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Abstract: Designing the future energy supply in accordance with ambitious climate change mitigation
goals is a challenging issue. Common tools for planning and calculating future investments
in renewable and sustainable technologies are often linear energy system models based on cost
optimization. However, input data and the underlying assumptions of future developments are
subject to uncertainties that negatively affect the robustness of results. This paper introduces a
quadratic programming approach to modifying linear, bottom-up energy system optimization models
to take cost uncertainties into account. This is accomplished by implementing specific investment
costs as a function of the installed capacity of each technology. In contrast to established approaches
such as stochastic programming or Monte Carlo simulation, the computation time of the quadratic
programming approach is only slightly higher than that of linear programming. The model’s outcomes
were found to show a wider range as well as a more robust allocation of the considered technologies
than the linear model equivalent.

Keywords: energy system modeling; uncertainties; robustness; penny switching effect

1. Introduction

There are various concepts and ideas relating to how to design the future energy supply to achieve
the climate goals set out in the Paris Agreement of 2015. These design concepts normally rely on energy
scenarios that are influenced by various uncertainties. As a consequence, it is very challenging for
decision-makers to devise robust solutions to reach the aforementioned goals. Thus, the underlying
decision-making process is supported by different types of energy system models. Most of these
focus on the identification of cost-efficient options to supply future energy demand [1]. Due to
their complexity, the models are often limited to linear programming (LP) or mixed-integer linear
programming (MILP) [2,3]. However, the input data and boundary conditions for modeling future
energy systems are invariably subject to uncertainties, regardless of whether simulation or optimization
models are considered [4–6]. In particular, social, climatological, and technological developments
constitute momentous and influential factors on the model’s results [7,8]. For the consideration of social
factors, the incorporation of consumer behavior in energy system models represents an essential aspect.
An approach to this is presented, for instance, in the TIMES (The Integrated MARKAL-EFOM System)
model, which aims at extending the model details by integrating the heterogeneity of consumers [9,10].
On the other side, an example of uncertainties in the assumptions on technological developments is the
future investment costs of technologies [11,12] Minimal changes to these assumptions on developments
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may induce marked differences in the resulting shares of technologies in the energy system. Linear cost
optimization models, in particular, are affected by this so-called ‘penny switching effect’, which leads to
a complete switch to other technologies through marginal variations in the corresponding investment
costs [13–15]. This results in the underestimation of certain technologies or even of entire supply
chains. For this reason, linear optimization models are highly sensitive to input parameters, such as
investment costs. Moreover, many technologies are not considered in the results of such models due to
having marginally higher costs than a comparable alternative technology.

Existing solutions to overcome the described issues include, for instance, stochastic programming,
Monte Carlo simulation, and sensitivity analyses [11,16–18]. All of these approaches have one thing
in common. Namely, they are based on a parameter variation that is accompanied by substantial
computational efforts. To obtain more robust results with acceptable computational efforts, this paper
describes an approach that aims to take investment cost uncertainties into account, with only a slight
increase in the required computation time. For that purpose, a linear bottom-up energy system
model for Germany is modified. Instead of a default value for specific investment costs, a cost range
is implemented as a function of the installed capacity of each technology. This results in a convex
quadratic objective function of the model intended to minimize the total system costs. As a consequence,
the model’s results are expected to comprise a wider range of technologies, be more robust, and, thus,
more realistic.

2. Methods

All of the results presented in this paper show potential for the strategy to reduce German
CO2 emissions by 80% against the reference year of 1990, taking into account both energy-related
and process-related emissions. The underlying model comprises the energy sector, as well as the
end-use sectors: buildings, transport, and industry. Other sectors, such as the agricultural sector and
greenhouse gases other than CO2, were not included. The year 2050 was chosen as the target year in
this paper to provide an indication of the necessary transformation of the German energy system to
implement the Federal Government’s greenhouse gas reduction targets.

For that reason, the cross-sectoral, myopic energy system model ‘FINE-NESTOR’ (National Energy
System model with integrated SecTOR coupling, https://github.com/FZJ-IEK3-VSA/FINE) was used to
determine the results and the corresponding CO2 reduction strategy. A detailed description of the model
framework can be found in Welder et al. (2018) [19]. The analysis of the energy system’s transformation
was subject to an interval of five years, starting from today’s energy system and progressing up to
the year 2050. Depending on the setup, this can be run in LP or quadratic programming (QP) mode
based on the implementation of investment costs. The model did not consider spatial aspects of
energy supply and demand but had a flexible temporal resolution. The latter was set to an hourly
basis, and so amounted to 8760 time steps. Additionally, the temporal resolution could be reduced
by the aggregation of typical days. The corresponding approach is described by Kotzur et al. (2017,
2018) [20,21]. In this context, the intra-year use of storage technologies relied on a perfect-foresight
approach. Finally, each year was individually optimized with the objective of minimizing the total
annual system costs.

