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Abstract: When electric multiple units (EMU) pass the neutral zone, the traction transformer may
generate sympathetic inrush, which will cause a malfunction in the transformer differential protection.
In order to study the mechanism of the sympathetic inrush of the cascaded traction transformer, the
flux–current model of the transformer, line impedance, power system voltage source, and other loads
was established. On the basis of the flux–current circuit model, the influence of different factors on
the sympathetic inrush of the traction transformer was analyzed. The analysis results were verified
by simulation. Research results show that the remanence, closing angle, line impedance, and load
will affect the duration and amplitude of the sympathetic inrush.

Keywords: traction network; sympathetic inrush; cascaded transformer; transformer saturation;
flux–current circuit model

1. Introduction

In order to ensure the reliability and flexibility of power supply, the electrified railway traction
power supply system generally adopts partition power supply [1,2]. There is no power zone between
different power supply arms. When the EMU passes the electric phase separation, the locomotive
transformer will perform the opening and closing operations in sequence. Moreover, when the
locomotive transformer is restored to power, inrush current may occur [3,4].The inrush current
generated by the closing transformer will lead to the sympathetic inrush generated by the traction
transformer in the same power supply area, which is the main cause of differential protection errors in
traction transformers [5–8].

Many scholars at home and abroad have done a lot of research on the mechanism analysis
and influencing factors of sympathetic inrush and inrush current. These studies were carried out
on the basis of the T-type equivalent model [9–13]. First, the equivalent model of the transformer
was established, and then the generation of the inrush current was analyzed. It is believed that the
sympathetic inrush is mainly caused by the non-periodic fluctuation of the voltage on the common
node caused by the non-periodic component in the inrush current of the adjacent transformer flowing
through the system resistance. The authors in [14,15] compared and analyzed the structure of parallel
transformers and cascade transformers. It is considered that parallel transformers are more likely
to generate and inrush currents because of its smaller parameters. It must be pointed out that the
T-equivalent circuit is based on Kirchhoff’s law, and the voltage and current on the secondary side of
the transformer are converted to the primary side [16,17]. Therefore, it does not reflect the internal
magnetic variables of the transformer. The model does not contain information such as transformer
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geometry parameters and topology structure, and does not reflect information such as magnetic flux
and flux density at various locations within the core. The T type equivalent model is unable to directly
reflect the impact of remanence, line impedance, over-phase closing phase angle, transformer capacity,
and load conditions [18,19]. Therefore, it is necessary to build a new model that can research the
mechanism of sympathetic inrush and its impacts.

Some scholars have focused on the sympathetic inrush of two or more EMU transformers, which
are connected in parallel. Studies in [20,21] analyzed the parallel connection of multiple electric
locomotive transformers, which work simultaneously under the same power supply arm, while [22,23]
analyzed the effects of locomotives at different locations and directions of travel on the sympathetic
inrush. During the analysis, they supposed that the voltage of the catenary was a fixed value [24,25].
That is to say, they ignored the fluctuation of the traction network voltage. The analysis of the
sympathetic inrush in [26,27] was based on the case where the capacity of the EMU transformer and
the traction transformer was not very different. When the closing of the EMU transformer generates
6–8 times of inrush current, its influence on the traction transformer is not negligible [28]. Therefore,
it is necessary to research the inrush current of the cascaded traction transformer and analyze the
influence of various factors on the duration and amplitude of the sympathetic inrush.

This paper presents a method for analyzing the sympathetic inrush of a traction network cascade
transformer based on the flux–current circuit model. First, the flux–current model of the transformer,
line impedance, power system voltage source, and other loads was established. Then, the flux–current
circuit model of the traction network was formed. On the basis of the flux–current circuit model, we
analyzed the causes of the sympathetic inrush as well as the effects of remanence, over-phase closing
phase angle, line impedance, and load conditions on the magnitude and duration of the sympathetic
inrush. The analysis results were verified by simulation. The rest of this paper is organized as follows.
Section 2 presents the modeling of the flux–current mode, Section 3 presents the analysis of the
mechanism and the impacts. Section 4 details the simulation and analysis, and Section 5 presents
our conclusions.

2. Modeling of the Flux–Current Model

The traction supply system shown in Figure 1 includes the public power grid, traction transformer,
traction network, partitions, EMU1 and EMUs, where EMU1 passes through neutral devices and EMUs
travel at a constant speed.

Figure 1. Supply system.

