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Abstract: Recently, the natural gas (NG) global market attracted much attention as it is cleaner
than oil and, simultaneously in most regions, is cheaper than renewable energy sources. However,
price fluctuations, environmental concerns, technological development, emerging unconventional
resources, energy security challenges, and shipment are some of the forces made the NG market more
dynamic and complex. From a policy-making perspective, it is vital to uncover demand-side future
trends. This paper proposed an intelligent forecasting model to forecast NG global demand, however
investigating a multi-dimensional purified input vector. The model starts with a data mining (DM)
step to purify input features, identify the best time lags, and pre-processing selected input vector.
Then a hybrid artificial neural network (ANN) which is equipped with genetic optimizer is applied
to set up ANN’s characteristics. Among 13 available input features, six features (e.g., Alternative
and Nuclear Energy, CO2 Emissions, GDP per Capita, Urban Population, Natural Gas Production,
Oil Consumption) were selected as the most relevant feature via the DM step. Then, the hybrid
learning prediction model is designed to extrapolate the consumption of future trends. The proposed
model overcomes competitive models refer to different five error based evaluation statistics consist of
R2, MAE, MAPE, MBE, and RMSE. In addition, as the model proposed the best input feature set,
results compared to the model which used the raw input set, with no DM purification process. The
comparison showed that DmGNn overcame dramatically a simple GNn. Also, a looser prediction
model, such as a generalized neural network with purified input features obtained a larger R2

indicator (=0.9864) than the GNn (=0.9679).

Keywords: natural gas demands; prediction; energy market; genetic algorithm; artificial neural
network; data mining

1. Introduction

The world energy demand increased in the two past decades and even predictions implying
the growing trends for the next decades [1–4]. Still, fossil fuels play a critical role in the energy
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supply chain due to economic feasibility. Refer to International Energy Agency’s (IEA) 2016 report,
fossil fuels in the form of liquid fuels, natural gas, and coal contain more than 80% of the world
energy consumption [5]. Easiness of utilization, higher performance, compared to traditional energy
sources, ease of mobility via land or sea, and affordable extraction cost introduced oil and natural
gas (NG) as strategic commodities [6–8]. However, emergent ecological concerns and rethinking of
a more peaceful future (sustainable development goals) attracted attention toward climate change
challenges (such as greenhouse gases emissions and global warming) [9]. The two non-aligned
objectives, on one hand, development and increasing needs for energy supply and on the other hand
global environmental concerns, attracted researchers to study energy systems and develop different
plausible future perspectives.

World’s economic growth still strongly correlated with the energy and, as a result, the energy
price influence potential future trends. The 1970’s energy crisis represented how energy shocks can
cause chaotic behavior of economic systems especially in the case of developed countries which mostly
play in energy markets as importers. Although new paradigms emerged to address the modern world
energy challenges, such as evaluating and improving the energy security level, but policymakers are
facing deep uncertainties in this area. Energy markets are known as complex systems [10,11], which
consist of numerous players with conflict of interests and changing rules.

Despite successful efforts, the main problem is still existing, which is defined as “discovering
reliable future trends and probable alternative futures in the field of energy systems and uncover the
most influencing driving forces to aid energy management process”. To project a reliable future, it is
crucial to investigating almost all informative input features which represent historical behavior of
the targeted complex system and extrapolate future trends. Studying different input features means
to peruse different aspects, while on the other hand, it means more efforts in term of cost, time, and
complicated estimator. A traditional approach to address a complex problem is to simplify and
decompose it to its main constituent elements. Feature selection methods are aimed to adjust the
unnecessary complexity revealed to refer to the existence of multiple input features. A feature selection
method determines the best subset of the initial features set as a representative of the solution space
(for more information about feature selection approaches and methods see: [12–15]). Selected features
interpreted as key driving forces which will help to extrapolate future trends. Moreover, pre-processing
might also be performed in order to speed up computation [16]. Finally, an estimator is needed to
predict future behaviors of the targeted variable. Despite there are many classical methods but artificial
intelligence-based methods are extensively used during the last couple of decades [17,18] that attempt
to uncover weak signals and pattern more reliable and accurate. As Kourou et al. noted these methods
can discover and identify patterns and relationships between them, from complex datasets, while they
are able to effectively predict future outcomes [19]. Technologies as Data Mining, Natural Language
Processing, and Machine Learning can provide novel alternatives to explore and exploit potential
retrieved knowledge from historical records [20], and help to decrease prediction errors effectively.

