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Abstract: The increasingly mechanical requirements of offshore structures have established the
relevance of fracture mechanics-based quality control in welded joints. For this purpose, crack tip
opening displacement (CTOD) at a given distance from the crack tip has been considered one of
the most suited parameters for modeling and control of crack growth, and it is broadly used at the
industrial level. We have modeled, through multivariate analysis techniques, the relationships among
CTOD values and other material properties (such as hardness, chemical composition, toughness, and
microstructural morphology) in high-thickness offshore steel welded joints. In order to create this
model, hundreds of tests were done on 72 real samples, which were welded with a wide range of real
industrial parameters. The obtained results were processed and evaluated with different multivariate
techniques, and we established the significance of all the chosen explanatory variables and the good
predictive capability of the CTOD tests within the limits of the experimental variation. By establishing
the use of this model, significant savings can be achieved in the manufacturing of wind generators,
as CTOD tests are more expensive and complex than the proposed alternatives. Additionally, this
model allows for some technical conclusions.

Keywords: crack tip opening displacement; steels; welded or bonded joints; multivariate regression
model; marine structures

1. Introduction

As the burgeoning offshore wind power industry grows, so too do the technical demands on the
metal frames and primary structures that sustain them. These structures are under enormous dynamic
stresses due to the effects of their moving parts, wind, currents, tides, and waves. Within this sector,
the quality control of the welded joints of these structures is of the utmost importance, considering that
welding defects are widely considered as potential spots for structural failure initiation [1]. The study
based on fracture mechanics of parameters such as CTOD, in the context of crack nucleation and fatigue
crack growth, has become essential for manufacturers, designers, classification societies, and inspectors.
The fatigue life calculation occupies a prominent place in codes, standards, and rules [2–4]. Such
fatigue analysis is based on “rule-based” methods or direct calculation based on Stress-Cycles data
models, determined by fatigue testing of the considered welded details and linear damage hypothesis.

As this approach is rarely possible (due to the full fatigue test required for the welded details),
the fatigue analysis may alternatively be based on fracture mechanics. The classification societies’
crack growth models use the classic formulation of the Paris–Erdogan law, with developments for the
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classical plastic hinge models (firstly developed by the British Standards Institution and published
in 1979). According to the vast work of Zhu and Joyce [5], the stress intensity factor K [6], the crack
tip opening displacement (CTOD) [7], the J-integral [8], and the crack tip opening angle (CTOA)
(developed for thin-walled materials) are the most relevant parameters used in fracture mechanics. Out
of these various parameters of the interaction of the materials with the formation and propagation of
cracks or defects, the critical crack tip opening displacement (CTOD) at a given distance from the crack
tip is the most suited for modeling stable crack growth and instability during the fracture process [9].
Currently, the tests are carried out by discarding the plastic hinge model and adopting the J-conversion,
using recognized standards such as the (British Standard) BS-7910, (American Petroleum Institute)
API-579, and (American Society for Testing and Materials) ASTM E1290.

CTOD testing requires the preparation of a notch with a specific geometry that promotes the
nucleation of a stable and uniform crack in a delimited area [10]. The crack grows under the action
of dynamic mechanical forces that are generally transmitted with huge oleo-hydraulic equipment
and controlled by precision extensometers. The uncertainty of the test methods, as well as the
sensitivity to any internal defect, make it necessary to carry out several of these tests to guarantee
representative values.

The CTOD tests are expensive, as they require significant investments in testing machinery,
software, expertise, and outsourcing of services [11]. The destruction of large quantities of ad hoc
welded material is also required (ASTM E1290-08e1c (2008) [12]). Additionally, deadlines offered by the
testing laboratories exceed the average for other quality control tests in welded unions. Considering
the case of welded joints, in addition to the properties of the base material, dozens of other variables
related to the welding process could affect the features of the final welded material. Therefore, if the
CTOD test result does not fulfil the requirements, it is very difficult for technicians to infer which
changes in the variables could lead to an improvement of the CTOD results.

The aim of the present work is to evaluate the possibility of using multivariate mathematical
models to correlate the CTOD parameter with other test results that are simpler and cheaper to measure,
and also well known by the parties involved.

2. Selection of Input Variables and Experimental Phase

The multivariate analysis consists of a series of appropriate statistical methods (such as multiple
regression, logistic regression, analysis of variance (ANOVA), or cluster analysis, to name a few) used
when numerous observations are performed on the same object in one or several samples. Those
methods allow the creation of formal hypothesis tests when given a structure of input–output data.
Expressing a variable as a function of a set of underlying intercorrelated variables is among the possible
hypotheses [13].

