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Abstract: Energy consumption issues are important factors concerning the achievement of sustainable
social development and also have a significant impact on energy security, particularly for China whose
energy structure is experiencing a transformation. Construction of an accurate and reliable prediction
model for the volatility changes in energy consumption can provide valuable reference information
for policy makers of the government and for the energy industry. In view of this, a novel improved
model is developed in this article by integrating the modified state transition algorithm (MSTA) with
the Gaussian processes regression (GPR) approach for non-fossil energy consumption predictions for
China at the end of the 13th Five-Year Project, in which the MSTA is utilized for effective optimization
of hyper-parameters in GPR. Aiming for validating the superiority of MSTA, several comparisons
are conducted on two well-known functions and the optimization results show the effectiveness of
modification in the state transition algorithm (STA). Then, based on the latest statistical renewable
energy consumption data, the MSTA-GPR model is utilized to generate consumption predictions for
overall renewable energy and each single renewable energy source, including hydropower, wind,
solar, geothermal, biomass and other energies, respectively. The forecasting results reveal that
the proposed improved GPR can promote the forecasting ability of basic GPR and obtain the best
prediction effect among all the other comparison models. Finally, combined with the forecasting
results, the trend of each renewable energy source is analyzed.

Keywords: renewable energy consumption; Gaussian processes regression; state transition algorithm;
five-year project; forecasting

1. Introduction

The energy industry provides an important impetus for the advancement of society and has
a significant impact on sustainable development [1–5], power safety [6,7], and environmental
changes [8,9]. Aiming to alleviate the pressure brought by energy problems, developing renewable
energy has been considered as an effective approach by more and more scholars at home and abroad [10].
In China, renewable energies refer to the energies that can be continuously regenerated in nature,
for instance, hydropower, wind, solar, biomass, geothermal and so on. The latest statistics obtained
form British Petroleum (BP) Statistical Review of World Energy 2019 displays that the renewable
energy consumption in China has reached the amount of 391.67 million tons oil equivalent (Mtoe),
which experienced a huge promotion over the past decades. China’s overall non-fossil energy
consumption in 2018 increased 8.1% compared with that of 2017. During the past year, the hydropower
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has promoted by 3.2%, the wind energy consumption has increased by 24.1%, the solar energy
consumption has grown by 50.7%, and geothermal, biomass and other energy has been promoted by
14%. According to the collected data, the consumption and the corresponding proportion of different
renewable energies in the past ten years are exhibited in Figure 1.

Figure 1. The composition of renewable energy consumption in China.

As displayed in Figure 1, dramatic changes can be observed in the composition of non-fossil energy
consumption of China during the past few years owing to a series of incentive policies implementations,
especially during the twelfth Five-Year Project which was from 2011 to 2015. Hydropower, with the
consumption of 144.1 Mtoe, accounts for 95.77% of the overall renewable energy consumption in
2008. However, due to the development of other renewable energies, the share of hydropower has
fallen to 79.73% during the late years of the twelfth Five-Year Project, and further decreased to 69.47%
by the year-end of 2018. Meanwhile, the wind energy accounts for the biggest growth share in
renewable consumption, which increased from 1.97% in 2008 to 10.93% in 2018, and the corresponding
consumption amount increased from 2.96 Mtoe to 82.82 Mtoe. The share of solar energy in the overall
renewable consumption grew from 0.02% in 2008 to 9.66% in 2018, with the corresponding growth from
0.03 Mtoe to 40.16 Mtoe. The share of geothermal, biomass and other energy consumption in the overall
renewable consumption grew from 2.24% in 2008 to 4.94% in 2018, with the corresponding growth from
3.37 Mtoe to 20.53 Mtoe. Presently, aiming at realizing sustainable development, China is focusing
on modifying the traditional energy supply structure dominated by fossil fuels and encouraging
the utilization of non-fossil energy in power generation. Thus, the establishment of a reliable and
accurate foreseeing for China’s non-fossil energy consumption at the end of thirteenth Five-Year Project
(2016–2020) and afterwards is of practical significance, offering valuable references to contribute for
the healthy and steady growth of China’s energy and economy.

In aiming for obtaining a satisfactory forecasting performance, a number of approaches have
been developed to predict energy consumption, for instance: time series analysis [11], the Long-range
Energy Alternatives Planning System (LEAP) [12,13], the Nanoelectromechanical systems approach
(NEMS) [14,15], computational intelligence technology [16] and hybrid forecasting systems [17,18].
However, although the models listed above have strong non-linear modeling ability, they cannot capture
the characteristics of small-scale samples very well. Aiming to solve this problem, Gaussian process
regression is developed as the perfect intelligence approach for low-dimensional and small sample
regression problems [19].

