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Abstract: The distributed renewable energy system, integrating various renewable energy resources,
is a significant energy supply technology within energy internet. It is an effective way to meet
increasingly growing demand for energy conservation and environmental damage reduction in energy
generation and energy utilization. In this paper, the life cycle assessment (LCA) method and fuzzy
rough sets (FRS) theory are combined to build an environmental evaluation model for a distributed
renewable energy system. The ReCiPe2016 method is selected to calculate the environmental effect
scores of the distributed energy system, and the FRS is utilized to identify the crucial activities and
exchanges during its life cycle from cradle to grave. The generalized evaluation method is applied
to a real-world case study, a typical distributed energy system located in Yanqing District, Beijing,
China, which is composed of wind power, small-scale hydropower, photovoltaic, centralized solar
thermal power plant and a biogas power plant. The results show that the environmental effect
of per kWh power derived from the distributed renewable energy system is 2.06 × 10−3 species
disappeared per year, 9.88 × 10−3 disability-adjusted life years, and 1.75 × 10−3 USD loss on fossil
resources extraction, and further in the uncertainty analysis, it is found that the environmental load
can be reduced effectively and efficiently by improving life span and annual utilization hour of
power generation technologies and technology upgrade for wind turbine and photovoltaic plants.
The results show that the proposed evaluation method could fast evaluate the environmental effects
of a distributed energy system while the uncertainty analysis with FRS successfully and effectively
identifies the key element and link among its life span.

Keywords: life cycle assessment; distributed energy system; fuzzy rough sets; uncertainty analysis

1. Introduction

As a dispensable resource, stable energy supply is essential for human survival and social
development. With continuous growth in industrial production and economic aggregates, energy
consumption has sharply increased in China, which has imposed an extra pressure on the energy
supply system and resulted in a new energy revolution [1–3]. Moreover, in the presence of the
environmental protection targets, it is impossible to meet the increasing energy demand through
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conventional approaches which capture and rely on fossil fuels [4–6]. The energy structure revolution
of renewable energy sources coupled with traditional fossil fuels have been gradually turned into a
new normal [7,8]. The construction of energy internet provides a significant solution to the current
severe situation about energy supply and environmental protection. Energy internet is an innovative
energy utilization form with the features of an in-depth combination with renewable energy generation
technologies and advanced information technologies [9]. Distributed renewable energy system (DRES),
which integrates various renewable energy power generation technologies, can optimize the allocation
and utilization of energy, and have better environmental performance when compared to fossil energy
production options, is a pretty foundation and solid support for energy internet [10].

Renewable energy is highly praised for its wide availability and environmental friendliness,
as well as its decisive advantage over traditional energy is that it is not subjected to fossil fuel resources
depletion and it does not lead to much increasing pollution [11]. The feasibility and potential for
DRES have been performed by many researchers in terms of technical [12–14], economic [15–17],
and ecological characteristics [18–20]. Kasperowicz et al. [21] presented the possibility of estimation of
an appropriate power supply based on renewable energy sources in the context of the whole energy
system in the annual balance taking into account the technical and economic optimization strategies.
Considering the European Directive that 20% of the total energy should come from renewable energy
sources for each European Member State, Simionescu et al. [17] have assessed the importance of GDP
per capita in realizing the targets and the effects of the renewable energy sources share in electricity.
Moreover, Baleta et al. [22] reviewed some of the latest developments in the main areas of sustainability
in terms of themes of energy, water, environment, and their joint effects.

In the context of sustainable development, environmental impacts of the energy system, especially
distributed renewable energy system, have drawn increasing attention. From the perspective of
method innovation, García-Gusano et al. [23] proposed a robust framework for the soft-linking of
life cycle assessment (LCA) and TIMES model, integrating life-cycle indicators into energy system
optimization models. Aiming at bridging the gap between short term forecasting and long-term
scenario modeling methods, a newly strategic UK Transport Carbon Model covering the range of
transport-energy-environment issues from socioeconomic and policy influences on energy demand
reduction have been proposed in [24]. To explore the trade-offs between climate change mitigation
and other environmental impacts on electricity generation, Kouloumpis et al. [25] have developed an
electricity technologies life cycle assessment model. A multi-method approach for decision-making is
presented in [10], in which the life cycle assessment method and analytical hierarchy process (AHP)
method are combined to assess the sustainability of three energy scenarios combing five renewable
options, and AHP is used to identify the weight of the sustainability indicator. With consideration of
multiple factors, a multi-objective optimization model at the urban sector scale is proposed to achieve
sustainable development of energy, economic, and environmental systems, by integrating objectives of
minimal energy consumption, energy cost, and environmental impact in [26].