This paper is aimed to develop an intelligent learning-based prediction model which is equipped
with data mining (DM) techniques to purify and the setup input vector. The DM step is used to
select and organize the best input features that represent patterns of future global NG demand trends.
Although many previous studies successfully addressed NG global demand prediction problem, we
attempt to uncover the most effective driving forces as input features and analyzing how they will
affect the objective function (NG global demand prediction). For example, the proposed model studies
time relation between input variables and the target variable. So a less-dimension input set is available
to policymakers to simplify and experience reliable decision-making process.

As it is impressed by a series of variables and oscillating time series, the NG forecasting problem
is a very challenging [21]. These days, massive efforts have been investigated artificial intelligence
(AI) models or integration of several models (hybrid models) for prediction problems to increase the
accuracy and the model reliability [22,23].
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2. Literature Review

Also, numerous notable studies have investigated demand prediction for the case of energy
resources [24–29]. Among those, Baumeister and Kilian published a research paper to analyze how
vector autoregression (VAR) models form policy-relevant forecasting scenarios in the case of an oil
market. The model investigates the influence of scenario weights’ probability changes to the real-time
oil price forecasting [30]. In addition, Dilaver et al. investigated NG consumption in Europe to
support long-term investments and contracts [31]. They estimated an OECD-Europe NG demand
trends with annual time series during the period from 1978 to 2011 by applying a structural time series
model (STSM). Finally, three scenario streams developed based on business as usual, high, and low
case scenarios.

Li et al. used system dynamic models to create possible outlooks to 2030 for the case of China’s
NG consumption growth. Then to assess the results accuracy and propose policy recommendations on
NG exploration and development of China’s NG industry, a scenario analysis step was applied [32].
Also, Suganthi and Samuel provided a comprehensive review of an energy model, which attempted
to forecast demand function [33]. Authors classified prediction models and presented that most of
the recent researches contained basically quantitative models that result in a single future prediction.
Models used statistical error functions to estimate, accuracy compared with other comparative models.
However, as mentioned above data-driven models may regret set of effective qualitative variables.
In the other hand projecting alternative futures based on qualitative approaches are challenging,
especially in the case of validation and, moreover, they are extremely affected by the expert group
(number of experts and judgment validation).

Baumeister and Kilian [30] described how vector autoregression (VAR) models can generate
policy-relevant forecast scenarios of the global oil market and how real-time oil price forecasting,
influenced by possible changes in probability weights, corresponded to the scenarios. In addition,
Dilaver et al. [31] investigated natural gas consumption in Europe to support long-term investments
and contracts. They implemented a structural time series model (STSM) to estimate the OECD-Europe
natural gas demand function with annual data from 1978 to 2011. Using that information, they
developed three scenarios based on high-case, reference (business as usual), and low-case scenarios.

Suganthi and Samuel [33] provided a comprehensive review of energy models aimed at forecasting
demand functions. The study classified prediction models and identified that most of the recent
studies were comprised of quantitative models that provided only a single future prediction scenario.
The models predominantly used statistical error functions to estimate accuracy compared with
other models. To present a more universal review and to dedicate insights about prediction
approaches used by previous studies, Table 1 summarized models used to address energy consumption
prediction problem.

Table 1. Analyzing previous studies, based on their approaches to address energy consumption
prediction problem.

Approaches References

Classical computational
extrapolation

Time series [24,25,31,34–43]

Regression [28,44–47]

Econometrics [48–52]

Expert systems and learning
models

Artificial neural network (ANN) [21,40,53–69]

Genetic programming (GP) [21,24,40,58,65,67,69–76]

Ant colony optimization [77]

Particle swarm optimization (PSO) [26,78,79]

Support vector machine (SVM) [25,40,59,64,80,81]

Fuzzy inference system (FIS) [21,44,62,73,82]
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Table 1. Cont.