The underlying framework conditions of the optimization of each year were based on historical
data and the results of previously calculated years. At this point, the decommissioning of existing plants
and a maximum annual expansion rate for each technology was taken into account. These expansion
rates were based on learning curves, employment effects, and technical potentials. In combination
with minimum annual expansion targets based on fundamental market diffusion curves and the
optimized installed capacities of the target year, the upper and lower bounds for the optimization
were determined. However, the depicted results only relate to the target year. The preceding myopic
transformation of the energy system was not considered in this analysis, except for comparison
purposes. Moreover, the presented results aim to support the hypotheses of this paper as well as to
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reveal the effects of the described methodology. They do not represent forecasts or recommendations
for the future development of the energy system of Germany.

The most important underlying input data of the model is summarized in the following.
Assumptions on demographic and macroeconomic developments, as well as fuel price tendencies,
were primarily adopted from Buerger et al. (2016) and Gerbert et al. (2018) [22,23]. Electricity and
heat demand profiles, as well as the supply profiles of PV and wind power plants, were based on
historical data from the year 2013. Decisive techno–economic input parameters are shown in the
Appendix A, Table A1. This provided an abstract of around 900 components and 1500 energy and
mass flows implemented in the model.

3. Investment Cost Analysis

With regard to the future energy supply being in compliance with the climate goals of the Paris
Agreement, renewable energy technologies will play a key role. In contrast to fossil power generation,
the output of these technologies is not bound to fuel costs. Instead, capital expenditures (CAPEX) are
the crucial factor when it comes to investment decisions. This leads to planning tools, such as energy
system models, being very sensitive towards the assumed CAPEX, which in turn are mainly affected
by the initial investment.

When looking into the historical investment costs of renewable energy technologies, it is notable
that the specific costs per kilowatt vary significantly. On the one hand, economies of scale, as well
as the resulting increase in manufacturing efficiency, have been the major influencing factors on
renewable energy costs over the last decades. Other important factors that impact the actual costs of an
individual technology or project relate to market pricing, auction designs, technological developments,
and geographical aspects, such as ground conditions or local construction and transport costs [24–26].
The approach described in this paper focuses on the latter aspects. Because these kinds of influencing
factors are very dependent on the exact location and the individual construction project, they are
hard to predict beforehand in higher-level planning processes. Therefore, these influencing factors
are considered as uncertainties in the context of this paper. The impact of all of these influencing
factors on the investment costs of renewable energies will be shown by the example of onshore wind
turbines in the following. To exclude the effect of learning curves and economies of scale as precisely
as possible, a short and current period of realized investments in onshore wind turbines is the object
of investigation. The resulting deviations in investment costs are depicted in Figure 1. This graphic
illustrates the investment cost range and deviation of 80 wind turbines that were constructed between
2010 and 2015. Their specific investment costs per kilowatt in ascending order from low to high costs
are shown in the upper left-hand corner. The minimum costs were 857 €/kW, and the maximum costs,
1613 €/kW. Aside from some statistical outliers marked in the red areas, there was an almost uniform
distribution of the remaining values. For that reason, the tenth and ninetieth percentiles are tagged in
the diagram, as well as the linear connection between these. The corresponding values are reflected
in the diagram on the right. Moreover, a weighted average is given that represents the average of
these percentiles.

Further investigations showed that the distributions of investment costs for other technologies,
e.g., photovoltaics, are similar to the data for onshore wind turbines in Figure 1 [24]. In particular,
renewable energy technologies and end-use technologies exhibit a wide cost range with almost uniform
distribution (see Appendix A) [24]. Moreover, the cost trends of renewable technologies are subject
to uncertainties [27]. As a result, estimations of future investment costs diverge significantly and are
often indicated by ranges [28–32].
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Figure 1. Investment cost range and deviations of onshore wind turbines, based on the IRENA
(International Renewable Energy Agency) renewable cost database [24].

