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Abstract: Estimation of single-diode and two-diode solar cell parameters by using chaotic optimization
approach (COA) is addressed. The proposed approach is based on the use of experimentally
determined current-voltage (I-V) characteristics. It outperforms a large number of other techniques
in terms of average error between the measured and the estimated I-V values, as well as of time
complexity. Implementation of the proposed approach on the I-V curves measured in laboratory
environment for different values of solar irradiation and temperature prove its applicability in terms
of accuracy, effectiveness and the ease of implementation for a wide range of practical environment
conditions. The COA-based parameter estimation is, therefore, useful for PV power converter
designers who require fast and accurate model for PV cell/module.
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1. Introduction

The contribution of solar energy in total electric energy production is growing constantly. As the
price of solar inverters and solar panels constantly decreases, most countries are basing their energy
policy on higher use of solar energy. Studies on energy networks, and especially testing of the integration
of solar energy sources into power networks, requires accurate calculation of the solar output power,
as well as accurate modeling of solar cells. For that reason, modeling of solar cells (corresponding
equivalent circuit and accurate parameters value) represents a very popular research field.

In the literature, two basic models of the equivalent circuits of solar cell can be found, namely the
single-diode model (SDM) [1] and the double-diode model (DDM) [2]. DDM considers the composite
effect of the neutral region of the junction, and, therefore, models the solar cells more accurately [3].
However, it is characterized by seven unknown parameters. Because of the complexity of DDM,
some authors reduce the number of unknown parameters [3,4], which can greatly affect the model
accuracy [5]. In this work, we focus on both SDM and DDM, without neglecting any of the model
parameters of the solar cell.

For the estimation of solar cell parameters, two main sets of “input data” and corresponding
estimations can be found, namely

(a) estimation based on datasheet information [6,7] and
(b) estimation based on experimental data [8].
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The former uses the datasheet information (open circuit voltage, short circuit current, voltage and
current value at maximum power point characteristics) provided by photovoltaic (PV) manufacturers
under standard test conditions. However, recent research [7] on the usage of datasheet values for
solar cell parameter estimation shows that current-voltage characteristic is not unique when designers
focus on three datasheet points (open circuit, short circuit and maximum power). It is shown that by
observing only three points, we can have multiple I-V characteristics, although in reality a solar cell
has a single defined I-V characteristic corresponding to a specific set of cell parameters. To obtain
unique and accurate I-V characteristic of PV cell, experimental data on more than three major points
are necessary [7]. Research [7] has also implied that only approaches based on experimental data
generate accurate models.

Evaluating the performance of solar cells (or PV panels) requires as accurate an estimation of
the equivalent circuit solar cell parameters as possible. The approaches used for this purpose can be
categorized as follows:

(a) analytical techniques [9–13],
(b) numerical extraction [13] and
(c) meta-heuristic techniques [14–59].

Analytical techniques provide mathematical expressions for solving equivalent circuit parameters
based on some input data (manufacturer data or/and data obtained from measurements). A review
and comparative assessment of non-iterative methods for the extraction of the single-diode model
parameters of photovoltaic modules is given in [11]. In general, analytical techniques provide rapid
solution. On the other hand, these techniques give erroneous results when the estimated and measure
solar cell output characteristics are compared [12].

Numerical techniques are based on curve fitting, usually via iterative methods. However,
the application of curve fitting to nonlinear diode equations is quite complex, making numerical
determination of solar cell parameters unpopular [14].

Recently, meta-heuristic algorithms for solar cell parameter estimation have been proposed [14–58].
They impose no restrictions on the problem formulation, they are excellent in dealing with nonlinear
equations, and they can be applied for different numbers of unknown parameters.

Of all the proposed techniques, none excels in terms of accuracy and efficiency with respect
to others. This was our main incentive for doing research in this field. We propose both accurate
and efficient parameter optimization of solar cell SDM and DDM through chaotic optimization
approach (COA).