From the view of the policy-making, Petrillo et.al [27] developed a life cycle assessment
and life cycle cost analysis model for a stand-alone hybrid renewable energy system, aiming at
supporting decision-makers in complex decision problems in the field of environmental sustainability.
Vázquez-Rowe et al. [28] studied two cases for Peru and Spain analyzing their changing electricity
grids to explore the influence of climate-centric policy-making on long-term electricity mix change.
Pereira et al. [29] designed four scenarios to evaluate the co-benefits implications of alternative
electricity generation scenarios in Japan in a post-Fukushima context, providing a reference for
policy-maker among various candidate options including fossil fuels, nuclear energy, and renewable
energy. After that, Pereira and his colleagues [30] evaluated the impacts of life cycle assessment
greenhouse gas (LCA-GHG) emissions in the power supply portfolio and the effectiveness of a carbon
tax scheme. In the context of booming research on the environmental footprint, the hourly life carbon
footprint of electricity generation in Belgium has been investigated in [31], which offered decision
support to fully exploit the advantages of a future smart grid.
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Considering the specific environmental impacts of DRES, Evangelisti et al. [32] assessed the
environmental impact about three different combined heat and power systems with bio-methane
produced from organic waste. Strazza et al. [33] evaluates both potential environmental impacts and
costs of the operation of a 230 kW solid oxide fuel cell (SOFC) system and micro gas turbine (MGT)
system for distributed power generation applications. Zhang et al. [34] addressed the optimal design
of micro-grids with combined heat and power (CHP) units by coupling environmental and economic
sustainability in a multi-objective optimization model. It can be found that much research about the
sustainability of renewable distributed energy system has been conducted, and the environmental
impact has been also calculated via LCA. Environmental evaluation results can be affected by several
uncertainty factors, which mainly consist of selected methodologies, initial assumptions, i.e., allocation
rules, system boundaries and specific technical parameters, and the quality of available data [35]. Thus,
sensitivity analysis in results interpretation is necessary for the LCA.

From the view of process analysis and formulated the procedure, Heijungs [36] have proposed
the sensitivity analysis method based on the matrix-based LCA. After that, Sakai and Yokoyama [37]
introduced a perturbation method to matrix-based LCA to evaluate the degree of influence of each
element on the total sum of environmental loads. Moreover, Groen et al. [38] compared seven sensitivity
methods applied to electricity production and seafood production, in which one contains matrix
perturbation, a one-at-a-time (OAT) method of elementary effect, standardized regression coefficients,
key issue analysis, random balance design, and Sobol indices. Considering sensitivity analysis in the
practical application of LCA, Welz et al. [39] investigated the environmental impacts of four domestic
lighting technologies which employed cumulative energy demand, global warming potential, and
the eco-indicator99 to the same scenarios for checking the robustness of the results. For the power
system, Zhai et al. [40] have investigated the LCA of a solar aided coal-fired power system with and
without heat storage, and carried out uncertainty analysis to find the effect of main factors on the
system. Lamnatou and Chemisana [41] have evaluated environmental loads of photovoltaic-green and
other roofing systems utilizing ReCiPe and three different scenarios (20, 100, and 500 years) in terms of
the global warming potential (GWP) time horizon are examined for sensitivity analysis.

For multiple uncertainty factors analysis, fuzzy rough sets offer well-founded theoretical solutions
transferable into practice to quantify uncertainty influence. Fuzzy rough sets (FRS) allows partial
membership of an object to the lower and upper approximations, and approximate equality between
objects can be modeled through fuzzy indiscernibility relations [42]. An advantage of this are the
FRS suits for hybrid data and default data without any information loss, thus, they can be used for
feature selection, instance selection, classification, attribute reduction, and regression. Juneja et al. [43]
proposed a three-phase reduction, in which a novel fuzzy rough feature selection was proposed in the
third phase for learning a decision model. Cheng et al. [44] have conducted green competitiveness
evaluation of provinces in China based on correlation analysis and fuzzy rough sets, in which FRS
was employed to select and analyze 21 indicators and develop a regional green competitiveness index.
Moreover, Cheng et al. [45] have performed the obstacle diagnosis of green competition promotion of
provinces in China based on catastrophe progression and fuzzy rough set methods. Similarly, fuzzy
rough sets can be applied to sensitivity analysis of LCA, in which FRS is employed to calculate the
dependence degree on environmental loads for various uncertain factors by way of attribute reduction.

Based on the review mentioned above, an environmental impact evaluation model integrating
LCA and FRS is proposed in this study. The FRS is utilized to identify the critical factors which
contribute the most on its environmental impacts, and further, to conduct the uncertainty analysis
related to those critical factors. According to the analysis results, the vital activities and exchanges
throughout the life cycle of the DRES are determined, which in turn provide references for DRES
construction, technology upgrading, and decision-makers. In particular, the case with five renewable
energy generation technologies located in different parts of China is investigated. The paper is
organized as follows: the framework of the environmental evaluation method (Section 2.1) and basic
life cycle assessment method ReCiPe2016 (Section 2.2) is introduced. Then, the fuzzy rough sets
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embedded into life cycle assessment is elaborated in Section 2.3. Subsequently, a complex realistic case
study is defined and the proposed environmental impact evaluation approach is applied to evaluate
its performance (Section 3). Finally, the conclusions are drawn in Section 4.

2. Environmental Impact Evaluation Method of DRES Integrating LCA and FRS Methods

In the proposed environmental impact evaluation framework, LCA methods can continuously
analyze each process of any component of the DRES, and FRS can be used to identify the vital
parameters, activities, and exchanges throughout the assessment process based on the LCA results.

2.1. The Framework of Environmental Impact Evaluation Method

The natural environment provides various energy resources like coal, oil and renewable resources
to human society, as well as other minerals. Nowadays, clean power supply for different application
scenarios gradually developed towards a new formal in which distributed renewable energy system
dominated, coupled with fossil fuel power generation as a backup. Therefore, rational configuration
planning of the energy supply system and relative environmental evaluation, especially renewable
power generation technologies, plays a critical role in the low-carbon environmental protection,
community development, and economic prosperity.