4. Analytical and Mathematical Approach

The fact that the majority of documented investment costs are in almost uniform distribution
forms the basis for the further implementation of investment costs in the model. The approach is based
on the assumption that the range of investment costs for technologies can be adequately substituted by
a uniform distribution. However, this coherence cannot be implemented in linear optimization models.
Common solutions are parameter variations as part of sensitivity analyses or Monte Carlo simulations.
Given the complexity of most models, the initial computation time will be multiplied by the number of
parameter variations because each variation requires an individual calculation [33,34].

The following approach was developed to overcome the issue of high computational efforts,
but still consider the effects of cost ranges in an energy system model. An additional requirement of
the approach is that it should be possible to modify existing linear programming models. Therefore,
the modified model should be solvable with common solvers, such as Gurobi, CPLEX, or XPRESS.
These solvers are only able to handle linear and convex quadratic equations. Due to this limitation,
the simplest attempt to integrate cost spans is to define specific costs as linear functions of the
model’s dimensioning variables. Consequently, the objective function of the total annual costs
becomes quadratic. In Figure 2, both the conventional linear and quadratic approach are compared.
While specific costs in linear models equal a constant average value, in the quadratic programming
(QP) model, the entire cost range described in the investment cost chapter is distributed over the
installable capacity of the technology in a limited period. In this example, it was set to 10 GW. The upper
bound of the capacity variable can be either the technical potential of a technology or its expansion
limit at a specific time interval. In the depicted case, the cheapest units of the technology were sold
first (blue curve). This is supported by the assumption of free markets. In theory, it is also possible
to implement the cost range and vice versa (dashed line), for example, to consider learning curves.
However, this implicates local optima in the optimization process and a concave objective function,
which cannot be solved by the solvers mentioned above. Instead, piecewise linearization can be used
for an approximation of this problem and to implement learning curve effects [35]. As mentioned
during the investigation of investment costs, the consideration of the uncertainties this paper, targeting
and the learning curves effect, do not exclude each other. While learning curve effects occur over long



Energies 2019, 12, 4006 5 of 12

periods, such as decades, the described uncertainty effects are not time-dependent but attributable
to a specific construction project. For that reason, the consideration of both effects can be merged in
myopic or perfect foresight planning models.

Figure 2. Comparison of the consideration of investment costs in the linear programming (LP) (red)
and quadratic programming (QP) model (blue).

The objective function of the modified linear models is intended to minimize the total annual
system costs. These costs are divided into fixed and variable costs. The fixed costs consist of CAPEX
and fixed operational expenditures (fixed OPEX) mfix. For the determination of the CAPEX of a specific
technology y, the capital recovery factor r is utilized based on interest rate i and the number of periods
n (Equation (1)):

rn,i,y =
(1 + i)n

· i
(1 + i)n

− 1
. (1)

In the linear case, the specific technology costs, kLP, are constant and independent of the installed
capacity x (Equation (2)). They are based on an average cost value, C0, or a forecasted value for future
scenarios. This factor, multiplied by the capital recovery factor and the fixed OPEX as a percentage of
C0, results in the fixed costs αLPfix (Equation (3))

kLP
(
xy

)
= C0,y, (2)

αLPfix

(
xy

)
= C0,y · (rn,i,y + mfix,y). (3)

Consequently, the total fixed annual costs KLPfix are the integral of αLPfix between the lower xlb

and upper bound xub of the capacity of technology y (Equations (4) and (5)):

KLPfix
(
xy

)
=

xub,y∫
xlb,y

αLPfix

(
xy

)
dxy, (4)

KLPfix

(
xy

)
= C0,y · (rn,i,y + mfix,y) · xy. (5)

The variable costs are based on energy and material flows k of the energy system in time step t,
which are allocated to the technologies by the ingoing and outgoing flows,

.
x. In combination with the

total fixed annual costs, the objective function can be expressed, as follows, in Equation (6):

minf(x) = min
∑
y∈Y

C0,y · (rn,i,y + mfix,y) · xy +
∑
k∈K

∑
t∈T

mvar,k ·
.
xk,t. (6)
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In contrast to the linear approach, the specific cost function of the QP model kQP(xy) has a constant
slope v. Moreover, the average cost value C0 can be replaced by the weighted average value in Figure 1.
The impact on the fixed costs, αQPfix, is explained in Equations (7)–(9):

v =
dk
dx

= const, (7)

kQP

(
xy

)
= vy · xy + C0,y −

1
2

vy ·
(
xub,y − xlb,y

)
, (8)

αQPfix

(
xy

)
= kQP

(
xy

)
· (rn,i,y + mfix,y). (9)

Based on these equations, the total fixed annual costs, KQPfix, are described in Equations (10) and (11).