Owing to the properties of flexibility, non-linearity, inherent non-parametric factors, and so on,
GPR has been utilized by numerous scholars in various fields including chemistry [20], astrophysics [21],
materials [22], and so on. For example, estimation of diffusion coefficients in the voltammetric signals
was obtained by Bogdan et al., [23] with the application of GPR which is utilized to analyze the
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electroanalytical experimental data. In aiming to forecast the export content of the flue gas, GPR was
conducted to obtain the design optimization of combustion systems utilizing real time flame figures
in [24]. Furthermore, there are also researches involving GPR in the prediction of wind speed [25].
Wang et al. [26] proposed a hybrid approach which combines four different models including Extreme
Learning Machine, Support Vector Machine, Least Squares Support Vector Machine and GPR to gain the
probabilistic predictions for wind speed in the short term. Based on the features of renewable energy
consumption, it is appropriate to utilize GPR for the acquirement of renewable energy consumption
prediction. Nevertheless, through the review of the previous studies, it can be noticed that few
researches have been investigated in this domain by now.

In the construction of GPR, the choice of hyper-parameters is of great influence on the forecasting
capacity. Thus, it is of extreme significance to find a proper value for the hyper-parameter of GPR. As a
traditional measure, the conjugate gradient (CG) has been conducted as the optimization operator for
parameters selection [27]. Nevertheless, the performance of this measure is affected by the basic guess
selection, and it is hard to determine the proper iteration amount. Furthermore, in most instances,
the estimation of hyper-parameters for GPR is a non-convex issue, where measures on basis of the
gradient have troubles in finding the global optimal value [28,29]. To aim at solving this problem,
intelligent optimization measures, including the particle swarm optimization (PSO) [30–32] and the
genetic algorithm (GA) [33–35], are found to be better choices for optimal parameters selection in model
training process. Among these models mentioned, it is validated that the state transition algorithm
(STA) is effective in numerous complicated optimization issues and shows wonderful ability for
nonlinear optimization in contrast with GA and PSO [36]. However, the original STA utilizes the space
framework of objective function and seeks the best answers with the application of its unique state
transformation operators. Additionally, the seeking range of state transformation operators is primarily
decided by the corresponding transformation factors. If the transformation factor takes a large value,
the global search ability of the model will be stronger. Conversely, as the value of the transformation
factor is small, the local search ability of the model will be better. The transformation factor in the
traditional structure of STA often takes an invariant value, which will add extra computations in the
later period of optimization and cannot contribute for the optimization result improvement. Aiming for
calculation complexity reduction and optimization result promotion, it is needed to consider parameter
optimization for the transformation factor to find harmony between the global search and local search
for the basic STA.

According to the analysis above, in this paper, a GPR model integrated with modified STA is
put forward to make predictions of China’s overall renewable energy consumption and its respective
components consumption. In the proposed model, the parameter selection for STA and the parameter
optimization for GPR are considered at the same time. Additionally, the latest renewable energy
consumption data published by the BP statistical Review of World Energy 2019 are utilized to test the
proposed model. The prediction outcomes prove that the proposed modified state transition algorithm
(MSTA)-GRP model displays the optimal prediction effect in contrast with all the other prediction
approaches. The major contributions can be described as follows: (1) A novel integration forecasting
model MSTA-GPR model is proposed. The MSTA is integrated into the GPR for the hyper-parameters
optimization to improve the forecasting performance. (2) Two well-known functions are utilized to
validate the optimization effect against traditional optimization algorithms, such as GA and PSO.
(3) The proposed MSTA-GPR is utilized to make consumption predictions of China’s renewable energy
at the end of the thirteenth Five-Year Project. The final result proves the satisfactory forecasting
performance of the MSTA-GPR model and provides both a deterministic and an interval prediction for
the renewable energy consumption development.

This passage is arranged with the following framework: Section 2 provides the description of the
GPR, MSTA and the proposed MSTA-GPR model; Section 3 provides two validation cases to test the
optimization performance of the modification in the basic STA; Section 4 shows applications of the
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proposed MSTA-GPR model for the consumption prediction of the overall renewable energy and its
corresponding components; finally, the conclusions are obtained in Section 5.