An environmental evaluation method of distributed renewable energy system is proposed in this
paper based on the life cycle assessment method and fuzzy rough sets, in which the basic environmental
impact assessment is implemented through the LCA method and result interpretation is achieved with
fuzzy rough sets. The framework of the environmental impact evaluation method is presented in
Figure 1.
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Figure 1. The framework of environmental impact evaluation methods.

In general, the evaluation model can be divided into four steps. Firstly, after identifying local
renewable energy resources, certain power generation approaches can be determined and research goals
and study scope can be defined in respect to the corresponding Technosphere. Next, life cycle inventory
analysis can be calculated and the statistical results of pollutant emissions for overall DRES can be
obtained. After that, pollutant emissions can be further analyzed into midpoint environmental impact
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categories and the endpoint area of protection subjects through normalization and characterization.
Finally, uncertainty analysis is conducted for different parameters, and FRS are employed to assist
to find vital factors or activities for the overall DRES, which can be a reference for policymaker and
system optimization.

2.2. Life Cycle Assessment in the Proposed Evaluation Framework

Life cycle assessment can comprehensively evaluate the entire life span of a device or a system
within the total life cycle consumption of resources and their benefits [41], and translate emissions
and resources extractions into a limited number of environmental impact scores using relative
characterization factors [46]. Environmental effects analyses with LCA methods can recognize the
stage at which results in a great role in pollutant emissions and seek opportunities to improve its
environmental manifestation.

In general, LCA analysis models mainly includes a simplified model, process model,
decision-making theory model, and multi-objective optimization model according to specific features.
There are more than 20 environmental impact evaluation methods derived from various research
institutes, and these methods can be divided into two mainstream ways from the view of investigate
targets, i.e., mid-point methods and end-point methods. The former methods focus on the
environmental impact mechanism and evaluated various activities’ environmental impacts such
as climate change, soil acidification, water eutrophication, which are also called question-centric
approaches. The latter divided different environmental subjects and modeled various damages
to human, environment, and natural resources, which are called as damage-centric approaches.
In this paper, the improved ReCiPe2016 methods derived from ReCiPe2008 are selected for life
cycle assessment [46], which implement human health, ecosystem quality, and resource scarcity
as three endpoint protection subjects. Moreover, endpoint impact subjects are associated with
17 midpoint impact categories through appropriate mid-to-endpoint factors according to predefined
damage pathways.

Life cycle assessment generally consists of four processes [47]: (1) determination of research
goals and scope; (2) making up life cycle inventory; (3) calculating life cycle impact assessment
value; (4) achieving life cycle interpretation and corresponding improvement, and former three steps
are discussed in detail coupled with distributed renewable energy system within ReCiPe2016 as
following paragraphs.

2.2.1. Determination of Research Goals and Scope

The purpose of the proposed evaluation framework is to calculate pollutants emissions of DRES
which directly contribute to midpoint impact category and indirectly affect the endpoint area of
protection. The impact categories covered in the ReCiPe2016 method and their relationship are
illustrated in Figure 2. For complex distributed renewable energy system integrating various renewable
power generation technologies, the environmental performance of different modules can be obtained
and compared for further investigation.

From the view of midpoint impact categories, there are many distinctions among different
power generation forms, which may be caused by their specific scope definition. The scope of the
studied Technosphere is defined according to its technical features, for example, the scope of wind
power covered three typical stages during its life span, construction, operation and decommission
periods. “Construction” stands for building wind power stations and affiliated wind turbine networks,
as well as relative transportation through freight and lorry. Wind turbine operation stage needs to
take lubricating oil used for turbine lubrication and cooling into account, while all by-products are
classified as recyclable in decommission stage.
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Reference [46]. The dotted line means there is no constant mid-to endpoint factor for fossil resources.

2.2.2. Making Up life Cycle Inventory

Life cycle inventory analysis mainly refers to the pollutant emissions of units over their entire
life span, and mission data applied in this paper are referred to the Ecoinvent Version 3.5 databases.
Considering all components within the distributed energy system, the emissions mass vector E can be
expressed as follows:

E = [CO2, SO2, CO, NOx, CH4, . . . , N2O] (1)

in which pollutant emissions of the overall system include CO2, SO2, CO, NOx, CH4, N2O, and so on
are basic elements in the mass vector.

2.2.3. Calculating Life Cycle Evaluation Value through Normalization and Characterization

Typically, emissions of these pollutants results in a variety of environmental problems, under
the framework of ReCiPe2016, global warming potential (GWP), ionizing radiation potential (IAP),
terrestrial ecotoxicity potential (ETP terra) et al. Seventeen midpoint damage categories are considered,
and further divided into eight damage pathways according to their influence mechanism. Finally,
environmental effects are summarized into three endpoint area of protection: damage to human health
(DHH), damage to ecosystems (DEH), and damage to resource availability (DRA).

To simplify, the calculations and easily compare impact results, various pollutant emissions should
be converted into an equivalent reference benchmark pollutants through the normalization process.
For example, CO2 is the most important greenhouse gas in the global warming impact, thus, other
pollutant emissions are converted into equivalent quantities of CO2 in the light of their contributions to
global warming impact, which is written as CO2-eq. Similarity, reference benchmark for other impact
categories are presented in Table 1.