When the EMU1 passes no power zone, the transformer of EMU1 will perform the opening and
closing operations in sequence, which will last several seconds. Then, we can use the timed logic
switch to simulate the process. Furthermore, when we investigated the EMU1 passing through neutral
devices, the EMUs can be regarded as a constant power load. Therefore, the simplified circuit of the
traction supply system is shown in Figure 2:
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Figure 2. Simplified circuit of the traction supply system.

Next, the flux–current model of the main elements will be built in this part, which include
transformers (containing traction transformer and EMU transformer), line impedance (containing
power system line impedance, and traction electric network line impedance), power system voltage
source, and other loads.

2.1. Transformers

Both the EMU transformer and the traction transformer are magneto electric conversion elements.
Take the traction transformer as an example of establishing its flux–current circuit model. As shown in
Figure 3a below, the relationship curve between the flux and exciting current of the transformer had
hysteretic and saturation characteristics. Figure 3a can be linearized, as shown in Figure 3b. The curve
is divided into three sections. When the range of the exciting current IST is in the range of −IkST and
IkST, the transformer works in the linear area. Meanwhile, when the exciting current IST is less than
−IkST or greater than IkST, the transformer works in the saturation area.

Figure 3. Relationship of the transformer flux-exciting current. (a) Transformer flux-exciting current
curve; (b) Transformer flux-exciting current curve after piece-wise linearization.

Furthermore, Figure 3b can also be described as follows.

ΦST =


LkST

(
IST +

ΦkST
LmST

)
−ΦkST (ΦST ≤ −ΦkST)

LmSTIST (−ΦkST < ΦST < ΦkST)

LkST
(
IST −

ΦkST
LmST

)
+ ΦkST (ΦST ≥ ΦkST)

(1)

where ΦST is the flux of the traction transformer; ΦkST is the forward flux saturation threshold, and
−ΦkST is the negative flux saturation threshold; IST is the critical saturation current; LmST and LkST are
the equivalent inductors in the linear and nonlinear regions, respectively.

Equation (1) can also be described as an equivalent circuit, as shown is Figure 4, which points
out the relationship between the transformer flux and exciting current. The equivalent circuit is the
flux–current circuit model of the transformer.



Energies 2019, 12, 4210 4 of 15

Figure 4. Flux–current circuit model of the transformer.

As EMU1 passes neutral devices, the EMU1 transformer carries no load, so its exciting current is
only provided by the primary winding. Its primary winding current is its exciting current. However,
the traction transformer usually carries loads, whose exciting current is provided by the primary
winding current and the secondary winding current. Therefore, it is necessary to compute the exciting
current, as shown below.

NST1is + NST2ioh = NST1iaST (2)

where NST1 is the turns of primary side and NST2 is the turns of the secondary side winding of the
traction transformer; is is the winding current of primary side; ioh is the winding current of secondary
side; and iaST is the traction transformer excitation current.

The voltage and current of the secondary side of the traction transformer can be converted to the
primary side of the traction transformer, as shown in the following formula.

ioh
∗ = −ioh

NST1
NST2

ioh =
uST2
ZST2

ioh
∗ =

uST1
ZST2

∗

uST1
uST2

=
NST1
NST2

(3)

where ioh is the secondary side current of traction transformer; ioh
∗ is the equivalent current, which

is converted from the secondary side of the traction transformer to the primary side; ZST2 is the
secondary side impedance of the traction transformer including traction network impedance Zoh and
electric locomotive equivalent effect impedance; UST1 and UST2 are the primary side and secondary
side voltages of the traction transformer, respectively; and ZST2

∗ is the equivalent impedance after
converting all the secondary side impedance to the primary side.

In order to facilitate writing, the following secondary side resistance was switched to the primary
side without adding ∗.

2.2. Line Impedance Components

This part builds the flux–current model of line impedance. The line impedance contains line
resistance and line inductance.

According to Ohm’s law, the relationship between the voltage at both ends of the resistance and
the current passing current is shown in the following formula.

uR = RiR (4)

If the initial state of the resistance is not taken into account, then the Equation (4) integral can
be obtained

ΦR(t) = R

t∫
0

iR(t)dt (5)

where ΦR is the equivalent flux of R.
From Equation (5), we can see that the resistance has the characteristics of a “magnetic trap” in

the flux–current circuit. That is to say, the resistance captures the DC magnetic bias and converts it
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into equivalent flux through energy consumption. Equation (5) is formally similar to the relationship
between the voltage and current at both ends of capacitance. We might as well use the capacitance
symbol in the circuit to represent the resistance in the “flux–current” circuit, which is shown in Table 1.