2. Methodology

2.1. Gaussian Process Regression

Gaussian process (GP) is a kind of stochastic process in probability theory and mathematical
statistics. It is a combination of a series of random variables obeying normal distribution in an
exponential set. GP has two important components, one is the average function, and the other is the
covariance function, which can describe the GP in form of Equation (1).

f (x) ∼ GP(a(x), C(x, x′)) (1)

The form of average function is described in Equation (2), and the form of covariance equation is
represented by Equation (3) [37].

a(x) = E[ f (x)], (2)

C(x, x′) = E[( f (x) − a(x))( f (x′) − a(x′))]. (3)

Generally, the squared-exponential covariance equation is considered as a widely applied
covariance function. Assume that there is a data set with noise for training, which is in form of
Equation (4):

D = {x (i), y(i)
∣∣∣∣i = 1, 2, . . . , n

}
(4)

then, we apply the GPR method to make predictions for the output value of y∗ with the future input
value x∗ in way of studying a function from the data set given, which relates to a presupposed prior
Gaussian function.

The posterior distribution can be acquired for the (n + 1) GP results according to Bayers
rule, when the distribution for a novel value is calculated. As an examination input xn+1 and the
corresponding training set D are given, the forecasting outcomes follow normal distribution by
adjusting the observed values of the training set, which is shown from Equation (4) to Equation (6).

P(y(n+1)
∣∣∣D, x(n+1)) ∼ N(µy(n+1) , σ2

y(n+1)), (4)

µy(n+1) = aTQ−1y, (5)

σ2
y(n+1) = C(x(n+1), x(n+1)) − αTQ−1α. (6)

In the above equations, µy(n+1) represents the mean, and σ2
y(n+1) means the variance. Qpq and αp

are given in equations below:
Qpq = C(x(p), x(q)) + r2θpq, (7)

αp = C(x(n+1), x(q)), p = 1, 2, . . . , n. (8)

Mentioned by the previous paragraphs, covariance function C(xp, xq; Θ) along with
hyper-parameters Θ has a great effect in GPR as it decides the smoothness of the data in evaluating
the new function. As mentioned in [38], the log likelihood can be maximized to choose the optimal
hyper-parameters for GPR, which is described in Equation (9):

log P(D
∣∣∣Θ) = log P(y(1), y(2), . . . , y(n)

∣∣∣x(1), x(2), . . . , x(n), Θ)

= − 1
2 log detC− 1

2 yTC−1y− n
2 log 2π (9)
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2.2. Improved State Transition Algorithm

2.2.1. Original State Transition Algorithm

Firstly, an equation to be optimized with no limitations is described as follow:

min
x∈Rn

f (x) (10)

where, f (x) denotes an objective function mapping from Rn to R. Assume the potential solution as a
state, and the objective problem is solved through updating the optimal solution found by now with
iterations, which is considered as sate transition. The procedure of STA is expressed as below:{

sk+1 = Aksk + Bkuk
yk+1 = f (sk+1)

(11)

where, a state is represented by sk; the state transition matrices are represented by Ak and Bk; the function
of sk and the previous states are represented by uk; and the objective function is described utilizing the
symbol of f . Additionally, the solutions of the continuous objective function of the STA are searched
for with four different state transformation operators below.

(1) Rotation transformation:

sk+1 = sk + α
1

n‖sk‖2
Rrsk (12)

where, the rotation factor is positive and represented by α. A random matrix which belongs to
Rn×n is denoted by Rr with elements distributed in [−1,1]. ‖×‖ defines the L2-norm of a vector.
Utilization of the rotation transformation can contribute to the search in the hypersphere.

(2) Translation transformation:

sk+1 = sk + βRt
sk − sk−1

‖sk − sk−1‖2
(13)

where, the translation factor is a fixed positive value and represented by β. Rt belonging to
R defines a stochastic variable and the corresponding elements of Rt take value between [0,1].
Application of the translation transformation can contribute to the line search along between xk−1
and xk.

(3) Expansion transformation:
sk+1 = sk + γRexk (14)

where, the expansion factor is a fixed positive value which is represented by γ. A stochastic
diagonal matrix is represented by Re ∈ Rn×n with elements obeying normal distribution.
Application of expansion transformation can contribute to the whole space search which spreads
the element in xk to the range of infinite.

(4) Axesion transformation:
sk+1 = sk + δRaxk (15)

where, the axesion factor is a fixed positive value and defined by δ; a stochastic diagonal matrix
which is represented by Ra ∈ Rn×n with elements generated form normal distribution. Moreover,
these is only one nonzero stochastic element in Ra. Utilization of the axesion transformation can
contribute to the search along the direction of axes.