Approaches References

Others

Decomposition approach [83,84]

Input-output model [85,86]

Bottom-up model [87–89]

Grey method [26,37,76,86,90,91]

Logistic model [92]

As shown in Table 1 and noted before learning based techniques can lead to develop a more
reliable, accurate estimator as they can represent a self-adjustment characteristic since they learn
formerly signals via feedback loops. To dedicate a more detailed understanding of various existed
forecasting models, Table 2 shows the pros and cons of main forecasting methods.

Table 2. The major pros and cons of main forecasting methods.

Type of Models Pros & Cons

Classic price modeling/forecasting

• Focus on historical data.
• Do not consider jumps and drips of the prices.
• Generally, these models were introduced for stock markets.
• Do not use unit root test for time series and econometric

methods to estimate their parameters.

Time series models

• Focus on historical data.
• Do not cope with extreme jumps and drips.
• Do not use feedback loops to dynamically upgrade model

adjustment features.

Learning forecasting models

• Focus on historical data.
• Generally being able to learn fluctuations and related

formerly signals.
• Use feedback loops to upgrade model adjustment

features dynamically.

Qualitative based forecasting models

• Rarely depend on quantitative forecasting methods.
• Donate insights about long-run behaviors of a

complex system.
• Mostly depend on experts’ evaluations, instead of historical

time series.
• Are able to dynamically modify input features.

In this paper, we are aimed to propose a learning-based model, which is designed to present a
more reliable and relevant input features (driving forces) to initialize a hybrid prediction ANN [93]
to equip decision-making process with accurate and reliable forecasts. Next section investigates the
proposed methodology and brief descriptions of various steps, then section three is dedicated to
presenting the implementation phase and discussing results to show how the proposed methodology
overcomes other benchmark models. Finally, section four provides summaries and conclusions.

3. The Methodology of Research

As noted previously, the following research is aimed to expand a data mining based prediction
model. Three major goals are targeted: (1) determining features which effectively present trends for NG
global demand (i.e., driving forces which can shape and define future trends), (2) identification of time



Energies 2019, 12, 4124 5 of 22

lags to define time relations between input variables and the target variable (as inter-correlated features
represents their influences with different time lags/delays), and (3) developing a learning intelligent
prediction model that can extrapolate future trends for the global NG demands. Figure 1 conceptually
shows designed data mining genetic-neural network (DmGNn) methodology to approach noted goals.
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Following, the main phases and steps of the proposed methodology are discussed and
corresponding outputs are mentioned:

PHASE 1.
Step 1. Data gathering: in this step previous studies reviewed to detect potential input features.

Unlike most of the published researches, this paper pursues the maximum approach, means gathering
and using maximum available features to ensure that no useful information will be neglected by the
estimator. In simple words, the proposed methodology doesn’t immure the solution space due to the
use of purified input vector. Output: input feature subset.

PHASE 2.
Step 2. Feature selection: this step is designed to select the most relevant subset of the extracted

features. The main objective is to reduce problem dimensions while preserving all local and
global optimal solutions (i.e., reliability of the results). Here, the correlation-based feature selection
(CFS) [94,95] technique is used to define final input feature subset. Output: refined input feature sub-set.

Step 3. Time lag selection: it is investigated to study how different time lags for input features may
affect forecasting accuracy. The theory behind it is that in a complex system elements are inter-correlated
but with varying degrees, and sometimes react with different time lags [17]. This step will study time
relation between input features and the target variable (natural gas demand). Information criteria [96]
method is used to detect lag orders. Output: timed input features subset.

Step 4. Normalization: different scales of input features may cause in a biased final forecasting
model [97]. This step is aimed at reproducing input features but in similar, uniform scales. Min-max
method [98,99] is used to normalize the input features subset. Output: uniformed timed input
features sub-set.
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PHASE 3.
Step 5. Design of the forecasting model: in this step, an ANN [100] is equipped with a GA [101] in order

to optimize the network’s characteristics and develop an accurate prediction model. Output: estimator.
PHASE 4.
Step 6. Implementation: finalized input features subset are applied to the developed estimator.

In this step, the input set is divided into two main portions, one to train (about 80%) and other to
test (about 20%) the performance of the prediction framework. Outputs: adjusted prediction model &
resulted in extrapolated results.