2.1. Selection of Input Variables

The selection of these so-called explanatory variables was done considering the industrial approach
of this research work. Among the numerous variables with proven effects on the material properties (see
Table 1 for a non-exhaustive selection proposed by Dunne et al. [14] and Haque and Sudhakar [15]), the
following ones were selected due to their widespread use in the industry, relatively cheap measurement,
and possibility to be determined in modest-quality control laboratories. Also, the chosen variables
are part of the testing process required by the design codes, rules, and standards for the design,
qualification, and control of welded joints. Therefore, these values are usually available (or easy to
gather), there are clear acceptance criteria, and their effects on the CTOD and on welded joints are
widely recognized.



Energies 2019, 12, 4001 3 of 18

Table 1. Non-exhaustive selection of variables with proven influence on material properties.

Variables

Carbon (wt %) Plate thickness (mm)
Manganese (wt %) Post Welding Heat Treatment (PWHT) holding time

Silicon (wt %) PWH cooling rate/method
Sulphur (wt %) Test piece orientation

Phosphorus (wt %) Test temperature
Aluminum (wt %) Yield Strength (MPa)

Boron (wt %) Ultimate Tensile Strength (MPa)
Molybdenum (wt %) Charpy toughness (J)

Oxygen (wt %) Grain boundaries and orientation
Nitrogen (wt %) Hardness

V% fraction of reaustenized region Grain boundary ferrite
V% fraction of double-reheated zone Intragranular polygonal ferrite

Grain refined subzone Grain coarsened subzone
Non-metallic inclusions Mean 3D diameter of inclusions

2.1.1. Microstructure

The microstructure of the material in the area in which the CTOD value is to be determined will
be considered one of the input variables. Some authors [16–23] have studied the relation between
microstructure characteristics and fracture mechanics properties and supports, and the influence of
grain size, angle of grain boundaries, orientation, and inclusions on the nucleation and propagation
of cracks. The average size of the metallic grains in the area of interest was determined according to
ASTM E112 (2013) [24] (determined by optical microscopy) to represent this variable. The specimens
were polished and prepared according to the recommendation of E3-11 (Guide for Preparation of
Metallographic Specimens) [25] for Al2O3 abrasive (1200 American National Standards Institute grit
number), with rotation and etching reagent no. 77 (E407-07 Standard Practice for Microteaching Metals
and Alloys) [26].

The limitation in obtaining samples with different surface orientations (see Figure 1) appropriate
for eventual non-equiaxed grain shapes was corrected with the implementation of an arbitrary
multiplication factor, depending on the grain contour. Any possible heterogeneity in the area of interest
is expected to be statistically covered by the experimental design. Having considered the industrial
approach, other well-known techniques that require specific equipment, such as scanning electron
microscope (SEM), were not used. Also, as failure types are not considered as study variables, the
critical grain size for brittle fracture was not considered.
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2.1.2. Chemical Composition

The chemical composition of the material is a well-known factor that exerts influence on the
mechanical properties [27–29].

Samples were analyzed by optical emission spectrometry and X-ray diffraction using a Niton ® XL2
analyzer and a Spectromax metal analyzer. Results were statistically processed to offer the best-weighted
average estimator considering the different uncertainties of the testing method and for the following
elements: C, Mn, Si, Cr, Ni, Mo, and V. Both the test procedure and the uncertainty calculation used
were approved by the testing laboratory. For the implementation of the chemical composition into the
mathematical model, we considered the influence of the different elements using the carbon equivalent
(CE) index, expressed in Equation (1). Among the numerous CE formulae available in the bibliography,
we chose American Welding Society (AWS) D1.1 [30], which was cited in [29] and is also known as the
International Institute of Welding (IIW) carbon equivalent.

This expression was selected considering its precision for mechanical and microstructural
properties [27]:

CEindex = C +
(Mn + Si)

6
+

(Cr + Mo + V)

5
+

(Ni + Cu)
15

(1)

where all values involved represent the mass percentage composition [w/w%]. Therefore, the result is
a non-dimensional continuous variable.

2.1.3. Mechanical Strength

The mechanical resistance plays a fundamental role, and forms a constitutive part, in fracture
mechanics [31]. Also, the determination and control of its value is a fundamental part of the quality
control of the material properties (for structural materials). Tensile test results were discarded due to
the impossibility to take measurements exclusively in the small area of interest, as all the subsized
specimens proposed by the standards exceed the capability of the testing machine (too small) or
destroy valuable testing material (too big). Nevertheless, according to numerous publications (e.g.,
ASM Handbook for carbon steel), there is a consistent and almost linear relation between ultimate
tensile strength (UTS) and hardness. Therefore, hardness measurements according to ASTM E92
(Hardness Vickers 10) (2017) [32] were taken from the samples to estimate the mechanical resistance of
the material. Standardized Vickers indenters (Class B) were used with a load of 98.7 N (HV 10) and an
optical indentation measurement. The average value of a set of three indentations (considering 2 mm
of space between tests) were examined for each sample.