Furthermore, the search enforcement (SE) is a parameter which is utilized to control the amount
of each transformation during the implementation of four different transformation operators.
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The major steps of the basic STA can be described as follow [39]:

1: repeat
2: repeat if α < αmin then
3: α← αmin

4: end if
5: Optimal← exp ansion( f un, Optimal, SE, β,γ)
6: Optimal← rotation( f un, Optimal, SE,α, β)
7: Optimal← axesion( f un, Optimal, SE, β, δ)
8: α← α

f c

where, lessening of the coefficient α is decided by f c which takes a fixed value. Once a better solution
is found, the translation operator will be activated.

2.2.2. Modification for the Original State Transition Algorithm

Compared with models on basis of the gradient, the STA has one advantage which is
to search in all orientations and at any length. But there are also limitations for the STA.
For example, decided by the transformation factor, the search area of the rotation and translation
transformation is limited in a hpersphere or a line. To improve this situation, a parameter set
Ω = {1 , 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8

}
is considered in the basic STA for the optimal

value selection of transformation factor [40]. The parameter which can obtain the best value for the
objective function is selected as the optimal parameter. The optimal parameter ã∗ is given as the
equation below:

ã∗ = argmin
ã∗∈ Ω

f (xk + ãkd̃k). (16)

Aiming for a more complete utilization of the parameters, each parameter chosen is held for a
certain period, which is represented as Tp. Then the rotation function in the modified STA is described
as follow:

1: [Optimal,α]← update_alpha( f un, Optimal, SE, Ω)

2: for i← 1 , Tp do
3: Optimal← rotation( f un, Optimal, SE,α)
4: end for

where, the realization of optimal parameter selection for the rotation factor is conducted by equation
update alpha. In this way, the common periodical reduction of the transformation factors is abandoned.
The parameter to be optimized is chosen for each state transformation with the exception of the
translation operator and the best parameter selected is held within a certain period.

2.2.3. Prediction Process of Improved GPR on Basis of Modified STA (MSTA-GPR)

Three steps are carried out to realize the proposed MSTA-GPR model: Step 1. Initialization;
Step 2. The selection of optimal hyper-parameters. The description of the fitness function is shown as
Equation (9); Step 3. Forecasting. The flowchart of MSTA-GPR is shown in Figure 2.
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Figure 2. The implementation steps of the proposed modified state transition algorithm-Gaussian
processes regression model (MSTA-GPR).

The details of each step are described as follow:

Step 1. (Initialization): The training set is built to form the input and the covariance function is
selected for GPR.

Step 2. (Selection of optimal hyper-parameters):

Step 2.1. Parameter setting: A random initial solution Optimal0 is created in the searching
space. Parameters for MSTA are set: α = αmax,αmin, β = βmax, βmin, γ, Tp,
f un, and SE. The max function estimations are set to 5e4 ∗ n ∗ log(n) and n is
the amount of the decision variables.

Step 2.2. Expansion: Create SE potential solutions with the expansion transformation
operator on basis of the optimal solution Optimalk found so far. Renew the optimal
solution when Optimalk is promoted. After that, translation transformation
operator is applied and the optimal solution is renewed; otherwise not.

Step 2.3. Rotation: Create SE potential solutions with the rotation transformation
operator on basis of the optimal solution Optimalk found so far. Renew the
optimal solution when Optimalk is promoted. After that, the translation
transformation operator is applied and the optimal solution is renewed;
otherwise not.

Step 2.4. Optimal parameter selection for STA: the optimal transformation factors are
selected for STA according to the description in Section 2.2.2.

Step 2.5. Termination: If α or β is beyond the upper or lower bound, they will be
set as the corresponding value of the upper or lower bound. The iteration
continues until the corresponding termination is achieved. Thus, the optimal
hyper-parameters of GPR are found.
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Step 3. (Prediction): The new data are introduced to form the corresponding input of the
MSTA-GPR model for prediction. Finally, the forecasting results are obtained.

3. Validation of MSTA Optimization

In this section, the global optimization ability of MSTA is investigated with two famous equations,
which can validate the effectiveness of the modification in basic STA. The test equations are shown as
follow:

(1) Rosenbrock function:

f1 =
n∑

i=1

(100(xi+1 − x2
i )

2
+ (xi − 1)2). (17)

The constrain for the equation above is xi ∈ [0,π], i = 1, 2, . . . , n. The optimal solution is
xop = (0, . . . , 0) and the corresponding optimal value for the function is 0.