PHASE 5.
Step 7. Validation: this step is dedicated to comparing the obtained results of the proposed

prediction framework with other benchmark comparative models based on multiple error indicators.
R2, MAE, MAPE, MBE, and RMSE are used to compare prediction results and perform accuracy
analysis. Output: accuracy analysis.

To model complex systems (like energy systems), selecting a robust model architecture is very
challenging [17,102]. Data mining (DM) techniques are selected to handle the complexity of input
variables. DM is defined as the process of extracting appealing patterns and deriving knowledge in
massive datasets. Refer to Han et al.: "the principal dimensions are data, knowledge, applications, and
technologies" [103]. Following sections are dedicated to present implementation process and obtained
results in details.

3.1. Input Preparation

3.1.1. Data Gathering

Input data extremely affect the accuracy and quality of the obtained results. In the case of
energy consumption, previous researches investigated different sets of input features to predict energy
consumption’s upcoming trends. A significant limitation of a prediction model is that it cannot
reflect the effects of variables, which did not exist in the input feature set (those have been neglected).
To ensure robustness and the validity of the proposed prediction model, the paper proposes the
maximal approach, which means to investigate all available input data and reduce dataset dimension
through a DM technique. This approach has the advantage of retaining all signals and trends, while
simultaneously the model faces an undeniable challenge that is the increased complexity level due to
the large input set, which may negatively affect prediction efficiency. In another hand, it is a challenging
process to set up strategic decisions based on a large collection of parameters/inputs. To handle the
noted problem, a DM based data pre-processing step is proposed by this paper to examine and purify
input features. Table 3 summarizes the most frequently used input features (by other researchers) and
the features which were available/accessible online.

Table 3. Initialize input features.

Title Unit Reference(s) Source

Alternative and Nuclear
Energy % of total energy use Proposed by authors World Bank

CO2 Emissions metric tons per capita [49] World Bank
CO2 Emissions Kt World Bank

Energy Imports, Net % of energy use Proposed by authors World Bank
Fossil Fuel Energy

Consumption % of total [104] World Bank

GDP Growth annual % [49,55,59,77,78,105–113] World Bank
GDP per Capita current US$ World Bank

Population Growth annual % [46,52,53,77,78,105,107–109,112–117] World Bank
Urban Population person [105,111] World Bank

Gold Price 10:30 A.M.in London Bullion Market, US$ Proposed by authors World Bank
Natural Gas Production billion cubic meters Proposed by authors British Petroleum

Oil Consumption million tones Proposed by authors British Petroleum
Crude Oil Prices US dollars per barrel ($2013) [52,104,106,112,114,115,118] British Petroleum
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3.1.2. Data Preprocessing (Feature Selection, Lag Selection and Data Normalization)

In machine learning problems, it is very challenging to select a representative collection of features
to build the model [94]. Studying more features (a larger feature set), helps to explore more problem
dimensions and to reduce the threat of missing potential solutions, but at the same time it may conclude
more computational complexity, learning algorithm confusing, and over learning.

DM, as a process, generally contains data cleaning, integration, selection and transformation
to discover patterns, evaluate them, and present the extracted knowledge [103,119]. In knowledge
discovery processes, such as DM, the feature subset selection is very crucial, not only for the insight
achieved from determining variables, but also for the upgraded reprehensibility, scalability, and the
validity of the constructed models [13]. This research uses a correlation-based feature selection (CFS)
algorithm to determine the most relevant input features. CFS was initially proposed by Hall in 1999 [94].
A CFS examines and ranks feature subsets, unlike many much-used techniques which aimed to rank
features individually, such as ReliefF [120]. CFS consists of two nested steps: (1) feature evaluation
and (2) searching the feature subset [95].

The feature evaluation step is the heart of a CFS which aimed to heuristically measure the
merit of a subset of features. This process studies the usefulness of every single feature to predict
targeted variable (here natural gas consumption) while the inter-correlation level among subset is
investigated. Equation (1) formulizes this heuristic, proposed by Ghiselli [121] which is a form of
Pearson’s correlation, where all variables are standardized.

