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Abstract: The subcritical polyethylene-reflected plutonium (PERP) metal fundamental physics
benchmark, which is included in the Nuclear Energy Agency (NEA) International Criticality Safety
Benchmark Evaluation Project (ICSBEP) Handbook, has been selected to serve as a paradigm
illustrative reactor physics system for the application of the Second-Order Adjoint Sensitivity Analysis
Methodology (2nd-ASAM) that was developed by Cacuci. The 2nd-ASAM enables the exhaustive
deterministic computation of the exact values of the 1st-order and 2nd-order sensitivities of a system
response to the parameters underlying the respective system. The PERP benchmark is numerically
modeled in this work by using the deterministic multigroup neutron transport equation discretized
in the spatial and angular independent variables. Thus, the numerical model of the PERP benchmark
developed includes the following imprecisely known uncertain parameters: 180 group-averaged total
microscopic cross sections, 21,600 group-averaged scattering microscopic cross sections, 120 fission
process parameters, 60 fission spectrum parameters, 10 parameters describing the experiment’s
nuclear sources, and six isotopic number densities. Thus, the numerical simulation model for the PERP
benchmark comprises 21,976 uncertain parameters, which implies that, for any response of interest,
there are a total of 21,976 first-order sensitivities and 482,944,576 second-order sensitivities with respect
to the model parameters. Computing these sensitivities exactly represents the largest sensitivity
analysis endeavor ever carried out in the field of reactor physics. Only 241,483,276 are distinct from
each other, and some of these turned out to be zero due to the symmetry of the 2nd-order sensitivities.
The numerical results for all of these sensitivities, together with discussions of their major impacts,
will be presented in a sequence of publications in the Special Issue of Energies dedicated to “Sensitivity
Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems”. This work is
the first in this sequence, presenting formulas of general use for neutron transport problems, along
with the numerical results that were produced by these formulas for the 180 first-order and 32,400
second-order sensitivities of the PERP leakage response with respect to the neutron transport model’s
group-averaged isotopic total cross sections. For comparison, this work also presents formulas of
general use and numerical results for the 180 first-order and 32,400 second-order sensitivities of the
PERP leakage response with respect to the neutron transport model’s group-averaged isotopic capture
cross sections. It has been widely believed hitherto that, for reactor physics systems modeled by the
neutron transport or diffusion equations, the second-order sensitivities are all much smaller than the
first-order ones. However, contrary to this widely held belief, the numerical results that were obtained
in this work prove, for the first time ever, that many of the 2nd-order sensitivities are much larger than
the corresponding 1st-order ones, so their effects can become much larger than the corresponding
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effects stemming from the 1st-order sensitivities. For example, the 2nd-order sensitivities of the
PERP leakage response cause the expected value of this response to be significantly larger than the
corresponding computed value. The importance of the 2nd-order sensitivities increases as the relative
standard deviations for the cross sections increase. For the extreme case of fully correlated cross
sections, for example, neglecting the 2nd-order sensitivities would cause an error as large as 2000% in
the expected value of the leakage response and up to 6000% in the variance of the leakage response.
The significant effects of the mixed 2nd-order sensitivities underscore the need for reliable values for
the correlations that might exist among the total cross sections, which are unavailable at this time.
The 2nd-order sensitivities with respect to the total cross sections also cause the response distribution
to be skewed towards positive values relative to the expected value. Hence, neglecting the 2nd-order
sensitivities could potentially cause very large non-conservative errors by under-reporting of the
response variance and expected value.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities; total cross
sections; capture cross sections; response expected value; variance; skewness

1. Introduction

The modeling and analysis of nuclear energy systems requires the synergetic interdisciplinary
coupling of concepts from several scientific and engineering fields, including nuclear and atomic physics,
materials sciences, heat and mass transfer, systems control theory, and economics. The modeling of
specific physical phenomena in any of these component scientific fields already involves large-scale
computations while using very large data sets. For example, modeling the physical processes occurring
in the nuclear reactor core, which is the “driver” of nuclear energy systems, requires the numerical
solution of the neutron and radiation transport equation, which is an integro-differential equation
in seven independent variables that involve a very large number of parameters for representing
physical processes involving nuclear cross sections, isotopic number densities, etc. These large-scale
computational aspects will be highlighted in this work, which will use the subcritical reactor physics
benchmark as a representative illustrative paradigm for second-order sensitivity and uncertainty
analysis of large-scale systems.