The environmental impact potential can be calculated through pollutant emissions multiply
corresponding normalized factor. Taking global warming impact as an example, the global warming
potential represented by CO2-eq can be calculated as follows:

GWP = f normalize, GWPET (2)
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where, fnormalize, GWP denotes global warming impact normalized factor vector, for which emissions
contribute none on global warming, the value is zero in the vector.

The primary analyses results can be obtained after normalizing the emission inventory for
distributed renewable energy system, in which specific environmental impact potential is expressed
by a person equivalent quantity for selected reference benchmark. Furthermore, 17 midpoint impact
categories are turned into three endpoint area of protection along with damage pathways through
characterization factors, which can be calculated as follows:

Scorearea, pro= f midpoint, endpointM (3)

where, Scorearea, pro denotes endpoint area of protection subjects including DHH (DALYs,
disability-adjusted life years), DEH (species year, potentially disappeared fraction of species m2

year or potentially disappeared fraction of species m3 year), and DRA (USD, extra costs for future
mineral and fossil resource extraction) [46], fmidpoint, endpoint denotes endpoint characteristics factor
transversal vector derived from various midpoint impact categories, M denotes the normalization
midpoint impact column vectors derived from normalization, which can be expressed as follows:

M = [GWP, ODP, IRP, . . . , FFP] (4)

Table 1. Benchmark pollutant emission for 17 midpoint impact categories and normalization.

No. Midpoint Impact Category Abbreviation Reference Benchmark

1 Global warming GWP Carbon dioxide
2 Stratospheric ozone depletion ODP CFC-11
3 Ionizing radiation IRP Co-60
4 Photochemical ozone formation (human) HOFP Nitrogen oxides
5 Fine particulate matter of formation PMFP PM2.5
6 Photochemical ozone formation (ecosystem) EOFP Nitrogen oxides
7 Terrestrial acidification AP Sulphur oxides
8 Freshwater eutrophication FEP Phosphorus
9 Terrestrial ecotoxicity ETP terra 1,4-DCB
10 Freshwater ecotoxicity ETP fw 1,4-DCB
11 Marine ecotoxicity ETP marine 1,4-DCB
12 Human carcinogenic toxicity HCF carc 1,4-DCB
13 Human non-carcinogenic toxicity HCF ncarc 1,4-DCB
14 Land occupation/transformation LCP -
15 Water consumption WCP -
16 Mineral resource MRP kg Cu-eq/kg ore
17 Fossil resource scarcity FFP kg oil-eq/unit of resource

2.3. Fuzzy Rough Sets Theory Embedded into LCA Method

One important and valuable research area in fuzzy rough sets is attribute reduction for decision
system. Attribute reductions with fuzzy rough sets take account of all decision classes together and
could identify key conditional attributes explicitly for special decision class [48]. In the context of
life cycle assessment, uncertainty analysis is generally employed to examine any factor that affects
the LCA results in the final step since some parameters are assumed in the modeling process [40].
To be specific, distributed renewable energy system uncertainty may be caused by predefined life span
time, proportion of each renewable energy, upstream Technosphere related to components, selection of
normalizing methods and characterization factors, etc. Conventional research conducted on uncertainty
analysis observed the environmental impact load variation coupled with parameter change.

In the context of uncertainty analysis, parameters for conventional analysis can be regarded as
candidate conditional attributes, and the final environmental impact, as well as damage subject scores,
can be seen as decision variables. Further study is carried out based on FRS to do the conditional attribute
reduction, and key conditional attributes that have a significant effect on environmental impacts are
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identified explicitly. The determined key conditional attributes can interpret vital parameters during
its life span and guide practical energy programming and production.

The key conditional attributes can be obtained with the utilization of fuzzy decision table to do
the attributes reduction. The fuzzy decision table is a special and important knowledge expression
system. It is can be expressed as the following equations:

FDT= (U, C, D) (5)

where U is a finite theory domain, C is a fuzzy conditional attributes, and D is the decision attributes.
For a given fuzzy rough table, any object x belongs to U, a group data are responding to the C and
D. According to the fuzzy rough sets theory, the candidate conditional attributes can be expressed
as follows:

C = [C ls, Cprop, Ctech, Cnorm, . . . , Cchar

]
(6)

where, Cls is the vector of life span about the various renewable power plant, Cprop is the proportion
of renewable energy in a specific region, Ctech is upstream technosphere performance related to
components, Cnorm denotes the normalization factors for midpoint impact categories, and Cchar

denotes endpoint characterization factors. A key parameter Significance is defined to express the
dependency among each conditional attributes and decision attributes, and those attributes with high
Significance are considered as crucial uncertainty factors to be analyzed.

3. Case study with the Proposed Environmental Impact Evaluation Method

3.1. Basic Information Description for Case Study

A real distributed renewable energy system located in Yanqing District, Beijing, China, was selected
to serve for the case study below. Yanqing district has the largest scale of micro-power-grid in China
and abundant renewable energy system, which has built renewable energy power generation projects
with a capacity of 200.9 MW. The specific parameters of concrete energy components are represented
in Table 2. According to the method introduced in Section 2, ReCiPe2016 and FRS were utilized to
assess the environmental impacts for the Yanqing DRES.

Table 2. Basic parameters of the distributed renewable energy system in Yanqing district.