Table 1. Symbolic representation of elements in the “voltage-circuit” circuit in the “flux–current” circuit.

Components in the “Voltage–current” Circuit In the “Flux–Current” Circuit Representation

Voltage source AC Quasi-power symbol
Resistance Quasi-Capacity symbol
Inductance Quasi-Resistance symbol

Note: In order to distinguish the symbol in the voltage–current circuit, all flux–current circuit elements are framed,
and named as “quasi”.

For inductance, the relationship between the voltage and the current is shown in the
following formula.

uL = L
diL
dt

(6)

If we do not take account of the initial state of the inductor, the Equation (6) integral is obtained.

ΦL(t) =
∫ t

0
uLdt = LiL (7)

where ΦL is the equivalent flux of L.
By observing Equation (7), it can be seen that the flux of the inductance is proportional to the

current flowing through the inductance. It can be seen that the inductance has the characteristics of
“damping” in the “flux–current” circuit. We might as well use the resistance symbol in the circuit to
represent the inductance in the “flux–current” circuit, as shown in Table 1.

2.3. Power System Voltage Source

The voltage source includes an AC source and DC source, which can be expressed as Equation (8).
When ω = 100π, the following formula represents the 50 HZ AC source.

us = A cos(ωt) (8)

If the initial state of the power supply is not taken into account, the upper formula integral
is obtained.

Φs =

∫ t

0
A cos(ωt)dt =

A
ω

sin(ωt) (9)

where ΦS is the equivalent flux of the voltage source.
According to Equation (9), the flux–current model of the voltage is still a sine function. We can

use the power symbol in the voltage–current loop to represent the power supply in the “flux–current”
circuit model, as depicted in Table 1.

2.4. Transformer with Load

When analyzing the process of EMU1 passing through neutral devices, other EMUs can be
represented by controlling the current source. The flux–current circuit model of other loads is described
built in this section.

When EMUs ride in uniform speed, they can be looked on as constant power load (CPL). The
modeling process of constant power load is as follows.

P = P0·

(
U
U0

)MP

(10)
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where MP = 0. P is the real time power of the load;P0 is the initial power of the load;U is the real time
voltage of the load; and U0 is the initial voltage of the load.

Through the Taylor expansion, the equation can be written as follows.

∆I ≈ P0·(MP− 1)·∆U (11)

When MP = 0, the load is the constant power load (CPL), and the formula can be written
as follows.

∆I ≈ −P0 · ∆U (12)

where ∆I has a reverse positive proportional relationship with ∆U.
The load can be described as the formula below.

I =
P0

Φ′E0
−

(
Φ′E −Φ′E0

)
·P0 (13)

Thus, the flux–current circuit model of other EMUs is as shown in Figure 5.

Figure 5. The flux–current circuit model of other EMUs.

After building the flux–current circuit model of each element of the traction supply system, the
flux–current circuit model of traction supply system is as follows.

In the Figure 6, Φs is the flux–current model of the public power grid; Zs is the flux–current
model of the impedance between the public power grid and the traction transformer,ΦST is the
flux–current model of the traction transformer; Zoh1

∗ is the flux–current model of the impedance from
the transformer of the over-phase locomotive to the traction transformer; ΦT is the transient magnetic
flux; ΦE is the flux–current model of the over-phase transformer; Zoh2

∗ is the flux–current model of
the impedance between other locomotive transformers under the same power supply arm and the
traction transformer; and CPL is the flux–current model of other locomotive transformers under the
same power supply arm.

Figure 6. The flux–current circuit model of the traction network–EMU coupling system.

3. Analysis of the Mechanism and the Impacts

The characteristics of sympathetic inrush are mainly reflected in amplitude and duration. This
section will analyze the influence of remanence and the over-phase switching angle, line impedance
components, transformer capacity, and transformer with loads on sympathetic inrush from the
perspective of magnetic flux. According to Figure 6, the magnetic flux of the traction transformer is
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superimposed by the steady-state magnetic flux corresponding to the power supply and the transient
magnetic flux corresponding to the closing moment, and its value satisfies the following equation:

ΦST = ΦS + ΦT (14)

where ΦS is the steady-state magnetic flux and ΦT is the transient magnetic flux.
The flux–current circuit model of the traction transformer consists of three branches. When

the traction transformer works normally, only linear branch #1 is turned on; in the case of forward
saturation or negative saturation, #2 or #3 is turned on while keeping #1 turned on. Due to the
conduction of #2 or #3, the equivalent impedance of the traction transformer is reduced, so the traction
transformer generates sympathetic inrush with a maximum amplitude. The influences of remanence,
over-phase switching angle, line impedance components, transformer capacity, and transformer with
load condition on sympathetic inrush will be analyzed one by one.