MeritS =
k rc f√

k + (k− 1)r f f

(1)

where the equation aimed to evaluate merit of a feature subset S composed of k features. rc f represents
the average feature-class correlation and r f f refers to the average feature-feature inter-correlation.

To decide which of the features to include in the final subset and which to ignore one would try
all possible subsets. Note that for k possible features there are 2k possible subsets. Obviously, it is not a
logical procedure to investigate all possible subsets one by one especially when k is relatively large.
To address this challenge various heuristic search strategies are proposed which often converge to an
optimal subset in reasonable time [95,122]. “Best First” [123] and “Greedy Stepwise” [124] searching
methods were applied to the CFS to study input dataset using various searching paradigms. For
instance, the best first starts with an empty set and develops all possible single feature subsets. The
subset with the highest evaluation value, as noted above, selected to expand by adding another single
feature. The stopping condition is obtained when expanding the subset results in no improvement.
Both of searching methods resulted in the same feature subset which means they support each other.
Finally, through 13 representative input features (presented in Table 3) six input features selected as
the model’s input, contains: (1) alternative and nuclear energy, (2) CO2 emissions, (3) GDP per capita,
(4) urban population, (5) NG production, and (6) oil consumption.

Sometimes relevant features in a time series dataset show their influence with lags of time. Also,
there would be time lags for a policy/decision in the complex energy market. Detecting related lags
would assist a prediction model to accurately follow possible fluctuations [17]. At this step, the
proposed DmGNn methodology attempts to determine time lags related to finalized feature subset
correlated with the target attribute (i.e., NG global demand).

Numerous lag selection approaches exist that contain lag selection as a pre-processing,
post-processing, or even as a part of the learning process [125]. Among popular statistical tests
based on information criteria pre-processing lag selection methods, Akaike information criteria
(AIC), Bayesian information criteria (BIC), and Schwarz Bayesian information criteria (SBIC), are well
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used [126,127]. Information criteria methods consider 1 lag (as the minimum number) to p which define
intermediate lags. The main hypothesis is to define the lag order p to minimize the following equation:

IC(p) = Nlnσ̂2(p) + p[ f (N)] (2)

where σ̂2(p) is defined as the estimated regression variance, related to the sample size and order p of
lag structure, and N is the number of observations [128]. p[ f (N)] is the penalty function to increase the
order of model. Different choices of f (N) cause in different information criteria.

A −20 to +20 time lags were implemented for each feature versus the target attribute using Matlab
software. Figure 2 summarizes results of the time lag selection process for selected features, alternative
and nuclear energy and CO2 emissions. For each chart, the vertical axis shows the level of correlation
between the correspondence feature and targeted variable while horizontal axis implies different time
lags. The order p defines the effective time lag which possess the highest correlation level, according to
the chart.Energies 2019, 12, x FOR PEER REVIEW 9 of 23 
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Now, optimum input features are detected. Six selected features are representatives of all
13 identified input features and also the selected subset has been reorganized based on detected
time lags.

Although an optimum set of input features have been selected, still input features are asymmetric
and the units are different in scales. Data normalization step is investigated to restrain the parameters
range influence on the results and adapt values of different features with different domains and
scales to a shared scale. The min-max normalization method is used to adjust dataset using the
following equation:

Normalized Data =
y(i) −min

{
y
}

max
{
y
}
−min

{
y
} (3)

where y(i) is an ith element in the column and min
{
y
}

minimum and max
{
y
}

is the maximum of related
column’s elements.

The next sub-section is dedicated to discussing the forecasting framework.

3.2. Designing the Forecasting Framework

3.2.1. Artificial Neural Network

Computational intelligence methods such as an artificial neural network (ANNs) [129] are modern
paradigms to handle complex optimization problems [130–132]. ANN is organized as a simplified
abstract of the biological nervous system to emulate neurons mechanism. A neuron is the computation
unit of an ANN. Mathematically a neuron is a function, which aimed at dynamically reduce deviation
cost. The mathematical description of a neuron presented as follows:

O j(t) = f


 n∑

i=1

wi jxi
(
t− τi j

)− T j

 (4)

where xi and oj respectively are the input and the output at time t, τi j defines the delay between xi and
oj. Tj presents the threshold of the jth neuron, while wij is the connection coefficient from neuron i to
neuron j.