Component Capacity/MW Life Span/Year Annual
Utilization/%

Annual
Electricity/GWh

Wind 150 20 26.12 250.54 *
Small-scale hydropower 4 50 38.87 13.62

Biogas 2.4 30 82.19 17.28
Solar thermal 1.5 30 37.10 4.88
Photovoltaic 43 25 14.73 55.47

* Annual electricity of the wind power system calculated with the synthetical reduction coefficient as 0.73 from [49].

3.2. Goal and Scope Definition of DRES

Before environmental evaluation, the research scope for the case study was defined as the
distributed energy system with five components displayed in Table 2 for Yanqing district, in which
energy flows contain origin input nature sources like solar energy, wind energy, hydropower, and
biogas energy, and output power. The system boundaries cover upstream biogas supply, energy
devices construction, corresponding freight and possible retired processing. The research target was to
investigate the environmental impacts of the distributed renewable energy system per functional unit.
Moreover, combined with the basic information displayed in Table 2, the research scope of the DRES
can be determined and depicted in Figure 3.
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It was found that each component corresponded to a variety of upstream Technosphere activities
and exchange between them and the environment. For wind power, kinetic energy in wind from
the environment is transferred into power as a product and corresponds to upstream Technosphere
lubricating oil, two kinds of transportation, wind turbine network connection, and wind turbine.
For the photovoltaic module, solar energy from environment is transferred into power through
a photovoltaic plant, which is cooled by tap water. Concerning biogas turbine, heat and power
cogeneration technology are considered. Concerning small-scale hydropower, the hydropower plant is
deployed in the downstream of rivers or lakes for power generation, and lubrication oil also needs to
be considered during its operation period. For centralized solar thermal power generation technologies
(CSP), the upstream technology field includes concentrated solar power plant, deionized water from
tap water, diphenyl ether compound, as well as benzene—which was considered in the research scope.
Moreover, in the context of the defined research scope, the function unit for following research was
defined as per kWh power generation, thus, the pollutant emissions were expressed as kg per kWh,
and the final environmental effects were expressed as impact scores per kWh.
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3.3. Life Cycle Inventory Analysis

The data from the Ecoinvent Version 3.5 Database [50] was employed for life cycle inventory
analysis, and the emission data of various power generation technologies was calculated through
statistical approaches. The main pollutant emissions considered for each power generation technology
and overall DRES system are shown in Table 3.

It can found that carbon dioxide dominated among displayed various emissions both for five
sub-systems and overall distributed renewable energy systems, and the amount of CO2 emission was
6.55 × 10−2 kg per kWh for the overall system, which was higher than other emissions over two orders
of magnitude. For five sub-system in the DRES, biogas contributed most to the CO2 emission since
biomass fuel combustion release a large number of CO2. The following highest pollution emissions
are CO and CH4, which were 3.54 × 10−4 and 3.28 × 10−4 kg per kWh for the overall system, were
mainly attributed to global warming. The emission quantities of SO2 and NOx were 1.17 × 10−4

and 8.76 × 10−5 kg per kWh for overall DRES, respectively, which contributed to common acid rain,
respiratory disease, and other air pollution problems. In contrast, the amount of nitric oxide emission
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was ignorable compared with other pollutants, in which photovoltaic occupied the majority compared
with other renewable power generation technologies.

Table 3. Typical pollutant emissions quantity to environment directly for each power generation
technology and overall system with function unit.

Pollutant
Emissions

Wind Power
kg/kWh

Photovoltaic
kg/kWh

Hydropower
kg/kWh

Centralized Solar
Thermal Power

Generation
Technologies (CSP)

Module
kg/kWh

Biogas
kg/kWh

Overall
kg/kWh

CO2 1.93 × 10−2 7.25 × 10−2 4.21 × 10−3 6.23 × 10−2 7.62 × 10−1 6.55 × 10−2

SO2 6.73 × 10−5 2.56 × 10−4 7.31 × 10−6 1.43 × 10−4 4.71 × 10−4 1.17 × 10−4

CO 1.48 × 10−4 2.51 × 10−4 2.10 × 10−5 3.79 × 10−4 3.93 × 10−3 3.54 × 10−4

NOX 5.90 × 10−5 1.84 × 10−4 1.52 × 10−5 1.69 × 10−4 2.28 × 10−4 8.76 × 10−5

CH4 5.87 × 10−5 2.16 × 10−4 6.30 × 10−6 1.82 × 10−4 4.89 × 10−3 3.28 × 10−4

N2O 4.86 × 10−12 2.62 × 10−10 3.79 × 10−13 4.63 × 10−11 1.27 × 10−12 4.69 × 10−11

3.4. Environmental Impact Evaluation

With normalization and characterization, inventory results were further turned into three endpoint
areas of protection, the equivalent quantities of various reference benchmark pollutants for each
midpoint impact categories were obtained to express the related influence situation. According to the
life cycle assessment method applied in the models referring to ReCiPe2016, characterization factors
are listed in Table 4.

Normalization and characterization of various environmental-related emissions with reference to
pollution emission depicted in Table 1 and conversion factors listed in Table 4, final environmental
impact scores about damage to humans, damage to the ecosystem, and damage to natural resources
availability for study case are shown in Figure 4.
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Table 4. Midpoint to endpoint conversion factors referring to ReCiPe2016 [46].