KQP

(
xy

)
=

xub,y∫
xlb,y

αQPfix

(
xy

)
dxy, (10)

KQP

(
xy

)
=

[1
2

vy · xy
2 + C0,y · xy −

1
2

vy ·
(
xub,y − xlb,y

)
· xy

]
· (rn,i,y + mfix,y), (11)

As the declaration of the specific cost slope is not especially common, the equation can be simplified
by introducing the absolute deviation s of the minimum or maximum cost value from the average or
weighted average cost value (see Figure 2). This leads to Equation (12) for the definition of specific
costs kQP. Its consequences to the total fixed annual costs are shown in Equations (13) and (14).

αQPfix
(
xy

)
= C0,y ·

[(
1− sy

)
+

2sy

xub,y − xlb,y
· xy

]
· (rn,i,y + mfix,y), (12)

KQP
(
xy

)
=

xub,y∫
xlb,y

αQPfix
(
xy

)
dxy, (13)

KQP
(
xy

)
=

[
C0,y ·

(
1− sy

)
· xy +

C0,y · sy

xub,y − xlb,y
· xy

2
]
· (rn,i,y + mfix,y). (14)

The final objective function of the QP model is shown in Equation (15).

minf(x) = min
∑
y∈Y

[
C0,y ·

(
1− sy

)
· xy +

C0,y · sy

xub,y − xlb,y
· xy

2
]
· (rn,i,y + mfix,y) +

∑
k∈K

∑
t∈T

αvar,k ·
.
xk,t (15)

For comparison of the theoretical differences in the results of the LP and QP model, Figure 3
gives a qualitative example of two similar technologies. Both represent options for the supply of
the same demand. However, one technology is slightly cheaper than the other. In the linear case,
the solver would only decide on the cheaper option. Lowering the specific cost of the more expensive
alternative may trigger the penny switching effect and completely change the result. Otherwise, in the
QP approach, both technologies would be in the solution if demand is high enough. The closer the
specific cost values of the technologies are, the more congruent their shares in the energy system are.
As a consequence, the penny switching effect can be avoided, and the results become more robust.
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Figure 3. Qualitative comparison of two similar technology shares in the optimized solution of the LP
and QP model.

5. Comparison of Linear and Quadratic Programming Results

The corroboration of the hypothesis requires verification through an appropriate testing model.
For verification purposes, a linear programming model for minimization of the total energy system
costs for Germany was chosen. In this context, a potential energy system for the target year of
2050 was optimized for an 80% CO2 emission reduction scenario, in accordance with the German
‘Klimaschutzplan 2050’ [36]. A detailed description of the model can be found in the methods section.

For comparison, the modified testing model was run twice, once with the linear objective function
and once with the quadratic objective function. To illustrate the discussed theoretical impact on the
results, the focus was on technologies that are sensitive to CAPEX variations. The best example
of the penny switching effect is the choice between commercial open field and residential rooftop
photovoltaics. Based on the minimal lower total costs of open-field PV [29], linear energy system
models tend to expand open-field PV to the edge of its technical potential before building rooftop PV.
Another example of this effect is the choice between onshore and offshore wind turbines. Weather and
ground conditions in Germany lead to approximately doubled full load hours, accompanied by
doubled costs of offshore wind turbines. These effects can be noted in Figure 4. In the linear case (red),
the solution considers no rooftop PV and a nearly equal amount of onshore and offshore wind power.
Instead, the quadratic case (blue) is represented by a similar share of PV technologies and an increase
in onshore wind power. In addition, some other capacities of key technologies of the system are shown
and are subject to much smaller changes.

An additional conjecture of the quadratic optimization approach is its impact on the result’s
robustness towards variations in the underlying investment cost parameters. For that reason, the results
of a sensitivity analysis are shown in Figure 5. This analysis was based on a variation of the offshore
wind turbine investment costs by ±10%. In the linear model (marked in red), a massive impact on the
installed capacity was registered. The decrease in the investment costs by 5% led to an increase in
capacity from 57.1 GW in the reference case (2530 €/kW) up to 75 GW that represents the upper bound
in the model (based on the technical potential of offshore wind power in Germany). On the other side,
a 10% increase in the costs resulted in the exclusion of offshore wind in the energy system. However,
the effect on the capacities was significantly reduced in the QP model, resulting in a range of ±3.7 GW.
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Figure 4. Comparison of installed capacities in the results of the LP (red) and QP (blue) model for an
80% CO2 emission reduction scenario for Germany.