(2) Michalewicz function:

f2 = −
n∑

i=1

sin(xi) sin(
ix2

i
π

)

20

. (18)

The constrain for the equation above is that xi ∈ [0,π],i = 1, 2, . . . , n. And the corresponding
optimal value for the equation is not known.

The basic STA and two widely used optimization approaches, which are PSO and GA, are utilized
to form comparisons for MSTA. The corresponding parameter setting recommended for the algorithms
involved are shown in Table 1. The dimension for decision variable is investigated at 20, 30, and 50.
Aiming for comparisons in the same situation, all programs are coded in Matlab 2018a on a personal
computer with 8 GB RAM under a Windows environment and the computation procedures are
conducted 20 times.

Table 1. Parameter setting for each optimization model involved. GA, genetic algorithm; PSO,
particle swarm optimization.

Prediction Approaches Parameter Value

MSTA SE 20
Tp 10

Range [10−3
× Dim,1000 × Dim]

STA [36] SE 20
Rotation factor scope [10−4,1]

Translation factor 1
Expansion factor 1

Axesion factor 1
GA [41] Population 20

Crossover rate 0.95
Tournament size 2

Mutation rate 0.05
PSO [42] Swarm size 30

Inertia range [0.1,1.1]
Self-adjustment weight 1.49

Social-adjustment weight 1.49
Minimum neighborhood size 0.25 × swam size

It can be known from Table 2 that, in the case of the Rosenbrock function, the optimization
performance of MSTA is validated to be the best compared with the other three comparison optimization
algorithms regardless of the best, worst, or mean situation. And even as the dimension of the
independent variable increases, the MSTA can still achieve a satisfactory result which is superior to
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the optimization outcomes of STA, GA, or PSO. Moreover, in the case of the Michalewicz function, as
the global optimal solution is not known, the optimization capacity of each algorithm can be better
explored one step further on. It can still be seen that from Table 2, the optimal outcomes obtained by
MSTA are the best among all the optimization algorithms under different situations and dimensions,
which again proves the superiority of MSTA optimization. For example, when the dimension takes 20,
compared with STA, GA, and PSO, the mean optimal value promotion of MSTA is 8.15%, 9.94% and
97.32%, respectively. Conclusively, the two validation cases show the effectiveness of the modification
for the basic STA. Integrated with the optimal parameter selection, the performance of MSTA is
thus improved significantly and is better than that of the basic STA and the two traditional optimal
algorithms, which makes it a better choice for hyper parameter optimization in GPR.

Table 2. Validation comparisons of different optimization algorithms.

Fun f1 f2
Dim 20 30 50 20 30 50

MSTA Best 6.06 × 10−7 8.40 × 10−7 1.84 × 10−6 −19.96 −29.95 −49.97
Worst 1.10 × 10−6 1.88 × 10−6 2.87 × 10−6 −19.78 −29.87 −49.93
Mean 8.03 × 10−7 1.26 × 10−6 2.16 × 10−6 −19.91 −29.91 −49.95

STA Best 11.17 23.75 36.91 −19.60 −29.53 −49.39
Worst 13.57 24.66 45.34 −17.60 −27.51 −46.51
Mean 12.94 24.10 42.34 −18.41 −28.82 −47.85

GA Best 0.49 0.04 0.08 −18.11 −28.86 −41.26
Worst 0.49 0.04 0.08 −18.11 −28.86 −41.26
Mean 0.49 0.04 0.08 −18.11 −28.86 −41.26

PSO Best 13.26 1.48 13.24 10.09 −15.76 −7.97
Worst 13.26 1.48 13.24 10.09 −15.76 −7.97
Mean 13.26 1.48 13.24 10.09 −15.76 −7.97

4. Application of MSTA-GPR for Overall Renewable Energy Consumption Prediction in China

In this Section, the MSTA-GPR approach is applied for the renewable energy consumption
prediction in China. Aiming for validation of the superiority of MSTA-GPR approach, the corresponding
forecasting results are compared with that of PSO-GPR [43], GPR [44] and the autoregressive integrated
moving average ARIMA model [45]. The basic data are offered by the BP statistical Review of World
Energy 2019. The training set is formed utilizing observations obtained from 2008 to 2015 to train each
forecasting model involved, and the first three years of the thirteenth Five-Year Project (2016–2020) are
considered to validate the corresponding prediction effect. All the original data are listed in Table 3.

Table 3. The consumption data for China’s renewable energy from 2006 to 2018.