Endpoint
Area Midpoint Impact Category Unit Conversion

Factor

Human
health

Global warming Disability-adjusted life years (DALY)/kg CO2 eq. 1.25 × 10−5

Stratospheric ozone depletion DALY/kg CFC11 eq. 1.34 × 10−3

ionizing radiation DALY/kBq Co-60 emitted to air eq. 1.40 × 10−8

Fine particulate matter formation DALY/kg PM2.5 eq. 6.29 × 10−4

Photochemical ozone formation DALY/kg NOx eq. 9.10 × 10−7

Toxicity (cancer) DALY/kg 1,4-DCB emitted to urban air eq. 3.32 × 10−6

Toxicity (non-cancer) DALY/kg 1,4-DCB emitted to urban air eq. 2.28 × 10−7

Water consumption DALY/m3 consumed 2.22 × 10−6

Terrestrial
ecosystems

Global Warming Species. year/kg CO2 eq. 2.50 × 10−8

Photochemical ozone formation Species. year/kg NOx eq. 1.29 × 10−7

Acidification Species. year/kg SO2 eq. 2.12 × 10−7

Toxicity Species. year/kg 1,4-DBC emitted to industrial soil eq. 1.14 × 10−11

Water consumption species. year/m3 consumed 1.35 × 10−8

Land use Species/(m2
·annual crop eq) 8.88 × 10−9

Freshwater
ecosystems

Global Warming Species. year/kg CO2 eq. 6.82 × 10−13

Eutrophication Species. year/kg P to freshwater eq. 6.71 × 10−7

Toxicity Species. year/kg 1,4-DBC emitted to freshwater eq. 6.95 × 10−10

Water consumption species. year/m3 consumed 6.04 × 10−13

Marine
ecosystems

Toxicity Species. year/kg 1,4-DBC emitted to sea water eq. 1.05 × 10−10

Eutrophication Species. year/kg N to marine water eq. 1.70 × 10−9

Resources

Mineral resource scarcity USD/kg Cu 0.23

Fossil
Resource
scarcity

Crude oil USD/kg 0.46
Hard coal USD/kg 0.03

Natural gas USD/Nm3 0.30
Brown coal USD/kg 0.03

Peat USD/kg 0.03

To clarify the environmental effects of DRES, the environmental load for the other five sub-systems
is also listed in Figure 4. It was found that, in the life cycle of the distributed renewable energy
system, unit power generation (kWh) resulted in 2.06 × 10−3 species disappeared per year, 9.88 × 10−3

disability-adjusted life years, and a 1.75 × 10−3 USD loss for three endpoint categories: damage to
ecosystem, damage to human, and damage to natural resources availability, respectively. Compared
with single power generation technology, it was found that the environmental effects of DRES was
similar to the wind module whilst higher than hydropower system over three items, because the wind
power system occupied the majority of the DRES with a proportion of 74.66% while the percentage of
hydropower was 1.99%. Apart from the hydropower system, damage to the ecosystem and damage
to natural resources availability for per kWh power from DRES was just higher than that generated
from wind power system. Considering the damage to humans, the DRES performed better than the
hydropower system, wind power system, and CSP system since the photovoltaic system and biogas
system emitted much more air pollutants harmful to human health when compared to other systems.

3.5. Results Interpretation and Uncertainty Analysis with FRS

In the presence of the framework of environmental impact evaluation method, power plant
capacity, annual operation hours, upstream Technosphere performance were taken into account for
case study in the uncertainty analysis and further resulted in interpretation with fuzzy rough sets.
These parameters were assumed to change in the range of ±10% based on its origin value. All of the
variables were candidate conditional attributes, and each situation with parameter change produced a
set of data for attributes reduction. Meanwhile, the conventional OAT approach was also applied for
sensitivity analysis, in which the sublet of the input parameters was changed one at a time to identify
how much influence was induced by the change. The results for identifying crucial uncertain factors
for DRES through the two methods are shown in Figure 5.
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As shown in Figure 5, the significance of each conditional attribute in FRS and environmental
effect changes for OAT present similar distribution regulation among 29 uncertain factors. Based on
the research scope and FRS methods, prop_WT, prop_PV, prop_Hydro, prop_Biogas, ls_WT, ls_PV,
tech_WT_4, and tech_PV_1 were more important than other factors with a higher significance value.
Moreover, those eight factors expressed the largest changes when corresponding factors with a 10%
change in input parameter values, which also demonstrated the feasibility of the proposed evaluation
framework combing LCA and FRS. It should be noted that the results of FRS and OAT were not
equal. For example, the most important factors calculated from the two methods were prop_hydro and
tech_WT_4, respectively, due to the FRS modeled according to the fuzzy equivalence relation while
OAT was dependent on the control variate method. Therefore, FRS provided another research path for
sensitivity analysis in LCA.
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Figure 5. Identifying crucial uncertain factors for distributed renewable energy system (DRES) through
fuzzy rough sets (FRS) and one-at-a-time (OAT) approaches.

Taking into account of two methods results, the aforementioned eight factors were selected to
quantify the uncertainty influence with 10% disturbance. The uncertainty analysis results of installed
power generation capacity and annual operation hours are shown in Figure 6a,b. Moreover, uncertainty
analyses results of the upstream Technosphere for the wind power system and the photovoltaic power
system are represented in Figure 6c,d.