3.1. Remanence and Over-Phase Switching Angle

The relationship between the remanence, over-phase switching angle, and the transient flux is
given in Equation (15) and the detailed derivation process can be found in [15]. On the basis of this, we
drew a three-dimensional graph, which is shown in Figure 7. It can be seen from the figure that if
the remanence remains unchanged, the transient magnetic flux exhibits a cosine law change with the
switching angle, the transient flux increases and then decreases in the range of 0 to 2π, and reaches
the maximum value when the switching angle is 0. If the switching angle remains unchanged, the
transient flux and remanence show a linear relationship, that is, in the interval of −1 to 1, the transient
magnetic flux increases with the increase of remanence; the transient flux varies from −2 to 2 under the
combined action of remanence and over phase switching angle.

ΦT0 = Φ0−
ET −Φ0+

ET = ΦET cosθV0 −ΦR (15)

where ΦT0 is the transient flux at closing moment; ΦET is the amplitude of the steady-state flux; ΦR is
remanence; and θV0 is the switching angle.

Figure 7. Transient flux of the traction transformer affected by remanence and switching angle.

As a DC excitation source, the transient magnetic flux transfers the magnetic flux to
ZS and Zoh1 continuously. After the balance, the DC flux on both sides of ZS and Zoh1 satisfies
the following relationship.

ΦZs + ΦZoh1 = ΦT0 (16)

It is necessary to point out that the allocation of ΦZs and ΦZoh1 is only related to the line and
transformer parameters. That is to say, the value of ΦZs

ΦZoh1
will not change when the parameters of the

line and transformer remain unchanged. Therefore, the transient magnetic flux on both sides of the
traction transformer is shown in the following formula.

ΦT = k (θV0, t) ΦT0 (17)
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Based on Equations (15) and (17), the relationship between transient magnetic flux, closing angle,
and remanence of the traction transformer can be obtained as shown in Figure 7.

According to Figure 7, the transient flux ΦT0 of the traction transformer is related to phase angle
θV0 and remanence ΦR. If we keep θV0 constant, then |ΦT0| is proportional to |ΦR|. The bigger the
|ΦR|, the bigger the |ΦT0|; if ΦR remains unchanged, ΦT0 and θV0 are cosine functions. The magnetic
flux of the traction transformer is superimposed by the steady-state magnetic flux and the transient
magnetic flux, which are independent of each other after over-phase closing. For the transformer, the
saturation threshold generally has a margin of about 15%. Therefore, if the saturation threshold is
exceeded under the combined action of the remanence and the over-phase switching angle, the traction
transformer will generate sympathetic inrush. If the leakage inductance and winding impedance of the
transformer are neglected, the relationship between sympathetic inrush and magnetic flux is shown as
in Equation (18).

iaST =
ΦkST
LmST

+
ΦST −ΦkST

LkST
(18)

When the traction transformer is saturated, its equivalent inductance value is sharply reduced
to less than half of the normal value, and its magnetic flux is about three times of the normal value.
Under the combined action of these two factors, the inrush current should reach 6–8 times that of the
normal current.

3.2. Line Impedance Components

According to the flux–current circuit model of the traction supply system shown in Figure 6,
the line impedance has a “magnetic trap” characteristic, which is similar to the “electricity-storage”
characteristic of capacitance in the circuit. This section will analyze the influence of line impedance on
sympathetic inrush by analogy.

The line impedance of the traction network shown above is similar to the RC circuit and its time
constant is τ = Loh

Roh
.