2.1.4. Toughness

Previous studies [15,16,33,34] support the relation between impact testing results (measured as
Charpy V-notch (CVN) energy values) and fracture toughness. Some correlations have been adopted
by the standards ASME Boiler and Pressure Vessel Code (BPVC) XI (2017) [35] and API 579 [3].

CVN tests, according to ASTM E23 (2018) [36], were performed on the samples. Subsize Charpy
simple-beam V-notch impact test specimens were used (2.5 mm, according to Figure A3.1 from ASTM
E-23), with the notch aligned with the future CTOD sample notch [10]. All tests were performed at
room temperature (between 20 and 25 ◦C) with a 300 J pendulum device. Three specimens (instead
of two) were used for each toughness characterization to ensure representative values (see Figure 1),
due to the sample size limitation. Measurement of lateral expansion or the fracture region size was
not considered.

2.2. Experimental Design

For a multivariate statistical study (with a suitable uncertainty), it is required to reach a determined
critical mass of input data. This number is undetermined, and it will be verified after the modeling [17].
In addition, a wide range that covers the industrial interest is required for the explanatory variables.
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It is expected that the heterogeneities on the physical properties of the welded joints and the
uncontrolled variables were arbitrarily distributed among the observations, according to the random
principle [37]. Nevertheless, the sampling and test position was designed to minimize the effect of
these heterogeneities (see Figure 1) by reducing, as much as possible, the area from where the results
are obtained.

The first approximation of the complete number of tests was estimated considering the guide of
factorial experimental design, computed for four variables, each with two levels, and one replication.
A total of 72 complete sets of data were obtained through testing campaigns.

The welded coupons (from where the specimens were extracted for testing) were kindly transferred
from manufacturing companies. This guarantees the reproducibility with respect to real welding
designs and manufacturing processes, and also the applicability of the ranges used. Nevertheless, it
also limits the number of available samples, and as the authors cannot control the range of variability
of the study variables, experimental designs with surface analysis or complex factorial designs cannot
be used. These limitations of the used experimental set may affect the accuracy of future models
(by not gathering the critical amount of data for multivariate models) and prevent the use of more
explanatory variables.

2.3. Samples

All the samples were extracted from 36 welded coupons of at least 400 mm length in the direction
of the weld. Those coupons were welded for real Welding Procedure Qualification records following
real Welding Procedure Specifications, then kindly transferred from manufacturing companies for this
project. The thickness of the coupons varied between 20–75 mm and were considered representative of
offshore manufacturing. K and V-bevels were used, and the base materials and consumables were
standard within the manufacturing sector. Several different consumables and four base materials
classified according to EN 10225 [38] (low-alloy steels S355 G5 + M, S355 G10 + M, S420 G2 + M,
and S460G2 + M together) were used, together with two structural steels from EN 10025:2010 [39]
(low-carbon steels S275 J2 and S355 K2). The following table (Table 2) summarizes the range of different
relevant variables during the welding process that may have an influence on the properties of the
welding coupons. These ranges are considered as representative of the structural welding processes of
the offshore wind power industry.

Table 2. The range for different variables of the test coupons.

Variables Min. Max. Variables Min. Max.

Wire diameter 1.2 mm 2.8 mm Material base S275 S460
Intensity 80 A 230 A No. of welding processes 1 2
Polarity DC AC Voltage 10 V 30 V
Speed 40 mm/min 240 mm/min Use of backup No Yes

Heat input 0.6 KJ/mm 4.2 KJ/mm Welding thickness 20 mm 75 mm
Pre-heating No 150 ◦C W. position PA PF

Gas flux 10 l/min 25 l/min Bevel angle 35◦ 90◦

Abbreviations: minimum = Min.; maximum = Max.

All the welded coupons were subjected to extend non-destructive tests, according to EN 17637 [40],
EN 17638 [41], and EN ISO 17640 [42]. A total of 14 small indications were found, and consequently
the zone was marked and discarded for destructive tests.

2.4. CTOD Test

All 72 CTOD tests were done according to ASTM E1290-08e1c (2008) [12] with standard specimens
(single-edge notched bend SE(B) specimen with square B × B cross-section) and the recommended
notch [43]. The apparatus used was an oleo-hydraulic dynamic machine (model UFIB-200E-MD5W)
configured for a 3-point bending setup and using clip-gauges as the crack growth measuring system.
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The testing temperature was in the range of 20–25 ◦C. As Figure 1 shows, the notch was aligned 1 mm
from the fusion line.