For uncertainty analysis on installed capacity and annual operation hours of each component in
DRES, it can be found from Figure 6a,b that both present the same tendency for the same component.
This is because these two parameters coupled with each other with multiplication in the life cycle
assessment. Moreover, these two parameters changing the wind module had the most influence on
environmental impact due to its large installed capacity proportion, followed by the PV module, which
corresponded to its high subsystem environmental impact scores as shown in Figure 4. Therefore,
policy-makers should encourage the application of the product with a longer life span, and research
needs to focus on extending the design lifetime for various power generation equipment.

In the upstream technical field of wind power generation system, tech_WT_4, the wind turbine
played an important role in its life cycle assessment. The environmental impact score changed from
0.013 per kWh to 0.015 points per kWh when the environmental effect of wind turbine changed
from 90% to 110%. Therefore, a priority technology improvement should concern the environmental
friendly production of the wind turbine. For photovoltaic power generation technology, tech_PV_1,
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photovoltaic plant played an important role in environmental impacts. The environmental impact
score of per kWh power from the overall DRES increased gradually from 1.36 × 10−2 points to
1.46 × 10−2 points, while the proportion to unit power generation changed from 0.9 to 1.1 of origin
value. Thus, the development of the PV power system should focus on improving the photovoltaic
plant construction technology.
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4. Conclusions

In this paper, the environmental impact evaluation method based on life cycle assessment and
fuzzy rough sets was generalized and comprehensively demonstrated by application to the real-world
distributed energy system, in which three areas of protection derived from ReCiPe2016 were evaluated.
The advantage of the proposed method was to accurately quantify the environmental impacts and
effectively identify vital parameters, activities, and exchanges among the life span, thus helping
programming configuration of energy systems and assisting in making decision. In the real-world
problem, five distributed renewable energy generation technologies were introduced in the DRES.
The main conclusions included:

• For the case study, unit power generation (kWh) from the distributed renewable energy system
resulted in a 2.06 × 10−3 species disappeared per year, 9.88 × 10−3 disability-adjusted life years,
and 1.75 × 10−3 USD loss for three endpoint categories for protection: damage to the ecosystem,
damage to humans, and damage to natural resources availability, respectively.

• A simple comparison of sensitivity analysis in LCA through FRS and OAT was performed
to demonstrate the feasibility of the proposed method, the results of FRS approaches kept
pace with conventional OAT methods, in which eight significant uncertain factors were
successfully identified.

• The identified eight crucial factors were used to further quantify and analyze the uncertainty
influence. The results showed that various power generation technology should improve their
life span or annual utilization time to reduce environmental load per product, moreover, for the
wind power system and the photovoltaic power system, technology upgrades for wind turbines
and photovoltaic plant can contribute to environmental pollution deprivation.
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• In this paper, the candidate attributes were limited to conventional factors related to environmental
load and a layer for each of the power generation systems. Moreover, the proposed model was
just employed combined with ReCiPe2016. Future model development works focused on the
limitation of model, such as the expansion of attribute sets including characteristics factors for
emissions and conversion factors for midpoint impact categories. In addition, the model could be
coupled with other LCA methods to verify its feasibility and universality.
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Nomenclature

LCA life cycle assessment
FRS fuzzy rough sets
DRES distributed renewable energy system
AHP analytic hierarchy process
SOFC solid oxide fuel cell
MGT micro gas turbine
CHP combined heat and power
DHH damage to human health
DEH damage to ecosystem health
DRA damage to resource availability
CSP centralized solar thermal power generation
DALY disability-adjusted life years
OAT one-at-a-time
WT wind power system
GWP global warming potential
Mathematical Symbols
fnormalize, GWP global warming impact normalized factor vector
fmidpoint, endpoint endpoint characteristics factor transversal vector
E emission mass vector
M normalization midpoint impact column vectors
U finite theory domain
C fuzzy conditional attributes
D decision attributes
Subscripts and Superscripts
DT decision table
lf life span
prop renewable energy system capacity proportion
tech upstream Technosphere
norm normalization factors
char characterization factors
area,pro area of protection
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21. Kasperowicz, R.; Pinczyński, M.; Khabdullin, A. Modeling the power of renewable energy sources in the
context of classical electricity system transformation. J. Int. Stud. 2017, 10, 264–272. [CrossRef]

22. Baleta, J.; Mikulcic, H.; Klemes, J.; Urbaniec, K.; Duic, N. Integration of energy, water and environmental
systems for a sustainable development. J. Clean. Prod. 2019, 215, 1424–1436. [CrossRef]

23. García-Gusano, D.; Iribarren, D.; Martín-Gamboa, M.; Dufour, J.; Espegren, K.; Lind, A. Integration of
life-cycle indicators into energy optimisation models: The case study of power generation in Norway.
J. Clean. Prod. 2016, 112, 2693–2696. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.03.071
http://dx.doi.org/10.1016/j.resconrec.2017.09.028
http://dx.doi.org/10.3390/en12122249
http://dx.doi.org/10.1007/s11630-019-1108-6
http://dx.doi.org/10.1002/ese3.161
http://dx.doi.org/10.1155/2018/3834921
http://dx.doi.org/10.1016/j.gloei.2019.07.007
http://dx.doi.org/10.1016/j.jclepro.2016.07.173
http://dx.doi.org/10.14254/2071-8330.2016/9-1/7
http://www.ncbi.nlm.nih.gov/pubmed/26305200
http://dx.doi.org/10.14254/2071-789X.2018/11-1/16
http://www.ncbi.nlm.nih.gov/pubmed/29645010
http://dx.doi.org/10.1016/j.apenergy.2018.11.049
http://dx.doi.org/10.1016/j.apenergy.2019.04.132
http://dx.doi.org/10.14254/2071-789X.2018/11-2/23
http://dx.doi.org/10.1109/TSG.2018.2830751
http://dx.doi.org/10.3390/en12132520
http://dx.doi.org/10.3390/en11112873
http://dx.doi.org/10.1016/j.energy.2019.06.118
http://dx.doi.org/10.14254/2071-8330.2017/10-3/19
http://dx.doi.org/10.1016/j.jclepro.2019.01.035
http://dx.doi.org/10.1016/j.jclepro.2015.10.075