The saturation flux of the traction transformer is set as ΦkST. The magnetic flux of the traction
transformer at the moment of passing through phase is ΦST0. The attenuation time of the sympathetic
inrush is t, so we can obtain the following equation:

ΦST0 −ΦkST = ΦST0
(
1− e−

t
τ

)
(19)

which is solved by Equation (20), then we can get

t = τ ln
(

ΦST0

ΦST0 −ΦkST

)
(20)

where ΦkST ≤ ΦST0.
If the saturation threshold of the traction transformer and the flux of the EMU transformer remain

unchanged at the moment of passing phase, the decay time of the sympathetic inrush is proportional
to τ. Thus, the line impedance angle of the traction network line can be expressed as:

θZoh = arctan (
Loh
Roh

) = arctanτ (21)

Therefore, the decay time of sympathetic inrush increases monotonically with the increase in
the impedance angle. Since the impedance of the traction transformer is inductive, when the electric
locomotive gradually moves from the far end of the traction network to the traction substation, the
equivalent impedance angle of the contact line will increase, and the decay time of the sympathetic
inrush will change, as shown in Figure 8.
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Figure 8. Effect of the line impedance angle on the duration of the sympathetic inrush.

3.3. Traction Transformer Capacitance

Electric locomotives will go through different traction substations during operation. The
transformer capacity of different traction substations is not the same, so the amplitude of the sympathetic
inrush is not the same. For the same type of transformer, the capacity of a transformer is proportional
to the magnetic flux, that is, when the transformer capacity is large, the critical saturation flux is also
large. The relationship between the critical saturation flux and the current is as follows.

iaST =
ΦkST
LmST

+
ΦmaxST −ΦkST

LkST
(22)

where ΦmaxST is the maximum flux in over-phase process.
Generally speaking, LmST � LkST. According to Equation (22), if ΦmaxST remains unchanged, the

smaller the critical flux, the smaller the transformer capacity, and the greater the sympathetic inrush
amplitude.As shown in Figure 9.

Figure 9. The relationship between the sympathetic inrush amplitude and the capacity of the
traction transformer.

The “magnetization” time required from the moment of the excessive phase to the maximum of the
sympathetic inrush is shown in Equation (23). It can be concluded that the smaller the critical saturation
flux, the smaller the transformer capacity, and the shorter the time required for the sympathetic inrush
to reach the maximum amplitude.

t = τ ln
(

ΦSTmax

ΦSTmax −ΦSTk

)
(23)

3.4. Transformer with Load

For the traction transformer on the same supply arm, the power supply is not only for EMU1 in
the over-phase, but also for EMUs in running. According to Figure 6, the traction transformer flux
satisfies the following equation.

ΦST = LST(iEMU1 + niEMUS) (24)

Therefore, we can obtain the relationship between the magnetic flux of the traction transformer
and the current of EMU1 and EMUs, which is shown in Figure 10.



Energies 2019, 12, 4210 10 of 15

Figure 10. The relationship between the magnetic flux of the traction transformer and the current of
EMU1 and EMUs.

According to Figure 10, the magnetic flux of the traction transformer is related to the current of
the EMU1 and EMUs. If the current of EMU1 remains unchanged, as the current of the EMUs increases
in the positive or negative direction, the traction transformer will exceed the saturation threshold and
enter the saturation zone, thus leading to the generation of the sympathetic inrush. Moreover, the larger
the current amplitude of the EMUs, the easier it is for the traction transformer to become saturated.

4. Simulation and Analysis

The flux–current circuit model of the traction supply system is shown in Figure 6. The simulation
model was built by MATLAB, then we analyzed the mechanism of sympathetic inrush and the influence
of different factors. The simulation parameters are as follows. The Line parameters shown in Table 2
were from the measured data of a high-speed railway, the traction transformer data in Table 3 were
from [14], and the EMU data in Table 4 were from the measured data of the traction substations of a
high-speed railway.

Table 2. Line parameters.

Parameters Value

The equivalent impedance of power grid to traction network 0.47 + j 0.85 Ω/km
Contact line length 25 km

Contact line impedances 0.15 + j 0.85 Ω/km

Table 3. Traction transformer parameters.

Parameters Value

Primary side voltage 220 kV
Secondary side voltage 25 kV

Slope of the saturation area 0.35
Frequency 50 Hz
Capacity 31.5 MW

Mutual impedance 0.08 + j 2.1 Ω
Self-impedance 0.02 + j 0.8 Ω

Table 4. EMU transformer parameters.

Parameters Value

Primary side voltage 25 kV
Secondary side voltage 15 kV

Slope of the saturation area 0.8
Frequency 50 Hz
Capacity 22 MW

Mutual impedance 0.04 + j 4.1 Ω
Self-impedance 0.02 + j 1.5 Ω



Energies 2019, 12, 4210 11 of 15

This section analyzes the mechanism of sympathetic inrush and its impacts, which is as follows.
During the simulation, the current is uniformly converted to the primary side of the traction transformer.