Recently, COA has been used in solving various optimization problems: parameter identification
of Jiles-Atherton hysteresis model [59], single-phase transformer parameter estimation [60], design of
PID parameters for automatic voltage regulation of synchronous machine [61], antenna array radiation
pattern synthesis [62,63]. The main advantages of COA over other optimization techniques are easy
implementation and short execution time [64]. It should be noted that different versions of chaotic
algorithm have also been used in solar cell parameters estimation, namely chaotic heterogeneous
comprehensive learning particle swarm optimizer variants [16], chaotic asexual reproduction
optimization [33], mutative-scale parallel chaos optimization algorithm [41], chaos-embedded
gravitational search algorithm [65], chaotic improved artificial bee colony algorithm [66], improved
chaotic whale optimization algorithm [67], etc. Unlike methods proposed in [16,33,41,65–67], this paper
will use COA based on Logistic map for solar cell parameter estimation. Logistic map has a simple
form with one variable and one control parameter, and it can produce chaotic behavior similar to more
complex chaotic systems. [68]. The power of this optimization approach is demonstrated in [60], where
it was used for the estimations of the transformer’s parameters.

The effectiveness of the proposed approach will be evaluated on different solar cells (different with
respect to solar cell voltage and current level) found in the literature and the laboratory environment.
Furthermore, COA-based parameter estimation will be compared with 50 various literature techniques
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for SDM, and with 12 various techniques for DDM. Also, we will compare parameters obtained by using
the proposed method on the measured data with analytically and numerically obtained parameters.
Finally, we will apply COA on the measured I-V characteristics using the laboratory environment.

The paper is organized as follows. SDM and DDM for solar cells are described in Section 2.
In Section 3, COA and its implementation for solar cell parameters estimation are described.
The comparison of solar cell parameters estimation accuracy obtained by using the COA-based
and other methods, for one solar cell and one solar module, is presented in Section 4. The experimental
setup for measuring I-V curves is presented in Section 5, along with the COA-based parameter
estimation results. The concluding remarks are given in Section 6.

2. Mathematical Modeling of Single and Double Solar Cells

SDM is commonly used model for solar cell representation [1], and the equivalent circuit is shown
in Figure 1a. The I-V relationship for this model can be described by the following equation:

I = Ipv − Io

(
e

V+IRs
n·Vth − 1

)
−

V + IRs

Rp
(1)

where Ipv is the photo-generated current, Rs the series parasitic resistance, Rp the parallel parasitic
resistance, I0 the saturation current, n is ideality factor and Vth = kBT/q is the thermal voltage (kB is
Boltzmann constant equal to 1.38 × 10−23 J/K, T the temperature and q the electron charge equal to
1.602 × 10−19 C).
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Figure 1. (a) SDM, and (b) DDM of a solar cell.

The equivalent circuit with DDM for the solar cell is shown in Figure 1b. Therefore, unlike the
SDM model, the DDM model of the solar cell, in addition to the rectifying diode, includes one more
diode to consider the space charge recombination current [48]. The I-V characteristic of DDM is
given as

I = Ipv − Io1

(
e

V+IRs
n1 ·Vth − 1

)
− Io2

(
e

V+IRs
n2 ·Vth − 1

)
−

V + IRs

Rp
(2)

where Io1 and Io2 are the diffusion and saturation currents, whereas n1 and n2 are the diffusion and
recombination diode ideality factors [48]. The ideality factor is discussed in [69,70], whereas [71]
presents a method for ideality factor calculation.

3. COA and Objective Function

COA is a very powerful optimization technique that has found numerous scientific
applications [59–63]. This approach is based on the theory of chaos, which is, in a mathematical sense,
described by ordinary differential equations or by an iterative map [64].

Different chaotic systems, including the logistic map, lozi map, tent map and Lorenz system,
can be found in the literature. In this paper, we will base COA on the logistic map [59–64].

The task of COA is to estimate a set of unknown parameters X which minimizes the objective
function (OF). In our case, for SDM, X = [Rs, Rp, Ipv, Io, n], and for DDM, X = [Rs, Rp, Ipv, Io1, Io2, n1, n2].
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Therefore, in general, vector X = [x1, x2, ... xn] contains variables limited to the lower (LV) and upper
(UV) permitted value, i.e, xi ∈ [Li, Ui]. On the other side, the OF for SDM is

OF =
P∑

t = 1

(
Ipv − Io

(
e

Vt+ItRs
n·Vth − 1

)
−

Vt + ItRs

Rp
− It

)
(3)

whereas for DDM it reads

OF =
P∑

t = 1

(
Ipv − Io1

(
e

Vt+ItRs
n1 ·Vth − 1

)
− Io2

(
e

Vt+ItRs
n2 ·Vth − 1

)
−

Vt + ItRs

Rp
− It

)
(4)

where P is the number of measured I-V pairs from the I-V characteristics, and Vt and It represent the
voltage and current value of pair t.