Figure 5. Sensitivity analysis of the investment costs for offshore wind turbines and its impact on the
installed capacity in the cost-optimized energy system in the LP and QP model.

Aside from the impact on the results, it is important to take the changes in computation time using
the QP approach into account. Because the computational effort for such complex models is affected
by various aspects, the change in computation time is dependent on the individual model, its input
parameters, the solver, and its setup. In the case of the model used for verification, the computation
time of the QP model was increased by a factor of 2.04 towards the LP model. The optimization
was executed by the solver Gurobi. Further investigations with different models and solver setups
showed a variation in the computation time by a factor of between 0.43 and 3.68 towards the LP
approach for a single year optimization. The average value of the increase in computation time was a
factor of 2.29 (median value: 2.25). When it comes to the myopic optimization of an energy system
transformation, which is described in the methods section, the QP approach led to a wider range of
considered technologies. This effect can be seen in Figure 6 by the increasing number of variables of the
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QP models compared to the LP models. Consequently, the difference in computation time was further
increased by a factor of between 1.63 and 6.13. In total, seven model configurations were analyzed for
testing purposes. For each configuration except the most extensive one, three single year optimizations
and one transformation assessment based on seven individual optimizations were executed as LP and
QP problems. The most extensive model configuration, with more than ten million variables, was only
optimized for single years.

Figure 6. Comparison of computation time of different LP and QP problems.

6. Discussion and Conclusions

The consideration of uncertainties in energy system models plays a key role in improving the
results of these models and the quality of energy scenarios. However, uncertainties range from social
to climatological to technical factors. This paper focuses on the uncertainties in the development
of technical investment costs. The preceding analysis showed that technological investment costs
generally vary across wide ranges, and the predictions of future trends are subject to uncertainties.
Nevertheless, these cost ranges can be incorporated and simplified by implementing a quadratic
objective function in conventional energy system optimization models. In particular, models to evaluate
greenhouse gas reduction strategies that implement high shares of renewable energy in the system
benefit from this approach. The investigation reveals that the results of the modified model become
more robust, and a broader mix of technologies is considered in the solution. Instead of the penny
switching effects in the LP model, the technology shares are affected much less by a variation in the
specific investment costs. Moreover, when comparing the results shown in Figure 4 to the current
energy system of Germany, the installed capacities of wind power and PV follow actual trends of
considered technologies such as rooftop PV. Thus, the solution better reflects the present investment
behavior and might be described as more realistic. However, there are two effects of the QP approach
that must also be discussed. Concerning the resulting total system costs, the calculated costs of the QP
model were systematically lower than in the LP model if the same average value of the investment
costs was implemented. This can be attributed to the fact that the average total investment costs of a
technology are only equal to the linear case if the installed capacity reaches its upper bound (compare
Figure 2). Either this effect is assigned to market behavior and justified by the point of the improved
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implementation of markets or must be corrected by the real average cost value after optimization.
Aside from this effect, the results of the QP model were influenced by the definition of the specific
investment cost ranges themselves. This means that the determination of the considered range, as well
as the span between the lower and upper bound of installable capacity, affects the result. The wider the
cost range and the closer the lower and upper bound, the more the gradient of the specific technology
cost curve increased. Consequently, the shares of alternative technologies became more even. This
must be taken into consideration when evaluating the results.

In conclusion, the QP or mixed-integer quadratic programming (MIQP) approach to investment
costs represents an alternative to cost minimization in conventional LP or mixed-integer linear
programming (MILP) models. The results become more robust with respect to cost uncertainties,
comprise a wider range of technologies, and sensitivity analyses of cost parameters can be significantly
reduced by an acceptably small increase in computation time. Moreover, the approach can be easily
implemented in most LP models using solvers such as Gurobi, CPLEX, or XPRESS. Thus, it represents an
option for supporting decision-makers in identifying robust key technologies and sensitive pathways
in energy systems. Furthermore, the approach can be transferred to any technology in the system.
In particular, the implementation of energy efficiency measures and end-use technologies, as well as
in the transport and industry sector in general, has high potential to gain new insights. This should
be further investigated, also to validate the presented results by other models and technologies in
the future.
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writing—review and editing, P.M., D.S., and M.R.; supervision, P.M., M.R., and D.S.
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Appendix A

Table A1. Summary of decisive techno–economic input parameters of the model [17,29,37–41].