An ANN consists of characteristics: the input layer, the hidden layer, the interconnection
between different layers, the learning step to find the optimum values of interconnections weights,
the transformer function which assigned to produce outputs refer to weighted inputs, the number of
neurons performing in each layer and the output layer. Figure 3 schematically presents the architecture
of an ANN with a single hidden layer.
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Figure 3. A simple artificial neural network.

As it has been shown in Figure 3, neurons are deployed in layers. Nodes of layers in a row are
connected to show interactions and information flow in an ANN. The connection between node i and j
defines by the weight wij and also a bias bi parameter is assigned to each neuron [133]. To minimize
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the error at each step (which is known as epoch) an ANN compute and error function and uses an
algorithm to reduce the error value.

An ANN has the ability to be trained in order to build a precise network and minimize the lost
function by adjusting wij weight matrices [17]. So, the performance of the learning algorithm will
define the performance of the ANN. In this paper, a genetic algorithm (GA) is used to equip ANN as
the learning algorithm. In the next section, the GA procedure is explained briefly.

3.2.2. Genetic Algorithm

Training an ANN is very complex, which can directly influence outcomes’ quality. Recently,
numerous academic studies are presented, which applied meta-heuristic and intelligent algorithms
(i.e., GA) as learning algorithms [134].

GA is an evolutionary optimization approach developed by Holland in 1975 [101], which acts
based on random search procedure. Compared to traditional optimization methods the GA has
numerous advantages. For example, the algorithm converges to a good, feasible solution faster than
other existing traditional methods [24]. Series of computational operators like selection, mutation,
and crossover functions are used in a GA to achieve a reliable solution. Figure 4 briefly presents the
GA procedure.
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3.2.3. Genetic Neural Network

In this paper, weights and thresholds of the ANN are updated by a GA. For this purpose, input
vectors transformed into a genetic gene in the format of the chromosome. Then, the initial population
is formed from the randomly generated chromosome. Now values of the optimization algorithm
such as selection, crossover, and mutation rates can be set to design the algorithm. The fitness
function is the reciprocal of the quadratic sum of the difference between predicted and real values [135].
Roulette wheel selection is used to select a new individual, then two chromosomes are exchanged
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via crossover operation to generate a new individual. Finally, the mutation step is applied to avoid
premature convergence.

Equipping an ANN with a GA could save training time and improve the precision of the forecasting
model [135]. Figure 5 schematically shows the flowchart of the presented GNN.Energies 2019, 12, x FOR PEER REVIEW 12 of 23 
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The next section is dedicated to present the architecture of ANN, which is the basic framework of
the developed forecasting model.

3.2.4. The Architecture of the ANN

This research targeted to present accurate NG demand predictions, so the selected features were
inputted at the initiatory layer (input layer) of the designed ANN. A single hidden layer network was
designed to perform the prediction, so the model contains a three-layer architecture. Figure 6 shows
the performance of a three-layered NN for three, four, five, six, and seven neurons in the hidden layer.
Four neurons were used for the hidden layer as it returns the best performance among other tested
number of neurons (see Figure 6).
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Figure 6. Performance of DmGNn for different numbers of neurons (A: R2 statistic for the different
number of DmGNn neurons; B: RMSE statistic for the different number of DmGNn neurons).

As it has been represented in Figure 6, based on the R2 and root mean square error (RMSE)
statistics, four number of neurons the proposed data mining genetic-neural network (DmGNn) model
performs better than other examined set.

4. Outputs and Results

As mentioned before this paper is aimed at developing a forecasting model to accurately forecast
global NG demand. Here, the historical behavior of the global NG demand from 1965 to 2013 period
(billion cubic meters) is gathered via www.bp.com. Now, the model is designed, and it can be used to
project future trends for NG global consumption. For this reason, 40 historical annual fundamental
time series data (from 1665 to 2004) are investigated as a learning set. The forecasting period contains
nine annual values for NG global demand prediction problem (from 2005 to 2013). Ten iterations
have been investigated for the proposed DmGNn model. Figure 7 presents projections (average for
10 iterations) resulted from the DmGNn models.
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Learning models were extensively applied in the case of NG demand predictions [62,136].
Some competitive prediction models were selected to compare outputs of the proposed model and
analysis of the accuracy. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [137–139] and a set of
classical well-known neural network-based techniques such as: Radial Basis Function Neural Network
(RBF) [140,141], Multi-Layered Perceptron (MLP) [18,142], and Generalized Regression Neural Network
(GRNN) [143–145] are nominated and optimized (through trial and error processes to minimize forecast
errors) to prove the accuracy of the proposed DmGNn model through a comparison study.