Figure 2 presents the search procedure, i.e., the COA flowchart. The detailed description of COA
flowchart can be found in [59].
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Figure 2. COA flowchart.

In this paper, the following COA parameters were used: M = 1000, N = 50,000. The COA-based
estimation is compared with other approaches through the root mean square error (RMSE), defined as
follows:

RMSE =

√√√√√ P∑
k = 1

(
Iest,k − Imeas,k

)
P

(5)
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where Iest,k and Imeas,k represent the estimated and the measured values of solar output current in point
k, respectively.

4. Simulation Results

To evaluate COA for solar cell parameters estimation, we first applied the proposed method
to an experimental current-voltage characteristic extracted from the manufacturer’s datasheets of a
well-known R.T.C. France solar cell operating under standard test conditions.

The values of parameters obtained by using COA for the R.T.C. France solar cell are summarized,
by year of publication, in Table 1, for SDM and Table 2 for DDM. These values are compared with the
values of parameters published in recent papers (column Reference) for the same experimental data.
During the estimation process, the parameter ranges for SDM estimation were Rs(Ω) ∈ [0.02, 0.05],
Ipv(A) ∈ [0.74, 0.78], Io(µA) ∈ [0.2, 0.4], Rp(Ω) ∈ [50, 55] and n ∈ [1.35, 1.6], whereas for DDM,
they were Rs(Ω) ∈ [0.02, 0.04], Rp(Ω) ∈ [54, 58], n1 ∈ [1.4, 1.5], n2 ∈ [1.95, 2], Ipv(A) ∈ [0.75, 0.77]
Io1(µA) ∈ [0.2, 0.25] and Io2(µA) ∈ [0.7, 0.8].

Table 1. Calculated SDM parameters for the R.T.C France solar cell.

No. Algorithm Reference First Author, Year Ipv (A) I0 (µA) n Rs (Ω) Rp (Ω) RMSE

Proposed Method—COA 0.7607745 0.3230018 1.4811774 0.0363775 53.73 9.860221 × 10−4