Component Specific Invest.
Costs in €/kW

Cost Range in
Percentage
Deviation

Level of Efficiency CO2 Emissions in
gCO2 /kWh

Name Today 2050 Today 2050 Today 2050 Today 2050

Photovoltaics (rooftop) 1500 880 ±23% ±14% (1) * (1) * 0 0

Photovoltaics (open field) 1100 720 ±9% ±11% (1) * (1) * 0 0

Onshore wind power 1850 1250 ±30% ±36% (1) * (1) * 0 0

Offshore wind power 3920 2530 ±21% ±29% (1) * (1) * 0 0

Coal power station 1600 1600 ±9% ±9% 0.45 0.48 890 840

Lignite power station 2050 2050 ±17% ±17% 0.42 0.47 1010 910

Gas power station 550 550 ±27% ±27% 0.40 0.45 575 510

Biomass power station 3200 2080 ±22% ±21% 0.34 0.38 (0) ** (0) **

Hydropower station 5250 5370 ±52% ±52% (1) * (1) * 0 0

Pumped hydro storage 3000 3000 ±50% ±50% 0.8 *** 0.9 *** 0 0

Battery storage (Li) 752
(€/kWh)

246
(€/kWh) ±20% ±20% 0.9 *** 0.9 *** 0 0

Hydrogen cavern storage 0.52
(€/kWh)

0.52
(€/kWh) ±0% ±0% 1 1 0 0

Electrolyzer (PEM) 1564 500 ±21% ±21% 0.69 0.7 0 0

Fuel cell (PEM) 3650 923 ±4% ±4% 0.49 0.5 0 0

Heat pumps 800
(€/kWel)

645
(€/kWel)

±38% ±38% 3.0
(COP)

3.5
(COP) 0 0

* Assumption based on the calculation of the primary energy consumption of Germany [40]; ** Assumption
of neutral CO2 emissions based on the calculation of the national greenhouse gas emissions of Germany [41].
*** Round-trip efficiency.
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The model’s structure and parameters were validated based on historical data from the year 2013
in accordance with the integrated supply and demand profiles.

References

1. Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A Review of Current Challenges and Trends in Energy
Systems Modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [CrossRef]

2. Van Beeck, N. Classification of Energy Models; Tilburg University, Faculty of Economics and Business
Administration: Tilburg, The Netherlands, 2000.

3. Hall, L.M.; Buckley, A.R. A Review of Energy Systems Models in the UK: Prevalent Usage and Categorisation.
Appl. Energy 2016, 169, 607–628. [CrossRef]

4. Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy Systems Modeling for Twenty-First Century Energy
Challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [CrossRef]

5. Anadon, L.D.; Baker, E.; Bosetti, V. Integrating Uncertainty into Public Energy Research and Development
Decisions. Nat. Energy 2017, 2, 17071. [CrossRef]

6. Ma, T.; Nakamori, Y. Modeling Technological Change in Energy Systems–From Optimization to Agent-Based
Modeling. Energy 2009, 34, 873–879. [CrossRef]

7. Mccollum, D.L.; Zhou, W.; Bertram, C.; De Boer, H.S.; Bosetti, V.; Busch, S.; Despres, J.; Drouet, L.;
Emmerling, J.; Fay, M.; et al. Author Correction: Energy Investment Needs for Fulfilling the Paris Agreement
and Achieving the Sustainable Development Goals. Nat. Energy 2018, 3, 699. [CrossRef]

8. Winskel, M. Beyond the Disruption Narrative: Varieties and Ambiguities of Energy System Change.
Energy Res. Soc. Sci. 2018, 37, 232–237. [CrossRef]

9. Tattini, J.; Gargiulo, M.; Karlsson, K. Reaching Carbon Neutral Transport Sector in Denmark–Evidence from
the Incorporation of Modal Shift into the TIMES Energy System Modeling Framework. Energy Policy 2018,
113, 571–583. [CrossRef]

10. Tattini, J.; Ramea, K.; Gargiulo, M.; Yang, C.; Mulholland, E.; Yeh, S.; Karlsson, K. Improving the
Representation of Modal Choice into Bottom-Up Optimization Energy System Models–The MoCho-TIMES
Model. Appl. Energy 2018, 212, 265–282. [CrossRef]

11. Gritsevskyi, A.; Nakicenovi, N. Modeling Uncertainty of Induced Technological Change. Energy Policy 2000,
28, 907–921. [CrossRef]

12. Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The Future Cost of Electrical Energy Storage Based on
Experience Rates. Nat. Energy 2017, 2, 17110. [CrossRef]

13. Held, A.M. Modelling the Future Development of Renewable Energy Technologies in the European Electricity Sector
Using Agent-Based Simulation; Fraunhofer Verlag: Stuttgart, Germany, 2011.