Year Overall Hydropower Wind Solar Geothermal
Biomass and Other

2006 101.08 98.61 0.84 0.02 1.61
2007 113.30 109.80 1.24 0.03 2.23
2008 150.49 144.13 2.96 0.03 3.36
2009 150.33 139.30 6.25 0.06 4.72
2010 176.86 160.97 10.10 0.16 5.63
2011 178.46 155.69 15.91 0.59 6.27
2012 224.66 195.23 21.72 0.81 6.90
2013 248.10 205.82 31.95 1.89 8.44
2014 288.99 237.85 35.32 5.32 10.50
2015 316.31 252.19 42.03 9.86 12.23
2016 342.62 260.96 53.64 13.96 14.06
2017 375.04 263.63 66.75 26.65 18.01
2018 415.59 272.08 82.82 40.16 20.53
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Besides, aiming for the prediction performance evaluation, the mean absolute percent error
(MAPE) is computed for the forecasting outcome of each model involved. The equation of MAPE is
described as follow:

MAPE =
1
Y

Y∑
y=1

∣∣∣∣∣∣ptrue(y) − p f orecast(y)
ptrue(y)

∣∣∣∣∣∣× 100% (19)

where, ptrue(y) means the data recorded at year y, p f orecast(y) means the prediction of year y, and Y is
the amount of all the values to be predicted.

4.1. Overall Renewable Energy Consumption

The suggested MSTA-GPR approach is utilized in this part to investigate the overall renewable
energy consumption prediction in China. The predictions and corresponding indexes are displayed in
Table 4. Figure 3 displays the interval prediction for the overall renewable energy consumption in
China from 2016 to 2018. And in the interval prediction, the 95% upper bound and the 95% lower
bound reveal the maximum values and minimum values respectively that can be obtained by GPR
when the confidence level of the regression prediction result is 95%.

Table 4. Consumption prediction for overall renewable energy of China from 2006 to 2018 (Mtoe).
ARIMA, autoregressive integrated moving average; MAPE, mean absolute percent error.

Year Real
Data

MSTA-GPR PSO-GPR GPR ARIMA
Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 342.62 347.08 1.30 348.39 1.68 348.88 1.83 343.72 0.32
2017 375.04 375.04 0.00 374.40 0.17 374.70 0.09 371.17 1.03
2018 415.59 405.29 2.48 401.07 3.49 400.94 3.53 398.66 4.07

MAPE 1.26 1.78 1.81 1.81

Figure 3. The interval prediction result of MSTA-GPR for overall renewable energy consumption
in China.

From Table 4 and Figure 3, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting accuracy than the other approaches in
consumption predicting of the overall renewable energy in China. It can be obtained from the historical
data that in recent years, the development of China’s overall renewable energy consumption is close
to linear growth. Hence, GPR and ARIMA have similar prediction performance. Compared with
GPR and ARIMA, the MSTA-GPR approach has promoted each forecasting accuracy by 30.39%.
Optimized by PSO, the prediction performance of PSO-GPR is slightly better than that of basic GPR.
Compared with PSO-GPR, the MSTA-GPR approach has promoted the forecasting accuracy by 29.21%.
This comparison result indicates that the global ability of MSTA is better than that of PSO. As can
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be seen from Table 4, the trend of overall renewable energy consumption in China keeps growing
in the last few years and will continue to maintain in the future. According to the latest published
statistics, by the first half of 2019, the amount of electricity generated by renewable energy has reached
887.9 billion kWh, which increases 14% compared with that of last year.

4.2. Hydroelectricity Consumption in China

This part investigates the prediction of China’s hydroelectricity consumption. The prediction
outcomes of each model and corresponding errors are displayed in Table A1 of Appendix A.
Furthermore, the interval prediction for China’s hydroelectricity consumption is described in Figure A1
of Appendix A.

From Table A1 and Figure A1, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the hydroelectricity consumption of China. As can be obtained from the historical data,
the growth trend of hydroelectricity is not continuous. The forecasting performance of ARIMA is the
worst of all. Compared with ARIMA, the MSTA-GPR approach has promoted the forecasting accuracy
by 91.08%. GPR offers a better forecasting result than that of ARIMA by recognizing the non-linear
features in the historical data. However, the prediction performance of GPR is not the best because the
hyper-parameters are not optimized. Compared with GPR, the MSTA-GPR approach has promoted
the forecasting accuracy by 66.67%. Combined with PSO, the forecasting accuracy of PSO-GPR is
further promoted than basic GPR. But PSO is easy to fall into the local optimum in the process of
searching the optimal solution. Compared with PSO-GPR, the MSTA-GPR approach has promoted the
forecasting accuracy by 29.54%. In recent years, the growth rate of hydropower has slowed down,
but still accounts for the largest proportion of renewable energy consumption in China. The latest
published statistics shows that, by the first half year of 2019, the amount of electricity generated by
hydropower is 513.8 billion kWh, which has promoted by 11.8% compared with that of last year.