1. HISA * [15] Dhruv, 2019 0.7607078 0.31068459181.47726778 0.03654694 52.88979426 9.8911 × 10−4

2. HCLPSO * [16] Dalia, 2019 0.76079 0.31062 1.4771 0.036548 52.885 1.12009 × 10−3

3. OBWOA * [17] Abd, 2018 0.76077 0.3232 1.5208 0.0363 53.6836 1.1417 × 10−3

4. MPSO * [18] Manel, 2018 0.760787 0.310683 1.475262 0.036546 52.88971 7.33007 × 10−3

5. ER-WCA [19] Kler D, 2017 0.760776 0.322699 1.481080 0.036381 53.69100 9.8609 × 10−4

6 MSSO [20] Lin P, 2017 0.760777 0.323564 1.481244 0.036370 53.742465 1.0599 × 10−3

7 BPFPA * [21] Ram JP, 2017 0.7600 0.3106 1.4774 0.0366 57.7151 1.2536 × 10−3

8 ICA [22] Fathy A, 2017 0.7603 0.14650 1.4421 0.0389 41.1577 1.1582 × 10−1

9 GOTLBO [23] Chen X, 2016 0.760780 0.331552 1.483820 0.036265 54.115426 9.8744 × 10−4

10 CSO [24] Guo L, 2016 0.76078 0.3230 1.48118 0.03638 53.7185 9.8612 × 10−4

11. NM-MPSO [25] Hamid N, 2016 0.76078 0.32306 1.48120 0.03638 53.7222 9.8620 × 10−4

12. PCE [26] Zhang Y, 2016 0.760776 0.323021 1.481074 0.036377 53.718525 1.0606 × 10−3

13. TONG [27] Tong NT, 2016 0.7610 0.3635 1.4935 0.03660 62.574 2.3859 × 10−3

14. MABC [28] Jamadi M, 2016 0.760779 0.321323 1.481385 0.036389 53.39999 2.7610 × 10−3

15. MVO [29] Ali EE, 2016 0.7616 0.32094 1.5252 0.0365 59.5884 1.2680 × 10−1

16. DET [30] Chellaswamy C, 2016 0.751 0.315 1.487 0.036 54.532 2.4481 × 10−2

17. WCA

[31] Jordehi AR, 2016

0.760908 0.4135540 1.504381 0.035363 57.669488 7.6069 × 10−3

18. TLBO 0.760809 0.312244 1.47578 0.036551 52.8405 7.2723 × 10−3

19. GWO 0.760996 0.2430388 1.451219 0.037732 45.116309 7.2845 × 10−3

20. TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644 7.3438 × 10−3

21. PPSO [32] Ma J, 2016 0.7608 0.3230 1.4812 0.0364 53.7185 9.9161 × 10−4

22. CARO [33] Yuan X, 2015 0.76079 0.31724 1.48168 0.03644 53.0893 8.1969 × 10−3

23. LI [34] Lim LHI, 2015 0.7609438 0.3456572 1.48799169 0.03614233 49.482205 1.3462 × 10−3

24. MBA [35] El-Fergany A. 2015 0.7604 0.2348 1.4890 0.0388 44.61 1.1672 × 10−1

25. FPA * [36] Alam DF, 2015 0.76079 0.310677 1.47707 0.0365466 52.8771 1.2121 × 10−3

26. LMSA [37] Dkhichi F, 2014 0.76078 0.31849 1.47976 0.03643 53.32644 9.8649 × 10−4

27. DE
[38] Niu Q, 2014

0.76068 0.35515 1.49080 0.03598 56.5533 1.0035 × 10−3

28. BBO 0.76098 0.86100 1.58742 0.03214 78.8555 2.3929 × 10−3

29. BBO-M 0.76078 0.31874 1.47984 0.03642 53.36227 9.8656 × 10−4

30. STLBO [39] Niu Q, 2014 0.76078 0.32302 1.48114 0.03638 53.7187 9.9763 × 10−4

31. TLBO 0.76074 0.32378 1.48136 0.03641 54.4029 1.0016 × 10−3

32. ABC [40] Oliva D, 2014 0.7608 0.3251 1.4817 0.0364 53.6433 1.0967 × 10−3

33. HPEPD [8] Laudani A, 2014 0.7607884 0.3102482 1.4769641 0.03655304 52.859056 1.1487 × 10−3

34. MPCOA [41] Yuan X, 2014 0.76073 0.32655 1.48168 0.03635 54.6328 2.3131 × 10−3

35. TLBO [42] Patel SJ, 2014 0.7608 0.3223 1.4837 0.0364 53.76027 9.6960 × 10−3

36. BMO [43] Askarzadeh A, 2013 0.76077 0.32479 1.48173 0.03636 53.8716 9.8622 × 10−4

37. ABSO [44] 0.76080 0.30623 1.47583 0.03659 52.2903 9.9125 × 10−4

38. IADE [45] Jiang LL, 2013 0.7607 0.33613 1.4852 0.03621 54.7643 9.9076 × 10−4

39. CS [46] Ma J, 2013 0.7608 0.323 1.4812 0.0364 53.7185 9.9161 × 10−4

40. ABSO

[47] Hachana O, 2013