14. Kovacevic, R.M.; Pflug, G.C.; Vespucci, M.T. Handbook of Risk Management in Energy Production and Trading;
Springer: Boston, MA, USA, 2013.

15. Pfluger, B. Assessment of Least-Cost Pathways for Decarbonising Europe’s Power Supply: A Model-Based Long-Term
Scenario Analysis Accounting for the Characteristics of Renewable Energies; KIT Scientific Publishing: Karlsruhe,
Germany, 2014.

16. Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A Review of Computer Tools for Analysing the Integration
of Renewable Energy into Various Energy Systems. Appl. Energy 2010, 87, 1059–1082. [CrossRef]

17. Bosetti, V.; Marangoni, G.; Borgonovo, E.; Anadon, L.D.; Barron, R.; McJeon, H.C.; Politis, S.; Friley, P.
Sensitivity to Energy Technology Costs: A Multi-Model Comparison Analysis. Energy Policy 2015, 80,
244–263. [CrossRef]

18. Seljom, P.; Tomasgard, A. Short-Term Uncertainty in Long-Term Energy System Models—A Case Study of
Wind Power in Denmark. Energy Econ. 2015, 49, 157–167. [CrossRef]

19. Welder, L.; Ryberg, D.; Kotzur, L.; Grube, T.; Robinius, M.; Stolten, D. Spatio-Temporal Optimization of
a Future Energy System for Power-To-Hydrogen Applications in Germany. Energy 2018, 158, 1130–1149.
[CrossRef]

20. Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Time Series Aggregation for Energy System Design:
Modeling Seasonal Storage. arXiv 2017, arXiv:171007593. [CrossRef]

21. Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of Different Time Series Aggregation Methods on
Optimal Energy System Design. Renew. Energy 2018, 117, 474–487. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2018.07.045
http://dx.doi.org/10.1016/j.apenergy.2016.02.044
http://dx.doi.org/10.1016/j.rser.2014.02.003
http://dx.doi.org/10.1038/nenergy.2017.71
http://dx.doi.org/10.1016/j.energy.2009.03.005
http://dx.doi.org/10.1038/s41560-018-0215-z
http://dx.doi.org/10.1016/j.erss.2017.10.046
http://dx.doi.org/10.1016/j.enpol.2017.11.013
http://dx.doi.org/10.1016/j.apenergy.2017.12.050
http://dx.doi.org/10.1016/S0301-4215(00)00082-3
http://dx.doi.org/10.1038/nenergy.2017.110
http://dx.doi.org/10.1016/j.apenergy.2009.09.026
http://dx.doi.org/10.1016/j.enpol.2014.12.012
http://dx.doi.org/10.1016/j.eneco.2015.02.004
http://dx.doi.org/10.1016/j.energy.2018.05.059
http://dx.doi.org/10.1016/j.apenergy.2018.01.023
http://dx.doi.org/10.1016/j.renene.2017.10.017


Energies 2019, 12, 4006 12 of 12

22. Burger, V.; Hesse, T.; Quack, D.; Palzer, A.; Kohler, B.; Herkel, S.; Engelmann, P. Klimaneutraler Gebaudebestand
2050; the German Environment Agency Climate Change: Dessau-Rosslau, Germany, 2016; Volume 6, p. 2016.

23. Gerbert, P.; Herhold, P.; Burchardt, J.; Schonberger, S.; Rechenmacher, F.; Kirchner, A.; Kemmler, A.; Wünsch, M.
Klimapfade Fur Deutschland; Bundesverbandes Der Deutschen Industrie (BDI): Berlin, Germany, 2018.

24. IRENA. Renewable Power Generation Costs in 2017; International Renewable Energy Agency: Abu Dhabi,
Arab, 2018.

25. Drechsler, M.; Egerer, J.; Lange, M.; Masurowski, F.; Meyerhoff, J.; Oehlmann, M. Efficient and Equitable
Spatial Allocation of Renewable Power Plants at the Country Scale. Nat. Energy 2017, 2, 17124. [CrossRef]

26. Afanasyeva, S.; Saari, J.; Kalkofen, M.; Partanen, J.; Pyrhonen, O. Technical, Economic and Uncertainty
Modelling of a Wind Farm Project. Energy Convers. Manag. 2016, 107, 22–33. [CrossRef]

27. Rout, U.K.; Blesl, M.; Fahl, U.; Remme, U.; Vois, A. Uncertainty in the Learning Rates of Energy Technologies:
An Experiment in a Global Multi-Regional Energy System Model. Energy Policy 2009, 37, 4927–4942.
[CrossRef]

28. Moccia, J.; Arapogianni, A.; Wilkes, J.; Kjaer, C.; Gruet, R.; Azau, S.; Scola, J. Pure Power-Wind Energy Targets
for 2020 and 2030; Ewea; European Wind Energy Association: Brussels, Belgium, 2011.