4.3. Wind Power Consumption in China

This Section explores the prediction of China’s wind power consumption. Prediction outcome
of each model and corresponding errors are displayed in Table A2 of Appendix A. Additionally, the
interval prediction for China’s wind power consumption is described in Figure A2 of Appendix A.

From Table A2 and Figure A2, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the wind power consumption of China. According to historical data, the consumption of
wind power has increased rapidly in recent years. As a traditional time series forecasting method,
ARIMA cannot capture the nonlinear growth trend of wind power consumption well, which results
in a poor forecasting result. Compared with ARIMA, the MSTA-GPR approach has promoted the
forecasting accuracy by 36.81%. Owning to the advantage of recognizing non-linear features in data,
both PSO-GPR and GPR can obtain better forecasting results than ARIMA. However, due to the lack of
a more effective hyper parameter optimization method, their forecasting performances are not good as
that of MSTA-GPR. Compared with PSO-GPR and GPR, the MSTA-GPR approach has promoted the
forecasting accuracy by 7.98% and 25.07%, respectively. In recent years, with the gradual maturity of
technology, wind power generation has been vigorously developed, and the amount generated by
wind power is increasing year by year. By the first half year of 2019, the wind power generation in
China has achieved 214.5 billion kWh, which has promoted by 11.5% compared with that of last year.

4.4. Solar Power Consumption in China

The solar power consumption prediction of China is investigated in this Section utilizing the
MSTA-GPR approach. The prediction outcomes of each model and corresponding errors are displayed
in Table A3 of Appendix A. Additionally, the interval prediction for China’s solar power consumption
is described in Figure A3 of Appendix A.
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From Table A3 and Figure A3, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the solar power consumption of China. The solar power consumption experiences a rapid
growth in recent years. But ARIMA cannot follow the rapid changes of solar power consumption,
which results in a low prediction accuracy. Compared with ARIMA, the MSTA-GPR approach has
promoted the forecasting accuracy by 63.15%. In contrast, PSO-GPR and GPR can adapt to the rapid
changes of solar power consumption in the short term and get better prediction results. But their
forecasting accuracy is not the best. Compared with PSO-GPR and GPR, the MSTA-GPR approach has
promoted the forecasting accuracy by 0.58% and 29.89%, respectively. With the implementation of
the renewable energy incentive policy, solar power generation has been vigorously promoted, and its
proportion in renewable energy consumption has also increased year by year. According to the latest
data published, by the first half year of 2019, the solar power generation has reached 106.7 billion kWh,
which has promoted by 30% compared with that of last year.

4.5. Geothermal, Biomass and Other Energy Consumption Prediction in China

This Section explores the predictions of China’s geothermal, biomass and other energy
consumption. The prediction outcomes of each model and corresponding errors are displayed in
Table A4 of Appendix A. Additionally, the corresponding interval prediction is described in Figure A4
of Appendix A.

From Table A4 and Figure A4, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the geothermal, biomass and other types of energy consumption of China. Compared with
PSO-GPR, GPR and ARIMA, the MSTA-GPR approach has promoted the forecasting accuracy by
1.94%, 20.98% and 67.49%, respectively. The results show that, compared with the other models,
the proposed MSTA-GPR model has better nonlinear feature recognition ability and more effective
parameter optimization ability in small sample data set. The geothermal, biomass and other types of
energy consumption in China have enriched the diversity of the energy supply structure and have
experienced steady development in recent years. For example, biomass power generation has reached
52.9 billion kWh, which has increased 21.3% compared with that of last year.

4.6. Discussion

In contrast with PSO-GPR, GPR and ARIMA, the proposed MSTA-GPR displays a better forecasting
result, owning to the effective parameter optimization of MSTA in hyper parameter selection for
GPR. The forecasting outcomes reveal the changes of future energy consumption development in
China. As obtained from the data in previous sections, the overall renewable energy consumption will
grow at a mean rate of 8.25% during the thirteenth Five-Year Project, and the consumption of China’s
hydroelectricity will slightly grow at a mean rate of 1.60%. Additionally, the mean increase rate for
China’s wind power, solar power and geothermal, biomass and other types of energy consumption are
20.36%, 58.76% and 16.73%, respectively.