0.76080 0.30623 1.47986 0.03659 52.2903 1.4169 × 10−2

41. ABCDE 0.76077 0.32302 1.47986 0.03637 53.7185 4.8548 × 10−3

42. DE 0.76077 0.32302 1.48059 0.03637 53.7185 2.3423 × 10−3

43. MPSO 0.76077 0.32302 1.47086 0.03637 53.7185 3.9022 × 10−2

44. GGHS
[48] Askarzadeh A, 2012

0.76092 0.32620 1.48217 0.03631 53.0647 9.9089 × 10−4

45. HS 0.76070 0.30495 1.47538 0.03663 53.5946 9.9515 × 10−4

46. IGHS 0.76077 0.34351 1.48740 0.03613 53.2845 1.0335 × 10−3

47. PS [49] AlHajri MF, 2012 0.7617 0.9980 1.6000 0.0313 64.10256 1.4936 × 10−2

48. SA [50] El-Naggar KM, 2012 0.7620 0.4798 1.5172 0.0345 43.10345 1.8998 × 10−2

49. GA [51] AlRashidi MR, 2011 0.7619 0.8087 1.5751 0.0299 42.37288 1.9078 × 10−2

50. PSO [52] Ye M, 2009 0.760798 0.322721 1.48382 0.0363940 53.7965 9.6545 × 10−3

* for this method, a real RMSE are given [56].
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Table 2. Calculated DDM parameters for the R.T.C France solar cell.

No. Algorithm Ref. First Author,
Year Ipv(A) Io1(µA) Io2(µA) Rs(Ω) Rp(Ω) n1 n2 RMSE

Proposed Method—COA 0.76078105 0.2259742 0.749346 0.03674043 55.4854236 1.45101673 2 9.82484852 ×
10−4

1. GOFPANM [53] X Shuhui, 2017 0.7607811 0.7493476 0.2259743 0.0367404 55.485449 2 1.4510168 9.82485 × 10−4

2. SATLBO [54] Y Kunjie, 2017 0.76078 0.25093 0.545418 0.03663 55.117 1.45982 1.99941 9.82941 × 10−4

3. MSSO [20] P Lin, 2017 0.760748 0.234925 0.671593 0.036688 55.714662 1.454255 1.995305 1.059101 × 10−3

4. WDO [55] M Derick, 2017 0.7606 0.2531 0.0482 0.037433 52.6608 151.162 1.38434 1.095213 × 10−3

5. CSO [24] L Guo, 2016 0.76078 0.22732 0.72785 0.036737 55.3813 1.45151 1.99769 9.82532 × 10−4

6. GOTLBO [23] X Chen, 2016 0.760752 0.800195 0.220462 0.036783 56.0753 1.999973 1.448974 9.83152 × 10−4

7. PCE [26] Y Zhang, 2016 0.760781 0.226015 0.749340 0.03674 55.483160 1.450.923 2 9.8248 × 10−4

8. MABC [28] M Jamadi, 2016 0.7607821 0.24102992 0.6306922 0.03671215 54.7550094 1.4568573 2.0000.538 9.8276 × 10−4

9. FPA [36] DF Alam, 2015 0.760795 0.300088 0.166159 0.0363342 52.3475 1.47477 2 1.24239 × 10−3

10. BMO [43] A. Askarzadeh,
2013 0.76078 0.2111 0.87688 0.03682 558.081 1.44533 1.99.997 9.82661 × 10−4

11. ABSO [44] A. Askarzadeh,
2013 0.73078 0.26713 0.38191 0.03657 54.6219 1.46512 1.98152 9.8359 × 10−04

12. IGHS [48] A. Askarzadeh,
2012 0.76079 0.97310 0.16791 0.03690 56.8368 1.92126 1.42814 9.86572 × 10−4

Tables 1 and 2 report parameters as they appear in the cited papers with no modification. However,
in some papers in the Energy Conversion and Management journal (in Table 1 marked by *), inaccuracies
occurred in parameter estimation of the PV cell using metaheuristic techniques. Namely, the results
proposed in [15–18,21] do not correspond to the objective function [56].

The presented results, especially the value of RMSE, show that COA offers solar characteristics
closer to the measured characteristics than the other existing methods, i.e., it outperforms other methods
in terms of accuracy. In addition, by observing Tables 1 and 2, it is also evident that DDM characterizes
solar cells more accurately than SDM, which supports the conclusion regarding DDM accuracy noted
in [3].