4.1. Impact of Remanence and Switching Angle

The relationship between the remanence, switching angle, and transient flux is as shown
in Equation (16). The change of remanence and switching angle will cause the change in the
transient magnetic flux, and finally cause the traction transformer to be saturated, and then generate
sympathetic inrush.

This section will analyze the characteristics of sympathetic inrush under different transient
magnetic flux. The transient flux ΦT was set as 0, 0.3, or 0.7 (p.u.), respectively. The simulation
waveform is shown below.

According to Figure 11, with the increase of transient flux, the amplitude of sympathetic inrush
increases and the generation time of sympathetic inrush is advanced, which is consistent with the
conclusion in the previous section.

Figure 11. Sympathetic inrush under different transient flux conditions.

4.2. Impact of Line Impedance

The effect of line impedance on traction transformer sympathetic inrush was deduced in the
previous section. The impedance angle was different, and the decay time of the sympathetic inrush
was also different, and the smaller the impedance angle, the faster the attenuation will be. This section
describes the simulation verification of this conclusion. The impedance of the traction network was
set as 0.1 + j 0.35 Ω, 0.12 + j 0.55 Ω, 0.15 + j 0.85 Ω, respectively. The simulation waveform is shown
below in Figure 12.

According to Figure 12, as the impedance angle increases, the generation time of the sympathetic
inrush will gradually be pushed back, but the amplitude of the sympathetic inrush will always remain
around 400 A.
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Figure 12. Sympathetic inrush under different line impedance conditions.

4.3. Impact of Traction Transformer Capacity

In the previous section, the influence of the capacity of the traction transformer on the traction
transformer sympathetic inrush was deduced, and a conclusion was drawn that the smaller the capacity
of traction transformer, the greater the sympathetic inrush amplitude, and the earlier the time that the
sympathetic inrush is generated. The following will be verified separately. We set the transformer
capacity as 0.9 p.u., 1.0 p.u., and 1.1 p.u., respectively. The simulation waveform is shown below in
Figure 13.

Figure 13. Influence of traction transformer capacity on sympathetic inrush.
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According to the figure above, the smaller the capacity of the traction transformer, the greater the
amplitude of sympathetic inrush, and the earlier the generation time of the sympathetic inrush.

4.4. Impact of Load Conditions

The previous section has already deduced the influence of traction transformer loading on the
traction transformer and the sympathetic inrush, and concluded that the larger the load current, the
larger the amplitude of the sympathetic inrush. The following will be verified separately. The load
current was set as 150 A, 180 A, and 350 A, respectively. The simulation waveform is shown below in
Figure 14.

Figure 14. Sympathetic inrush of the traction transformer under different load conditions.

According to Figure 14, the larger the load carried by the traction transformer, the easier it is to
generate the sympathetic inrush, and the greater the amplitude of the sympathetic inrush, the earlier
the generation time.

5. Conclusions

This paper presented a method for analyzing the sympathetic inrush of a traction network
cascade transformer on the basis of the flux–current circuit model. First, the flux–current model of the
transformer, line impedance, power system voltage source, and other loads was established. Then, the
flux–current circuit model of traction network was formed. On the basis of the flux–current circuit
model, we analyzed the causes of the sympathetic inrush of the traction transformer as well as the
effects of remanence, over-phase closing phase angle, line impedance, and load conditions on the
magnitude and duration of the sympathetic inrush and obtained the following conclusions:

(1) When the sum of the steady-state flux and the transient flux of the traction transformer exceeds
the saturation flux, the traction transformer will generate the sympathetic inrush.

(2) Remanence and the over-phase closing angle affect the transient magnetic flux. With the increase
in transient flux, the traction transformer will enter the saturation region, the amplitude of
sympathetic inrush increases, and the generation time of the sympathetic inrush is advanced.

(3) The greater the impedance angle of the line, and the later the generation time of the sympathetic
inrush, but the line impedance angle has no effect on the amplitude of the sympathetic inrush.
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(4) The smaller the capacity of the traction transformer, the greater the amplitude of the sympathetic
inrush, and the earlier the generation time of the sympathetic inrush

(5) The larger the load carried by the traction transformer, the easier it is to generate sympathetic
inrush, and the greater the amplitude of the sympathetic inrush, the earlier the generation time.

This paper only analyzed the generation mechanism of the sympathetic inrush and its influencing
factors, and did not analyze how to suppress sympathetic inrush. In the next step, the suppression
measures of the sympathetic inrush will be studied.
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