The chosen testing method, ASTM E1290-08e1, calculate the CTOD value with the following
expression:

δ =
1

mσY

K2
(
1− ν2

)
E

+
ηCMODApl

CMOD

B(W − a0){1 + Z/(0.8a0 + 0.2W)}

 (2)

where Z is the distance of the front face of the SE(B) specimens to the knife-edge measurement point,
Apl

CMOD is the plastic area under load from the plastic CMOD curve, and the expression of m is:

m = A0 −A1

(
σYS
σts

)
+ A2

(
σYS
σts

)2
−A3

(
σYS
σts

)3
(3)

where

A0 = 3.18− 0.22
( a0

W

)
, A1 = 4.32− 2.23

( a0

W

)
, A2 = 4.44− 2.29

( a0

W

)
, A4 = 2.05− 1.06

( a0

W

)
(4)

and

ηCMOD = 3.667− 2.199
( a0

W

)
+ 0.437

( a0

W

)2
, (5)

Alternatives calculations, formulas, and predictions were studied by [33,44–48].
All the tests were performed in the private laboratory testing facilities of the TAM group

(accreditation no. 808/LE1532).

2.5. Results

The data obtained were processed according to the respective test procedures. Finally, for each
of the 72 test samples, the results were collected for the explanatory and objective variables. In the
Table 3 the results of the testing process are summarized and expressed as the minimum (Min.) and
maximum (Max.), giving the range, the average value (Avg.), standard deviation (SD), and coefficient
of variation (CV).

Table 3. Experimental phase results summary.

Param. CTOD [mm]
Mechanical

Strength
[HV10]

Toughness [J]
Microstructure

[µm.
Correction]

Chemical
Composition

[CE]

Min. 0.10 165 76 101 0.22
Max. 2.45 375 278 354 0.53
Avg. 1.24 224.4 183.4 177.0 0.39
SD 0.59 41.87 51.84 55.44 0.05

CV [%] 47.3 18.7 28.3 31.3 14.1

Abbreviations: parameters = Param.; minimum = Min.; maximum = Max.; average value = Avg.;
standard deviation = SD; coefficient of variation = CV; crack tip opening displacement = CTOD.

3. Modeling

We observed a set of K variables X1, X2, . . . , XK in a set of n elements of a population and wanted
to summarize the values of the variables and describe their dependency structure. Each of these K
variables is called a scalar or univariate variable and the set of these K variables form a vector or
multivariate variable. All these values can be represented in a matrix, X, of dimensions n× p, called a
data matrix, where each row represents the values of the K variables over the individual i, and each
column represents the corresponding scalar variable measured in the n elements of the population. In
the element xi j, i denotes the individual and j is the variable.
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Next, we proceed to the multivariate analysis of the observations. To do this, we calculate the
vector of means X =

[
X1 X2 · · · XK

]
of dimension p, whose components are the means of each

of the p variables and the covariance matrix. From the matrix of centered data X̃,

X̃ = X −


1
1
...
1

X, (6)

the symmetric and positive semidefinite matrix of covariance S = 1
n X̃TX̃ is calculated.

The objective of describing multivariate data is to understand the dependence between the
objective variable and the explanatory variables. For this we studied:

1. The relationship between pairs of variables;
2. Dependence between the objective variable and all the explanatory variables;
3. Dependence between the objective variable and the explanatory ones, but eliminating the effect

of some of them.

The pairwise dependence between the variables is measured by the symmetric and positive
semidefinite correlation matrix R

R =


1

r21

r12

1
. . . r1K
. . . r2K

...
... . . .

...
rK1 rK2 . . . 1

, r jk =
S jk

S jSk
(7)

so that there is an exact linear relationship between the variables X j and Xk if
∣∣∣r jk

∣∣∣ = 1.
It may happen that there are variables that are very dependent on others, in which case it is

convenient to measure their degree of dependence. Assuming that Y = X j is the variable of interest,
and calling Ŷ the variable used to estimate Y, the best linear predictor from the other variables, called
the explanatory variables, is:

Ŷ = β0 + β1X1 + · · ·+ βKXK, (8)

where the parameter βi is determined through the data that we have at our disposal. The problem is
finding the set of parameters that minimizes

∑n
i=1 (Yi − Ŷi)

2
, leading to

y = Y −Y
x j = X j −X j, j = 1, . . . , K

(9)

and defining ŷ = Ŷ −Y, we have Y − Ŷ = y− ŷ, and Equation (8) can be written as follows