It can be seen that COA outperforms several other techniques, such as evaporation rate-based
water cycle algorithm (ER-WPA) [19] and cat swarm optimization (CSO) [24] for SDM, and with the
generalized opposition-flower pollination algorithm-nelder-mead simplex method (GOFPANM) [53],
by a small margin. However, the implementation of COA is simpler than implementation of ER-WPA,
CSO and GOFPANM. Furthermore, COA is computationally less demanding than CSO since CSO
requires changing the operation mode during the estimation process [24]. On the other side, GOFPANM
is a hybrid algorithm which combines local and global search as well as different algorithms during
estimation [53]. In general, most evolutionary algorithms have the complexity of O((np + Cof p)Ni),
where O is the big O notation, n is the dimension of the parameter space, p is the population size, Ni is
the number of iterations and Cof is the complexity of the OF. The complexity of COA is O(QCof), where
Q is the number of points in the parameter space in which the OF is calculated. Therefore, the proposed
COA-based estimation has significantly lower computational complexity than evolutionary algorithms.

To show the additional advantage of COA over other techniques, we conducted a comparison in
terms of required time for one iteration. In that sense, in MATLAB 2015 (MathWorks, Natick, MA,
USA) we have implemented the following algorithms for solar cell parameter estimation: evaporation
rate-based water cycle algorithm (ER-WCA) [19], cuckoo search (CS) [46] and harmony search (HS) [48].
ER-WCA algorithm has a very good accuracy, very close to that obtained by the proposed method
(see Table 1). On the other hand, HS and CS also have a good accuracy (~10−4). All computer
simulations were carried out on a PC with Intel(R) Core (TM) i3-7020U CPU @ 2.30 GHz and 4 GB RAM.
The obtained results, i.e., the mean, maximal and minimal required time per one iteration, obtained
over 20 runs, are presented in Table 3. Clearly, the COA-based algorithm is the most efficient method,
as it is characterized by the lowest value of required time per iteration. Note, in order to draw a fair
comparison between the considered algorithms, MATLAB implementation follows the same rules
for each algorithm (e.g., avoiding loops and using array operations such as dot product and matrix
product whenever possible).
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Table 3. Time per iteration comparison.

Algorithm Mean Value of
Requested Time (s)

Maximal Value of
Requested Time (s)

Minimal Value of
Requested Time (s)

COA 0.016416 0.017023 0.015871
ER-WCA [19] 0.021063 0.024145 0.019492

CS [46] 0.029179 0.037177 0.027130
HS [48] 0.021103 0.023264 0.020393

The measured I-V and P-V characteristics and the corresponding simulated characteristics,
for parameters obtained by using COA, are shown in Figure 3. Very good agreement can be seen
between the measured and estimated curves. Also, the difference between the DDM and SDM
simulated curves is small but consistent and always in favor of DDM. In addition, in Table 4,
we presented the estimated value of the unknown DDM parameters of the BPSolar MSX-60 module.
These parameters are obtained by using COA as well as by using analytical, numerical, iteration and
Newton methods presented in the literature. In the COA-based estimation, the ranges of parameters
were Rs(Ω) ∈ [0.2 0.4], Rp(Ω) ∈ [150, 300], n1 ∈ [0.5, 1.5], Ipv(A) ∈ [3.5, 4], Io1(A) ∈

[
10−10, 10−6

]
,

Io2(A) ∈
[
10−10, 10−6

]
, and n2 ∈ [1.5, 2]. From the presented results, it is clear that COA outperforms

the considered non-metaheuristic methods for solar cell parameters determination in terms of accuracy.
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Table 4. Calculated DDM parameters for the BPSolar MSX-60 module.

Parameter Analytical
Method [13]

Numerical
Method [13]

Iteration
Method [57]

Newton
Method [58] COA

Ipv (A) 3.8752 3.8046 3.8 3.8084 3.8418
Io1 (A) 3.6129 × 10−10 3.9901 × 10−10 4.704 × 10−10 4.8723 × 10−10 4.95821 × 10−8

Io2 (A) 9.3773 × 10−6 4.033 × 10−6 4.704 × 10−10 6.1528 × 10−10 9.54961 × 10−9

Rs (Ω) 0.3084 0.3397 0.35 0.3692 0.2495
Rp (Ω) 280.6449 280.2171 176.4 169.0471 267.57
n1 1 0.99859 1 1.0003 1.2569
n2 2 2.0014 1.2 1.9997 1.9345
RMSE 0.0358 0.0517 0.1211 0.1636 0.0194

The measured and corresponding simulated I-V and P-V characteristics, for parameters obtained
by using COA and other methods, are shown in Figures 4 and 5, respectively. It is evident that COA
outperforms the other methods in terms of approaching the measured characteristics.
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Figure 5. P-V characteristics of BPSolar MSX-60 module.