As far as we know, with the steady and rapid development of the economy, China’s energy
consumption will maintain a sustained growth momentum in the future. However, China’s energy
consumption system is still dominated by fossil fuels right now. The dependency on fossil fuel
consumption is not sustainable, and serious environmental problems may occur owing to fossil
fuel combustion, such as the greenhouse effect, acid rain, and others. China’s renewable energy
consumption will continue to grow at a steady speed, and the composition of the overall energy
consumption will be more reasonable and balanced along with the application of corresponding
energy policies. The prediction outcomes of this paper can offer useful information for the decision
maker to foresee the future changes of renewable energy development and handle the environmental
pollution problems, which can contribute for a smooth transition towards the 14th Five-Year Project
and sustainable development in the future.
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5. Conclusions

By integrating the modified state transition algorithm into Gaussian process regression, a novel
approach MSTA-GPR is developed to make predictions more effective for China’s renewable energy
consumption. The main contribution of this article is to promote the forecasting performance of GPR
with the application of MSTA in optimal hyper parameter selection. The superiority of MSTA in
global optimization is validated with two well-known functions against the basic STA, GA and PSO.
The suggested MSTA-GPR model is applied with the real data from 2008 to 2015 to make predictions of
renewable energy consumption in China for the first three years of 13th Five-Year Project (2016–2020)
to test the prediction performance.

The suggested approach can be easily applied and proved to be effective for short period prediction
of time series. The forecasting outcomes reveal that compared with PSO-GPR, GPR and ARIMA,
the MAPE of forecasting outcomes obtained by MSTA-GPR is superior to that of the other forecasting
methods. This proves that the proposed MSTA-GPR is a better approach for renewable energy
consumption and the forecasting performance of MSTA-GPR is better than hybrid model PSO-GPR,
the basic GPR, and the traditional time series forecasting method ARIMA. Furthermore, the proposed
MSTA-GPR approach is also supposed to deal with other complicated energy problems with various
influence factors, for instance the price of electricity [46], solar radiation [47], and so on.
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Appendix A

Table A1. Consumption prediction for hydroelectricity of China from 2016 to 2018 (Mtoe).

Year Real
Data

MSTA-GPR PSO-GPR GPR ARIMA
Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 260.96 260.96 0.00 257.65 1.27 261.97 0.39 267.82 2.63
2017 263.63 268.54 1.86 267.27 1.38 272.20 3.25 284.06 7.75
2018 272.08 272.08 0.00 272.08 0.00 277.34 1.93 300.58 10.47

MAPE 0.62 0.88 1.86 6.95

Figure A1. The interval prediction result of MSTA-GPR for China’s hydroelectricity consumption.
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Table A2. Wind power consumption data for China from 2016 to 2018 (Mtoe).

Year Real
Data

MSTA-GPR PSO-GPR GPR ARIMA
Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 53.64 49.81 7.15 49.65 7.45 48.92 8.80 49.03 8.59
2017 66.75 61.32 8.14 60.79 8.94 59.59 10.74 56.28 15.69
2018 82.82 75.42 8.93 74.59 9.94 73.36 11.42 63.72 23.06

MAPE 8.07 8.77 10.32 15.78

Figure A2. The interval prediction result of MSTA-GPR for China’s wind power consumption.

Table A3. Solar power consumption data for China from 2016 to 2018 (Mtoe).

Year Real
Data

MSTA-GPR PSO-GPR GPR ARIMA
Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 13.96 15.40 10.36 15.47 10.84 16.71 19.72 14.60 4.62
2017 26.66 22.58 15.31 22.66 15.00 24.61 7.68 19.56 26.62
2018 40.16 40.16 0.00 40.16 0.00 43.88 9.26 24.73 38.44

MAPE 8.56 8.61 12.21 23.23

Figure A3. The interval prediction result of MSTA-GPR for China’s solar power consumption.
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Table A4. Consumption prediction for geothermal, biomass and other energy from 2016 to 2018 (Mtoe).

Year Real
Data

MSTA-GPR PSO-GPR GPR ARIMA
Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 14.06 14.22 1.13 14.08 0.17 14.36 2.13 13.88 1.28
2017 18.01 16.30 9.48 16.09 10.66 16.54 8.14 15.46 14.16
2018 20.53 20.53 0.00 20.53 0.00 21.18 3.19 16.99 17.22

MAPE 3.54 3.61 4.48 10.89

Figure A4. The interval prediction result of MSTA-GPR for China’s geothermal, biomass and other
energy consumption.
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