ŷ = α0 + α1x1 + · · ·+ αKxK, (10)

Since minimizing
∑n

i=1 (Yi − Ŷi)
2

is equivalent to minimizing
∑n

i=1 (yi − ŷi)
2 =

∑n
i=1 e2

i , by deriving
this sum with respect to the αk parameters, we obtain a system of p− 1 equations that can be written
as follows:

n∑
i=1

eixil l = 1, . . . , K, l , j (11)

Equation (9) indicates that the prediction errors must not be correlated with the explanatory
variables, so that the covariance of both is zero, or else the residual vector must be orthogonal to the
space generated by the explanatory variables. By defining the matrix XR, of size n× (p− 1), obtained
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by eliminating the column in the matrix X̃ corresponding to the variable that we want to predict,
y = x j, the parameters are calculated by the normal equation system as follows

α =
(
XT

RXR
)−1

XT
Ry (12)

and Equation (10), with these coefficients, is the multiple regression equation between variable y = x j
and the remaining variables xi, i , j, i = 1, . . . , K.

To express this result based on the X1, . . . , XK variables of Equation (8), we must consider

βi = αi, i = 1, . . . , K

β0 = α0 + Y −
K∑

i=1
αiXi

(13)

The square of the multiple correlation coefficient (which can be greater than, less than, or equal
to the sum of the squares of the simple correlations between variable y and each of the explanatory
variables) [49] between the variable y = x j and the rest is

R2
j = 1−

SSresid
SStotal

= 1−
1

s j js j j , (14)

where s j j = s2
j is the j-th diagonal element of the covariance matrix S and s j j = 1

s2
r ( j)

is the j-th diagonal

element of the S−1 matrix, which represents the residual variance of a regression between the j-th
variable and the rest. As each time a variable is added to the model the number of degrees of freedom
is reduced and the adjustment is increased, it is necessary to make a correction of this coefficient and
calculate the adjusted R2

j ,

R
2
j = 1−

SSresid
(n−k)
SStotal
(n−1)

, (15)

where n is the total number of observations and k is the number of model variables; that is, the same
calculation is made, but weighted by the degrees of freedom of the residuals, n − k, and the model,
n− 1.

The R-squared RSQ =
∑
(ŷi−yi)

2∑
(yi−y)2 is a descriptive measure of the predictive capacity of the model,

and for a single explanatory variable is the square of the simple correlation coefficient between the
two variables.

3.1. Previous Data Processing

Correlation coefficients were determined among the study variables. A high degree of correlation
between toughness (CVN) and microstructure was observed, which was strongly supported in the
bibliography. This relationship also depends on other variables that have not been considered in
this experiment, such as temperature, tension state, or specimen geometry. Therefore, this particular
relation between both variables is exclusive to this experiment and cannot be generalized.

Figure 2 shows the correlation and scatterplot diagrams between all the variables (objective
and explanatory) taken two-by-two. The kernel density estimation (KDE) representation is also a
way to estimate the probability density function of a random variable. A strong correlation can be
observed among the CTOD and the explanatory variables, particularly toughness, microstructure, and
chemical composition. Excluding the chemical composition, other variables do not seem to follow a
normal distribution.
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Figure 2. Correlation, kernel density estimation (KDE), and scatterplots (the trendline that best fit
linear relation is represented in blue) among the different variables.

Figure 3 shows the quantiles of input samples (explanatory variables) versus standard normal
quantiles (theoretical quantiles from a normal distribution). If the distribution of the explanatory
variable is normal, the plot will be close to linear. Except for the chemical composition and toughness,
the rest of the independent variables (the mechanical strength, called M. Strength onwards, and
microstructure) do not seem to follow a normal distribution, so it would be advisable to make a
transformation (for example, logarithmic type) before carrying out a multiple regression analysis. This
can be explained by the observation of the KDE of the corresponding variable in Figure 2, where the M.
Strength variable shows a positive skewness towards lower values and the microstructure shows a
slightly bimodal distribution (this effect is eliminated through a logarithmic transformation after the
outlier exclusion).
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With the aim of discarding the outliers that could influence observations, the Mahalanobis distance
was used [49,50] for their detection and ten complete data sets were excluded (14%).