Energies 2019, 12, 4214 16 of 17

24. Brand, C.; Tran, M.; Anable, J. The UK transport carbon model: An integrated life cycle approach to explore
low carbon futures. Energy Policy 2012, 41, 107–124. [CrossRef]

25. Kouloumpis, V.; Stamford, L.; Azapagic, A. Decarbonising electricity supply: Is climate change mitigation
going to be carried out at the expense of other environmental impacts? Sustain. Prod. Consum. 2015, 1, 1–21.
[CrossRef]

26. Su, M.; Chen, C.; Yang, Z. Urban energy structure optimization at the sector scale: considering environmental
impact based on life cycle assessment. J. Clean. Prod. 2016, 112, 1464–1474. [CrossRef]

27. Petrillo, A.; Felice, F.D.; Jannelli, E.; Autorino, C.; Minutillo, M.; Lavadera, A.L. Life cycle assessment (LCA)
and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renew. Energy
2016, 95, 337–355. [CrossRef]

28. Vázquez-Rowe, I.; Reyna, J.L.; García-Torres, S.; Kahhat, R. Is climate change-centrism an optimal policy
making strategy to set national electricity mixes? Appl. Energy 2015, 159, 108–116. [CrossRef]

29. Pereira, J.P.; Parady, G.T.; Dominguez, B.C. Japan’s energy conundrum: Post-Fukushima scenarios from a life
cycle perspective. Energy Policy 2014, 67, 104–115. [CrossRef]

30. Portugal-Pereira, J.; Köberle, A.C.; Soria, R.; Lucena, A.F.; Szklo, A.; Schaeffer, R. Overlooked impacts of
electricity expansion optimisation modelling: The life cycle side of the story. Energy 2016, 115, 1424–1435.
[CrossRef]

31. Messagie, M.; Mertens, J.; Oliveira, L.; Rangaraju, S.; Sanfelix, J.; Coosemans, T.; Macharis, C. The hourly
life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle
assessment. Appl. Energy 2014, 134, 469–476. [CrossRef]

32. Evangelisti, S.; Clift, R.; Tagliaferri, C.; Lettieri, P. A life cycle assessment of distributed energy production
from organic waste: Two case studies in Europe. Waste Manag. 2017, 64, 371–385. [CrossRef] [PubMed]

33. Strazza, C.; Borghi, A.D.; Costamagna, P.; Gallo, M.; Brignole, E.; Girdinio, P. Life Cycle Assessment and Life
Cycle Costing of a SOFC system for distributed power generation. Energy Convers. Manag. 2015, 100, 64–77.
[CrossRef]

34. Zhang, D.; Evangelisti, S.; Lettieri, P.; Papageorgiou, L.G. Optimal design of CHP-based microgrids:
Multiobjective optimisation and life cycle assessment. Energy 2015, 85, 181–193. [CrossRef]

35. Cellura, M.; Longo, S.; Mistretta, M. Sensitivity analysis to quantify uncertainty in life cycle assessment:
The case study of an Italian tile. Renew. Sustain. Energy Rev. 2011, 15, 4697–4705. [CrossRef]

36. Heijungs, R. Identification of key issues for further investigation in improving the reliability of life-cycle
assessments. J. Clean. Prod. 1996, 4, 159–166. [CrossRef]

37. Sakai, S.; Yokoyama, K. Formulation of sensitivity analysis in life cycle assessment using a perturbation
method. Clean Technol. Environ. Policy 2002, 4, 72–78. [CrossRef]

38. Groen, E.A.; Heijungs, R.; Bokkers, E.A.M.; de Boer, I.J. Sensitivity Analysis in Life Cycle Assessment.
In Proceedings of the International Conference on Life Cycle Assessment in the Agri-food Sector, San Francisco,
CA, USA, 8–10 October 2014.

39. Welz, T.; Hischier, R.; Hilty, L.M. Environmental impacts of lighting technologies—Life cycle assessment and
sensitivity analysis. Environ. Impact Assess. Rev. 2011, 31, 334–343. [CrossRef]

40. Zhai, R.; Chao, L.; Ying, Y.; Patchigolla, K.; Oakey, J.E. Life cycle assessment of solar aided coal-fired power
system with and without heat storage. Energy Convers. Manag. 2016, 111, 453–465. [CrossRef]

41. Lamnatou, C.; Chemisana, D. Evaluation of photovoltaic-green and other roofing systems by means of
ReCiPe and multiple life cycle-based environmental indicators. Build. Environ. 2015, 93, 376–384. [CrossRef]

42. Riza, L.S.; Janusz, A.; Bergmeir, C.; Cornelis, C.; Herrera, F.; Śle, D.; Benítez, J.M. Implementing algorithms
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