Based on all of the presented results, it can be concluded that COA can precisely estimate the
solar cell/module circuit parameters, outperforming the other metaheuristics as well as analytical or
numerical methods in terms of estimation accuracy.

5. Experimental Results and Analysis

To check the applicability and efficiency of COA for solar cell parameter estimation, we also
observed solar cells from the Clean Energy Trainer setup. The main motivation to use these solar
modules is that this setup enables adjustable solar insolation, USB data monitoring for PC-supported
data acquisition and analysis, as well as highly advanced didactic software for system control and
real-time data plotting.

The observed system contains of:

1. two solar modules and one module: 4 solar cells, 400 mW, 2 V, 0.5 A,
2. TES 1333R data logging Solar power meter—instrument with range of 2000 W/m2, high resolution

(0.1 W/m2), and wide spectral resolution (400–1100 nm), etc.
3. lamp—special double spotlight lamp that simulates sunlight. It provides the optimal light

spectrum for the solar module.
4. USB Data Monitor—used for data acquisition. Also, it is connected to the computer and software

through the USB port.
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5. load—simulates electric consumer load.
6. software—designed to facilitate system control, parameter monitoring, data acquisition and

graphical representation of the collected data.

The experimental setup, installed in Laboratory for Automatics, at the Faculty of Electrical
engineering, University of Montenegro, is presented in Figure 6.
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Figure 6. Experimental setup.

Firstly, we measured the I-V characteristics for insolation of 1285 W/m2 and temperature of
42 ◦C. For the measured I-V pairs, we determined single and double diode solar cell parameters (see
Table 5). The parameter ranges for SDM estimation were Rs(Ω) ∈ [0.1, 0.4], Ipv(A) ∈ [0.2, 0.4], Io(A) ∈[
5× 10−8, 15×10−8

]
, Rp(Ω) ∈ [200, 600] and n ∈ [0.2, 1], whereas for DDM were Rs(Ω) ∈ [0.1, 0.4],

Rp(Ω) ∈ [600, 900], n1 ∈ [0.2, 1], n2 ∈ [1.95, 2], Ipv(A) ∈ [0.2, 0.4], Io1(A) ∈
[
5× 10−8, 15×10−8

]
,

and Io2(A) ∈
[
5× 10−8, 15×10−8

]
. Then we measured the I-V and P-V characteristics for different

values of insolation and temperature. The corresponding simulated characteristics were determined by
taking into account the change of parameters with insolation and temperature (see [13]). The measured
and estimated I-V and P-V characteristics for different values of insolation and temperature are
presented in Figures 7–10. The agreement between the measured and estimated characteristics is
evident (see zoomed parts in these figures). Finally, we repeated the estimation procedure on all
measured I-V characteristics. The estimated values of parameters were in range of ±4% of the initially
observed, which confirms that we can use any of the measured characteristics for parameter estimation.
On the other hand, by observing the data provided in Table 5, even for this module, it is evident that
DDM is more accurate than SDM.

Table 5. Estimated value of experimentally tested solar module parameters.

SDM DDM

Rs (Ω) 0.2283 Rs (Ω) 0.2513
Rsh (Ω) 439.55 Rsh (Ω) 782.9911
Io (A) 10.56 × 10−8 Io1 (A) 6.8452 × 10−8

Ipv (A) 0.2987 n1 0.3342
n 0.3441 Ipv (A) 0.2972

RMSE 4.3418 × 10−4
Io2 (A) 6.0643 × 10−8

n2 1.9906
RMSE 4.146 × 10−4



Energies 2019, 12, 4209 10 of 14

Energies 2019, 12, 4209 11 of 15 

 

other hand, by observing the data provided in Table 5, even for this module, it is evident that DDM 

is more accurate than SDM. 