3.2. Linear Regression Models

3.2.1. Linear Model 1

Here, Y is considered as the study variable that may be linearly related with K explanatory
variables X1, X2, · · · , XK through β0, β1, β2, · · · , βK (regression coefficients). A multiple linear regression
model can be written as:

Y = β0 + β1X1 + β2X2 + · · ·+ βKXK + e (16)

where e is the difference between the fitted relationship and the observations [51].
Using Equations (12) and (13), the values of the parameters are calculated. In Table 4, the

coefficients for the multiple linear regression (Equation (16)) can be found. It can be seen that all
coefficients are significantly different from zero, but toughness is the variable with the highest absolute
value. In this case, the number of observations is 63, and the error degrees of freedom is 58.

Table 4. Multiple linear model 1 Y = β0 + β1X1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.022731 1.0629 × 10−46

β1 −M. Str. −0.080323 0.035816 2.8756 × 10−2

β2 − Tough. 0.22424 0.040094 6.3259 × 10−7

β3 −Micros. −0.12972 0.047887 8.8595 × 10−3

β4 −C. Comp. −0.19243 0.038258 5.0415 × 10−6

F-Statistic p-value - - 1.4 × 10−24

The root mean square error (RMSE) is 0.216, which when compared to the range of the values of Y
results in:

RMSE
(YMAX −YMIN)

= 0.1048 ≈ 10%, (17)

Which provides an estimate of the possible error obtained from the real values of the CTOD
variable. In Figure 2, it can be observed that the correlation coefficient between CTOD and toughness
is 0.799. Considering all the independent variables the R-squared (RSQ) is 0.866, and the adjusted RSQ
value is 0.856, so there is a limited improvement from considering the CTOD toughness (or CTOD
microstructure) correlation.

Henceforth, for the models shown, the t-statistic (tStat) and F-statistic will be calculated and
included. The first of them, tStat, calculated as estimated or standard error (SE), tests the null hypothesis
that the corresponding coefficient is zero against the alternative that it is different from zero. To
evaluate this coefficient, the corresponding p-value associated with a Student´s t distribution (for n
observations) is calculated and compared with a confidence interval of 95%. If the p-value is less than
0.05, we can conclude that the variable is significant for the model.

Analogously, the F-statistic, calculated as:

F =

∑n
i=1

(ŷi−y)2

(p−1)∑n
i=1

(yi−ŷi)
2

(n−p)

(18)

tests the null hypothesis that one or more of the regression coefficients are significantly different from
zero (meaning a significant linear regression relationship exists for the whole model). This value is
compared with an F-distribution for a given confidence interval (95%) and is evaluated in the same
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way as the t-statistic (associated p-value less than 0.05). The F-distribution is more appropriate than
Chi-square tests for small data sets [52].

Two different methods were used to verify that the obtained model was independent of the chosen
data population: cross-validation and training-test samples.

The cross-validation was calculated with the LeaveMout method (see crossvalind Matlab function)
with an M value of 1, which randomly selects one value and excludes it from the evaluation. This
process is repeated 50 times and helps to verify that the statistical analysis is independent of the data
set. The number of observations was 62, with RMSE = 0.218, RSQ = 0.866, and adjusted RSQ = 0.856.
The results are shown in Table 5.

Table 5. Cross-validation results.

Parameters Estimate SE p-Value

β0 1.2215 0.027668 8.971 × 10−46

β1 −M. Str. −0.08113 0.036144 2.8692 × 10−2

β2 − Tough. 0.22244 0.040667 1.0436 × 10−6

β3 −Micros. −0.13334 0.049165 8.8225 × 10−3

β4 −C. Comp. −0.19006 0.039041 9.3064 × 10−6

F-Statistic p-value - - 3.5 × 10−24

The training test was done considering a set of 500 executions of samples from 50 observations
(randomly selected from the whole data set) and test samples from 13 data sets. The averages of all
RMSE and RSQ results are

________
RMSE = 0.2275 and

_____
RSQ = 0.8284, respectively.

Table 6 contains the values of RSQ and RMSE obtained with the reference model (linear model 1),
cross-validation, and training test. As the values are similar (less than 5% discrepancy), we can
conclude that the relation between the CTOD and the explanatory variables is independent of the
data set.

Table 6. Comparison of the values of R-squared (RSQ) and root mean square error (RMSE).

Parameters RSQ RMSE

Linear Model 1 0.866 0.216
Cross reference 0.866 0.218
Training-Test 0.828 0.227

3.2.2. Linear Model 2

The significance of all variables was checked for all the explanatory variables, but it was observed
that the microstructure was highly correlated with toughness. For that reason, a new model (linear
model 2) was proposed, where the microstructure was eliminated from the original model.