29. Carlsson, J. Energy Technology Reference Indicator Projections for 2010–2050; European Commission,
Joint Research Centre, Institute for Energy and Transport Luxembourg: Peten, The Netherlands; Ispra,
Italy, 2014.

30. Roadmap, E. 2050: A Practical Guide to a Prosperous, Low Carbon Europe; ECF: Brussels, Belgium, 2010.
31. Taylor, M.; Ralon, P.; Ilas, A. The Power to Change: Solar and Wind Cost Reduction Potential to 2025; International

Renewable Energy Agency (IRENA): Abu Dhabi, Arab, 2016.
32. MacDonald, M. Costs of Low-Carbon Generation Technologies, Report for the Committee on Climate Change Brighton,

Mott MacDonald; The Committee on Climate Change Brighton: Brighton, UK, 2011.
33. Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The Underestimated

Potential of Solar Energy to Mitigate Climate Change. Nat. Energy 2017, 2, 17140. [CrossRef]
34. Mccollum, D.L.; Jewell, J.; Krey, V.; Bazilian, M.; Fay, M.; Riahi, K. Quantifying Uncertainties Influencing

the Long-Term Impacts of Oil Prices on Energy Markets and Carbon Emissions. Nat. Energy 2016, 1, 16077.
[CrossRef]

35. Heuberger, C.F.; Rubin, E.S.; Staffell, I.; Shah, N.; Mac Dowell, N. Power Capacity Expansion Planning
Considering Endogenous Technology Cost Learning. Appl. Energy 2017, 204, 831–845. [CrossRef]

36. Bundesministerium Fur Umwelt N, Bau und Reaktorsicherheit. Klimaschutzplan 2050–Klimapolitische
Grundsatze und Ziele der Bundesregierung; Bundesministerium Fur Umwelt: Berlin, Germany, 2016.

37. Saba, S.M.; Muller, M.; Robinius, M.; Stolten, D. The Investment Costs of Electrolysis–A Comparison of Cost
Studies from the Past 30 Years. Int. J. Hydrog. Energy 2018, 43, 1209–1223. [CrossRef]

38. Noack, C.; Burggraf, F.; Hosseiny, S.; Lettenmeier, P.; Kolb, S.; Belz, S.; Kallo, J.; Friedrich, A.; Pregger, T.;
Cao, K.; et al. Studie Uber Die Planung Einer Demonstrationsanlage Zur Wasserstoff-Kraftstoffgewinnung Durch
Elektrolyse Mit Zwischenspeicherung in Salzkavernen Unter Druck; German Aerospace Center: Stuttgart,
Germany, 2015.

39. Stolzenburg, K.; Hamelmann, R.; Wietschel, M.; Genoese, F.; Michaelis, J.; Lehmann, J.; Miege, A.; Krause, S.;
Sponholz, C.; Donadei, S.; et al. Integration Von Wind-Wasserstoff-Systemen in Das Energiesystem. Analysis
on Behalf of Nationale Organisation Wasserstoff-Und Brennstoffzellentechnologie GmbH (NOW); NOW: Berlin,
Germany, 2014.

40. AGEB. Energiebilanzen 1990-2016; AGEB: Berlin, Germany, 1990.
41. Harthan, R.O.; Hermann, H. Sektorale Abgrenzung Der Deutschen Treibhausgasemissionen Mit Einem Schwerpunkt

Auf Die Verbrennungsbedingten CO2-Emissionen; Oko-Institut eV: Berlin, Geremany, 2018.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nenergy.2017.124
http://dx.doi.org/10.1016/j.enconman.2015.09.048
http://dx.doi.org/10.1016/j.enpol.2009.06.056
http://dx.doi.org/10.1038/nenergy.2017.140
http://dx.doi.org/10.1038/nenergy.2016.77
http://dx.doi.org/10.1016/j.apenergy.2017.07.075
http://dx.doi.org/10.1016/j.ijhydene.2017.11.115
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Investment Cost Analysis 
	Analytical and Mathematical Approach 
	Comparison of Linear and Quadratic Programming Results 
	Discussion and Conclusions 
	
	References