To evaluate different models, a set of mathematical criteria organized to measure prediction
performance. A relatively large set of validity indicators support the justification of model usage [21].
These statistics are summarized in Table 4 (where yi refers to real historical value and fi presents
forecasting value).

Table 4. Used mathematical criteria to evaluate forecast errors.

Error Title Abbreviation Formula

R-squared R2 R2 = 1− SSres
SStot

*

Mean Absolute Error MAE MAE = 1
n
∑
i

∣∣∣ fi − yi
∣∣∣

Mean Absolute Percentage Error MAPE MAPE = 100
n

∑
i

∣∣∣∣ fi−yi
yi

∣∣∣∣
Mean Bias Error MBE MBE = 1

n
∑
i
( fi − yi)

Root Mean Square Error RMSE RMSE =

√∑
(yi− fi)

2

n

* Where, SStot =
∑

i(yi − y)2 and SSres =
∑

i(yi − fi)
2 =

∑
i(errors)2.

Each model ran for 10 times and the average of outputs was calculated. Table 5 presents the
performance of the proposed and competitive models refer to statistics introduced in Table 4.

Table 5. Statistical errors for each prediction model.

Models Characteristics R2 MAE MAPE MBE RMSE

DmGNn

Number of Neurons = 4;
Maximum generation = 100;
Cross Over Probability = 0.8;
Mutation Probability = 0.05;

0.9847 52.19 1.69 13.54 61.33

MLP Maximum Epochs = 200;
Train Parameter Goal = 1 × 10−7; 0.8241 115.59 3.80 −44.85 145.61

ANFIS
FIS Generation Approach: FCM;

Number of Clusters = 10;
Partition Matrix exponent = 2;

0.8494 63.45 1.89 21.31 84.31

RBF Spread Value = 0.17; 0.0018 308.64 10.42 −308.64 366.51
GRNN Spread Value = 1; 0.9864 127.63 4.17 −4.03 142.12

As it is shown in Table 5, the proposed DmGNn significantly outperforms other competitive
models. Although the GRNN presents a reasonable performance under R2 (for R2 both DmGNn and
GRNN almost performed similar) and MBE criteria, however, it failed under MAE and RMSE error
tests. Here multiple error tests have been implemented to show estimators’ accuracy comprehensively.
Among them, MAE and RMSE are mentioned and used by many previous researchers and claimed that
the combination of MAE and RMSE could be more beneficial [146]. The RMSE is more appropriate to
represent model performance than the MAE when the error distribution is expected to be Gaussian [146].
Simultaneously, Willmott and Matsuura suggested that the RMSE is not a good indicator of average
model performance and might be a misleading indicator of average error, and, thus, the MAE would
be a better metric for that purpose [147]. The DmGNn overcame other competitive models under both
RMSE and MAE.

The pattern of the absolute error for each model is shown in Figure 8, which represents how
various forecasting models behave along the test period. As it is shown, the proposed DmGNn
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outperforms other benchmark forecasting models (with lower absolute error value for forecasting
period) and resulted in a robust forecast series (unlike other forecasting models DmGNn’s forecast
errors showed a low swing pattern).
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Figure 8. Absolute error for each forecasting model along the testing period.

Table 5 and Figure 8 showed how the proposed DmGNn model overcame other benchmark
models. However, the initial objective was to propose a prediction model which is aimed to uncover
main driving forces in order to approach to reliable extrapolations. ANN and GA were combined
and implemented successfully by other previous researchers to predict future trends in the area of
energy (for instance: [40,58,65,67,69]), but this paper presents a GNn with adjusted characteristics
equipped with a purified input vector using data mining based pre-processing techniques. Data
mining significantly helped to improve prediction accuracy and reliability. To show the efficiency of
the data mining phases, both pre-processed and raw data were applied to the design prediction model.
Table 6 compared the results under statistical errors criteria.