Y = β0 + β1X1 + β2X2 + β4X4 (19)

Table 7 shows the values of the parameters calculated for linear model 2, and the adjustment
obtained (RMSE = 0.227, RSQ = 0.849, and adjusted RSQ = 0.841) was similar to the previous one
(linear model 1).
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Table 7. Multiple linear regression model 2 Y = β0 + β1X1 + β2X2 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.028657 5.353 × 10−46

β1 −M. Str. −0.11829 0.034686 1.1768 × 10−3

β2 − Tough. 0.27944 0.036337 1.8301 × 10−10

β4 −C. Comp. −0.22775 0.03785 1.2105 × 10−7

F-Statistic p-value - - 3.79 × 10−24

3.2.3. Linear Models 3 and 4

As the value of parameter β1 (coefficient of the mechanical strength) in linear model 1 was
small compared to the values of the rest of the parameters, it was that the corresponding variable be
eliminated to obtain a new model (linear model 3), considering that its contribution to the value of the
CTOD variable was small. The values of the coefficients of linear model 3 are represented in Table 8.

Table 8. Linear regression model 3 Y = β0 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.028146 1.9133 × 10−46

β2 − Tough. 0.22225 0.04143 1.4246 × 10−6

β3 −Micros. −0.17174 0.045549 3.793 × 10−4

β4 −C. Comp. −0.20715 0.038957 1.961 × 10−6

F-Statistic p-value - - 1.32 × 10−24

The quality of the adjustment is almost similar to that of the model with the four independent
variables, with RMSE = 0.223 and RSQ = 0.854.

Figure 4 shows the residuals of linear model 3, which can be considered as normally distributed.
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Finally, a new model (linear model 4) is adopted considering the square of the first variable
(M. Str2.), and the contribution of the independent variables to the variable CTOD is checked (see
Table 9). In this case, the coefficient of determination RSQ = 0.874 is larger than in the purely
linear model.
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Table 9. Linear regression model 4 Y = β0 + β1X2
1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2584 0.029113 8.0522 × 10−46

β1 −M. Str2. −0.038872 0.012639 3.2021 × 10−3

β2 − Tough. 0.21641 0.038792 6.6704 × 10−7

β3 −Micros. −0.1562 0.042897 5.7976 × 10−4

β4 −C. Comp. −0.19142 0.036789 2.68 × 10−6

F-Statistic p-value - - 1.97 × 10−25

Other tests have been done with different interactions between variables, but they do not improve
the results.

3.3. Multivariate Adaptative Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) is a non-parametric modeling method that
extends the linear model (incorporating nonlinearities and interactions). It is a generalization of the
recursive partitioning regression (RPR), which splits up the space of the explanatory variables into
different subregions. MARS generates cut points for the variables. These knots are identified through
baseline functions, which indicates the beginning and end of a region.

In each region in which the space is divided, a base linear function of one variable is adjusted.
The final model is constituted from a combination of the generated base functions [53].

The general expression of the model is:

Ŷ =
k∑

i=1

ciBi(x) , (20)

where ci is the constant coefficient and Bi is the base function.
A MARS model was applied using cubic splines. This method considers nonlinear relationships

among the CTOD variable and the explanatory ones using a spline adjustment, obtaining a RSQ = 0.86
and RMSE = 0.16. With a training sample of 50 data sets and test sample of 13, the results were
RSQ = 0.84 and RMSE = 0.26. Additional information may be found in Figure 5, where the
MARS model is plotted for two of the explanatory variables and two anaylsis of variance (ANOVA)
functions (this visualizes the contribution of the ANOVA functions for the pairs CTOD-M. Strength
and CTOD-microstructure in the MARS model).
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Figure 5. (a) Multivariate adaptive regression splines (MARS) model plot for two of the explanatory
variables together with its knot locations (up) and (b) the analysis of variance (ANOVA) function
for the pairs CTOD-M. Strength (left) and (c) CTOD-microstructure (right) (using ARESLab toolbox:
Jekabsons G., ARESLab: Adaptive Regression Splines Toolbox for Matlab/Octave, 2016, available at
http://www.cs.rtu.lv/jekabsons/).

Again, these values do not improve on those obtained with previous models.

3.4. Other Models

Other models were studied in order to observe a possible improvement with respect to the initial
model (linear model 1).

In the first place, we proposed a generalized linear model considering a Gaussian distribution
and an identity linking function, the parameters for which are included in Table 10 (Generalized linear
regression model 1—GLM1). It is noted that the p-value of the mechanical strength is greater than 0.05,
therefore, the variable X1 (mechanical strength) may not be significant.

