 shows the thermoelectric power generation node. Electricity was generated
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by the Seebeck effect, where electromotive force is generated by temperature differences due to heating
one side and radiating the other. The voltage generated is

V = M ·α · (TH − TC), (28)

where M is the number of modules, α is the Seebeck coefficient, and TH and TC are the hot and cool
side temperatures, respectively [21].
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Figure 7. Thermoelectric energy nodule (TEM) structure.

Table 2 shows voltage, current, and power generated from the TEM used in this experiment.
Considering the converter, charger, and battery efficiency, the overall energy generation rate is much
lower than the TEM power.

Table 2. Thermoelectric energy module (TEM) outputs.

Condition Voltage (V) Current (A) TEM Power (W) Estimated Available
Power (W)

∆T = 47 ◦C (TH = 168 ◦C) 10.34 0.49 5.07 2.6

∆T = 64 ◦C (TH = 168 ◦C) 13.61 0.66 8.98 4.6

The robot used in the experiment was Turtlebot3, which is widely used as an experimental mobile
robot platform, and had a laser scanner and a monocular camera for navigation and object recognition.
Robot navigation techniques based on laser scanners can be found in Reference [22]. The mobile
robot consumed 4.2 W at rest, due to the controller, and travelled flat terrain at 0.2 m/s, consuming
an additional 5.9 W. The wireless power transfer module used in the experiment was a commercial
device that conforms to the Qi standard and theoretical maximum energy transfer rate µ = 15 W. Thus,
for average pw = 8 W, ps = 2 W, η = 0.5, and energy acquisition area = 2500 m2, the robot with a sleep
function was expected to survive with three energy nodes with specifications as above. The wireless
power transfer module required lateral position accuracy = 1 cm for efficiency [17]. After moving to
the charging station vicinity, the robot recognized the alignment marker from images, detected four
points on the marker, and calculated the position and direction for the correct charging coil, as shown
in Figure 8.
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Figure 8. Robot charging process for the experiment.

3.2.2. Experimental Results

The robot was initially near an energy node, and then detected it specifically. The robot learned
the energy node shape in advance using the single shot detector (SSD) algorithm [23]. Figure 9 shows
recognition and identification results for two energy node types. The detection of the object was
performed in about 1 s with a 1.2 GHz embedded robot controller. Figure 10 shows that the robot then
estimated the position and direction of the energy node and the predetermined transmission coil pad.
The transmitting and receiving coils must be accurately aligned to ensure a high transmission efficiency.
Robot position and direction were corrected by recognizing the marker ahead of the charge station,
as shown in Figure 11, along with the estimated relative pose. Figure 12 shows the final docking with
the charging coil, confirming the position accuracy required for wireless charging was obtained using
the image information.
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Figure 12. Docking with the charging coil. (a) Robot on charging pad; (b) Robot trajectory.

4. Discussion

This study proposed a robot system where a mobile robot obtained energy from small-scale
energy sources distributed over a large area, e.g., as might be expected for renewable energy sources.
Electric energy produced by the small-scale generators were stored in the battery and then transferred
to the robot. The charging process was modeled as a linearized difference equation to obtain robot
survival conditions, and we adopted wireless charging to solve the mechanical complexity for energy
transfer using contact charging. Previous robot energy autonomy studies [8,9] have only considered
basic operations, transferring generated energy directly to the robot and the energy balance was not
considered. In contrast, in this study we formulated conditions such that the robot could balance work
and charge using parameters representing a node geometric distribution, energy generation rate, and
energy storage capacity. We implemented a compact energy node comprising thermoelectric elements
to verify the feasibility of the proposed system and implemented an auto charge test. Energy nodes can
have various physical forms depending on how energy is generated, so the robot’s ability to recognize
an energy source is essential. The robot recognized the energy nodes stably using the SSD algorithm,
and image information was then used to accurately align the robot and transmitting coil. The robot
achieved sufficient precision for wireless charging using a simple alignment marker, confirming they
would be suitable for robot energy autonomy.

Several practical problems remain to be addressed.
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n The current absence of a specialized energy transfer device for robot charge means the charging
rate is slow for practical use.

n Battery efficiency deteriorates with extended charge–discharge cycles, and it is difficult to know
how much available energy remains within the battery.

Ideally, these problems should be solved, but any realistic situation requires a conservative design.
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