Table 6. Statistical errors for different input vectors (raw versus processed).

Input Protocol R2 MAE MAPE MBE RMSE

Processed data 0.9847 52.19 1.69 13.54 61.33
Raw data 0.9679 79.96 2.61 2.66 94.21

As it has been shown, even the GRNN with a purified input vector overcame the GNn in the
case of R2 indicator (0.9864 > 0.9679). Moreover, to dedicate a better understanding, Figure 9 shows
absolute error for two different input protocols (purified using data mining and raw data) along the
testing period. The line related to GNn represents more fluctuations than the green line (belongs to
DmGNn), simultaneously shows a larger number for errors corresponding to each test point (years).
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5. Conclusions

Energy is a major topic both in practice and theory, which many researchers investigated issues
related to energy sectors and industries. The international energy supply system is characterized by a
complicated combination of technological, social, economic, and political elements. Predicting and
planning for the future global energy market is interesting and, simultaneously, a challenging subject
in both research and practical investment projects. Thus the accurate prediction of energy demand
is critical to developing future policies, modify current plans, and evaluate potential strategies since
the energy market are complex and changing dynamically over time. This paper primary targeted to
provide an accurate and robust prediction model to predict the global natural gas demands using a
learning-based prediction model. On the other hand, authors aimed at introducing a process which
reduces problem space dimensions to define the most relevant features subset which affects NG future
consumption trends. The subset contains input features which shape the future, which are defined as
driving forces. The estimator model can predict trends easier as the input is purified and the adjusted
input vector has fewer dimensions than raw input vector, and also policymakers can monitor or in
some cases manipulate NG market refers to extracted features.

In order to investigate maximum feasible solutions and to prevent missing any potential optimal
option, input features were gathered based on the literature review and also related online dataset
survey. Input features would define the model structure and support the accuracy of the output results.
Although, increasing the number of input variables may cause computational complexity and reducing
interpretability of the results. Instead, a large number of input features expands solution space and
consequently reduces the probability of ignoring appropriate answers. A feature selection step is
proposed and is implemented to reduce the dataset dimensions while guarantees that the prediction
model will explore all optimal solutions. Finally, six input features were selected among 13 primary
input features. The feature selection approach guarantees to investigate all solution space using a
limited set of input features. Then possible time lags among input features versus the targeted attribute
(NG global demand) were studied and subsequently applied to the refined input set. Investigating
suitable time lags will cause in a more accurate and rational prediction model, which guarantees
synchronization between input features and the target attribute at t time step. Finally, a neural
network framework is developed, which equipped using a genetic algorithm to optimize the network’s
characteristics aimed to predict future NG global demands.



Energies 2019, 12, 4124 16 of 22

Four benchmark models are investigated to study the performance of the proposed data mining
genetic-neural network (DmGNn) model. The proposed DmGNn model outperforms other benchmark
models refer to five different error statistics. Based on the R2 statistic the DmGNn track real testing set
fluctuations very well (only missed about 2%). Moreover, to distinct how the proposed pre-processing
step affects the model accuracy, DmGNn model compared to a single GNn (without pre-processing
phases). As shown the proposed pre-processing step improves predictions both in term of accuracy and
reliability (robustness). Moreover, based on the interpretative capability index, the DmGNn dedicates
a more clear vision about future trends since it uses a smaller input dataset. A limited input feature
set enables decision-makers to design responsive policies/strategies/actions as they were aware of
attributes affecting the global NG demands.

The proposed DmGNn is characterized by high flexibility, universal operation, learning ability, and
low requirements for computation resources. As a result, it can be used by decision-makers and market
participants who face a complex environment. Although results showed notably high-performance
indexes for the proposed DmGNn model but such mathematical models are limited to conditions
where appropriate and reliable data is provided. Moreover, in the conditions of availability of data
mathematical estimators, even learning-based, are constrained to the historical time series and emerging
signals with no significant background are neglected and subsequently and can cause deviation in the
predictions. For further studies, a hybrid qualitative-quantitative model can be considered in order to
cover a single quantitative prediction model’s weaknesses.
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