Table 10. Generalized linear regression model 1 (GLM1) Y = β0 + β1X1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.027231 1.0629 × 10−46

β1 −M. Str. −0.08032 0.035816 2.8756 × 10−2

β2 − Tough. 0.22424 0.040094 6.3259 × 10−7

β3 −Micros. −0.12972 0.047887 8.859 × 10−3

β4 −C. Comp. −0.19243 0.038259 5.0415 × 10−6

F-Statistic p-value - - 1.4 × 10−24

http://www.cs.rtu.lv/jekabsons/
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For this reason, a generalized linear model was calculated without the mechanical strength
influence (GLM2), whose results are shown in Table 11, with RSQ = 0.675 and RMSE = 0.3396
obtained. These values do not improve on those obtained with previous models.

Table 11. Generalized linear regression model 2 (GLM2) Y = β0 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.0169 0.043522 3.701 × 10−27

β2 − Tough. −0.032814 0.037709 3.8872 × 10−2

β3 −Micros. 0.3569 0.059269 2.6872 × 10−7

β4 −C. Comp. 0.15866 0.031816 9.1927 × 10−6

F-Statistic p-value - - 3.93 × 10−13

In the second place, we considered a regression tree model [54]. To make a prediction for a given
observation, we used the mean (or the mode) of the observations that were in the same region of the
multidimensional space of predictors. The rules that were used to divide the predictor space can be
represented as a tree [55].

The order of importance of the predictive variables, from highest to lowest, is microstructure,
toughness, mechanical strength, and chemical composition. Therefore, the variable microstructure is
the one that provides the value that maximizes the information about the dependent variable (CTOD)
if it is smaller than 0.26, otherwise it is the toughness that carries more information. Nevertheless, the
values associated with each subtree for the training sample (13) are between 3 to 7 times bigger than
those of the test sample (50), which indicates bad behavior of the model.

4. Results and Discussion

After having compared the previous model, due to the simplicity and reasonable accuracy, and
despite the unbalanced weigh of the different variable’s parameters (βi), linear model 1 (RSQ = 0.866)
is proposed as a predictive model of the values of CTOD.

The standardized model can be expressed as:

CTOD = 1.2202 −0.080323[M.Str] + 0.22424[Tough] − 0.12972[Micros]
−0.19243[C.Comp]

(21)

where [.] represents the standardized values of the corresponding variable. The standardization
process should be reverted to allow the use of the testing data directly:

(CTOD[mm]−1.0269)
0.586 = 1.2202− 0.080323 (M.Str[HV10]−221.09)

41.87

+0.22424 (Tough[J]−175.421)
51.84 − 0.12972 (Micros[µm]−169.23)

55.44

−0.19243 (CE−0.3831)
0.054

(22)

where CTOD[mm] is the value of the crack tip opening displacement, expressed in mm. M.Str[HV10] is
the effect of the mechanical strength of the material as the average of three hardness measurements
expressed in [HV10] units. Tough[J] is the average value of the two Charpy V-notch measurements,
with subsized specimens extracted from the interest zone and expressed in Joules. Micros[µm] is the
average size of the metallic grains expressed in µm. Finally, CE is the effect of the chemical composition
as the carbon equivalent calculated with the equation proposed in AWS D1.1 (adimensional).

5. Conclusions

The use of multivariate analysis has been proven viable for relating complex fracture mechanics
parameters to well-known material properties. The industrial suitability of the methodology depends
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on the experimental set, specifically the availability of samples, the number of tests, and the choice
of variables.

These chosen variables are significantly related with the CTOD (see p-value for linear regression
model 1). Also, there is well-known experience within the manufacturing industry relating these
variables with actual changes during the welding process. As an example, there is a wide background
of knowledge on how the shielding gas, the welding speed, or the bead scheme affect the grain size
or the hardness of a given welded joint. Using the proposed model, it is possible for the industry to
transfer this knowledge on how these variables may affect the CTOD value.

The final model is precise and functional, with an estimated error of ~10% (within the limits
covered by the experimental set). This error is compatible with the current uncertainty of the CTOD
testing process. Besides, the model is not dependent on which subgroup of data is used for the
modeling process. It is proposed to use this final model predictively, using the results of the tests
for the explanatory variables (it is cheaper, simpler, and more available than the CTOD) to compute
the CTOD value estimator. If this value (considering the mentioned error) is greater than the critical
value (acceptance criteria) specified in the design code, rule, or standard, the expensive CTOD test can
be dispensed.

The usefulness of the model has been proven within the limits of the experimental set for offshore
steel welded joints of high thickness. Nevertheless, the influences of other variables not explicitly
considered in this work were not tested, even for the mentioned category, and are out of the scope of
the presented model. Future developments of the model could include, among others, the influence of
testing temperature, different positioning or shape of the notch, post-weld heat treatments, or type of
failure category (brittle, ductile-brittle, and ductile).
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