 

Figure 7. Current-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

 

Figure 8. Power-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

Figure 9. Current-voltage characteristics for two different temperatures and insolation values. 

Figure 7. Current-voltage characteristics for two different insolation values and for temperature
T = 42 ◦C.

Energies 2019, 12, 4209 11 of 15 

 

other hand, by observing the data provided in Table 5, even for this module, it is evident that DDM 

is more accurate than SDM. 

 

Figure 7. Current-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

 

Figure 8. Power-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

Figure 9. Current-voltage characteristics for two different temperatures and insolation values. 

Figure 8. Power-voltage characteristics for two different insolation values and for temperature T = 42 ◦C.

Energies 2019, 12, 4209 11 of 15 

 

other hand, by observing the data provided in Table 5, even for this module, it is evident that DDM 

is more accurate than SDM. 

 

Figure 7. Current-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

 

Figure 8. Power-voltage characteristics for two different insolation values and for temperature T = 42 °C. 

 

Figure 9. Current-voltage characteristics for two different temperatures and insolation values. 
Figure 9. Current-voltage characteristics for two different temperatures and insolation values.



Energies 2019, 12, 4209 11 of 14

Energies 2019, 12, 4209 12 of 15 

 

Table 5. Estimated value of experimentally tested solar module parameters. 

SDM DDM 

Rs (Ω) 0.2283 Rs (Ω) 0.2513 

Rsh (Ω) 439.55 Rsh (Ω) 782.9911 

Io (A) 10.56∙× 10−8 Io1 (A) 6.8452∙× 10−8 

Ipv (A) 0.2987 n1 0.3342 

n 0.3441 Ipv (A) 0.2972 

RMSE 4.3418∙× 10−4 

Io2 (A) 6.0643∙× 10−8 

n2 1.9906 

RMSE 4.146∙× 10−4 

 

Figure 10. Power-voltage characteristics for two different temperatures and insolation values. 

6. Conclusion 

Modeling of solar cells is a very popular research direction, which is supported by numerous 

recent contributions in the literature. This paper proposes COA as a very successful approach for this 

purpose. 

The proposed method is verified using practical data from various manufacturers. Its accuracy 

is confirmed by comparing its RMSE with numerous metaheuristics and non-metaheuristics methods 

for different solar cells. Experimental testing of COA applicability for parameter estimation is also 

implemented in laboratory environment. In all considered scenarios, a high level of accuracy is 

demonstrated. Apart from this, excellent matching of the simulated I-V and P-V curves with the 

measured characteristics additionally confirms the COA accuracy and its applicability for parameter 

estimation.  

In future work, our attention will be focused on the usage of COA for estimation of solar cell 

parameters when solar cell output current is represented through the Lambert W function.  

Author Contributions: Conceptualization, M.Ć. and S.Đ.; Methodology, M.Ć.; software, D.J. and V.R.; 

validation, V.R and M.Ć., formal analysis, S.M.; investigation, M.Ć., V.R and S.Đ.; resources, S.M.; writing—

original draft preparation, M.Ć. and S. Đ.; writing—review and editing, S.Đ.; visualization, D.J.; supervision, 

M.Ć.  

Acknowledgement: This work has been supported through European Union’s Horizon 2020 research and 

innovation program under project CROSSBOW-CROSS BOrder management of variable renewable energies and 

storage units enabling a transnational Wholesale market (Grant No. 773430). 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 10. Power-voltage characteristics for two different temperatures and insolation values.

6. Conclusions

Modeling of solar cells is a very popular research direction, which is supported by numerous
recent contributions in the literature. This paper proposes COA as a very successful approach for
this purpose.

The proposed method is verified using practical data from various manufacturers. Its accuracy is
confirmed by comparing its RMSE with numerous metaheuristics and non-metaheuristics methods
for different solar cells. Experimental testing of COA applicability for parameter estimation is
also implemented in laboratory environment. In all considered scenarios, a high level of accuracy
is demonstrated. Apart from this, excellent matching of the simulated I-V and P-V curves with
the measured characteristics additionally confirms the COA accuracy and its applicability for
parameter estimation.

In future work, our attention will be focused on the usage of COA for estimation of solar cell
parameters when solar cell output current is represented through the Lambert W function.
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