It is known that the adjoint sensitivity analysis methodology is the most efficient procedure for
exactly and exhaustively computing all of the 1st-order sensitivities of a system response (i.e., quantity
of interest) to the system’s parameters. Wigner [1] pioneered the use of adjoint operators in conjunction
with first-order perturbation theory, to compute exactly and exhaustively the first-order sensitivities
for linear systems. The large-scale system that was analyzed by Wigner [1] was the linear neutron
transport (and also diffusion) model of a nuclear reactor, in which the model response was the
reactor’s multiplication factor and the model parameters were the thousands of neutron cross sections
influencing the reactor’s behavior. Using the concepts of functional analysis, Cacuci [2–4] subsequently
conceived and developed the “adjoint sensitivity analysis methodology” for general nonlinear systems.
The field of reactor physics has also provided pioneering works [5–9] for computing selected 2nd-order
response sensitivities of the system’s effective multiplication factor and reaction rates (and ratios
thereof) while using the adjoint neutron transport and/or diffusion equations. It turned out that the
2nd-order relative sensitivities computed in these early works were considerably smaller than the
corresponding 1st-order relative sensitivities. These results, combined with the lack of a general
procedure for computing exhaustively all of the 2nd-order sensitivities, gave rise to the opinion that
“2nd-order sensitivities are generally insignificant in reactor physics”, which may, in turn, have led to
diminishing interest in developing efficient methods for computing 2nd-order sensitivities for nuclear
engineering systems. While the interest in computing 2nd-order response sensitivities practically
vanished in the nuclear engineering field in the 1990s, interest in this topic became increasingly evident
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in other fields (e.g., structural mechanics, circuit analysis and optimization, atmospheric and earth
sciences), mostly driven by the knowledge that 2nd-order (Hessian) sensitivity information accelerates
the convergence of optimization algorithms. It is beyond the scope of this work to provide and
exhaustive list of references in this regard, but some of the most influential early works on computing
2nd-order sensitivities are described in [10–12]. The common limitations of these early methods for
computing 2nd-order response sensitivities are: (i) they were all developed for specific, rather than
general, applications, for which they usually estimated, rather than exactly and inclusively computed,
all of the 2nd-order response sensitivities; and, (ii) they are computationally expensive, requiring
O
(
N2
α

)
large-scale computations per response for a system comprising Nα model parameters.

A breakthrough was achieved by Cacuci [10–12], who developed the “Second-Order Adjoint
Sensitivity Analysis Methodology (2nd-ASAM)” for exactly and most efficiently computing all of
the second-order functional derivatives of model responses to parameters. For a model response
comprising Nα model parameters, the 2nd-ASAM requires at most O(Nα) computations for obtaining
all of the N2

α 2nd-order sensitivities and all Nα 1st-order sensitivities of a model response with
respect to the respective model parameters. Furthermore, the 2nd-ASAM simultaneously intrinsically
verifies the computations of the mixed second-order partial sensitivities by computing them twice,
while using independently derived adjoint functions. The application of the 2nd-ASAM has been
illustrated by means analytically solvable linear [13–15] and nonlinear [16] benchmark problems,
which highlighted the fundamental importance of the 2nd-order sensitivities for causing asymmetries
in the response distribution, and causing the “expected value of the response” to differ from the
“computed nominal value of the response”. Cacuci and Favorite highlighted the efficiency and
accuracy of the 2nd-ASAM [17], who analyzed a multi-region radiation transport benchmark problem
in two-dimensional cylindrical geometry. For this benchmark problem, the 2nd-ASAM only needed
12 adjoint particle transport computations (instead of 877 large-scale forward particle transport
computations) to obtain exactly all of the 18 first-order sensitivities and 324 second-order sensitivities
of the un-collided gamma ray contributions to the detector’s response with respect to the system’s
microscopic cross sections, isotopic number densities, and source emission rates.

In addition to the particle transport and removal phenomena considered in [17], nuclear energy
systems also include fission and scattering processes. Such systems can be either critical (when
the system can be maintained in steady state without an external source of neutrons) or subcritical
(when the system’s time-independent state can only be maintained if an external source injects
neutrons into the system). Many critical and several subcritical systems have been evaluated and
accepted as fundamental physics benchmarks within the Nuclear Energy Agency (NEA) International
Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook [18]. Prominent among the ICSBEP
subcritical experiments are several experiments for which the particle source is a 4.5 kg alpha-phase
weapons grade plutonium sphere that was originally constructed at Los Alamos National Laboratory
in October 1980 [19]. This source became colloquially known as the “BeRP ball”, “BeRP” being an
acronym for “beryllium reflected plutonium” since the earliest experiments conducted with this source
were aimed at estimating the reactivity worth of beryllium reflectors. Subsequent experiments used the
BeRP ball as the source for experiments in which copper, tungsten, nickel, or polyethylene surrounded
the BeRP ball (see Ref. [20–23] and references therein). The polyethylene-reflected, nickel, and tungsten
benchmarks have been accepted in the ICSBEP book as fundamental physics benchmarks. For these
subcritical benchmarks, the fundamental quantities (i.e., system responses) of interest are singles
counting rate, doubles counting rate, and leakage multiplication. It is noteworthy that the response of
interest for subcritical systems is the leakage multiplication instead of the “critical multiplication”, which
would be of interest for critical systems.
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In their computational evaluation of neutron multiplicity measurements for the polyethylene-
reflected BeRP ball, Miller et al. [23] noticed that the computational results significantly disagreed
with the corresponding measurements of neutron multiplicity. Miller et al. [23] also performed a
limited forward sensitivity analysis (using re-computations with perturbed parameter values) of their
computed results with respect to the source-detector distance, dead time, isotopic composition, volume,
and density. They concluded [23] that “only a subtle variation in the value of the average number of
neutrons produced per fission” for 239Pu was able to improve the simulations of the plutonium sphere
for all of the cases”, while also noting that they did not take into account “the energy-dependence of
the average number of neutrons produced per fission”. Thus, the conclusion/implication in [23] is that
the discrepancy between the computational and experimental results is to be entirely assigned to the
uncertainty in the ”average number of neutrons produced per fission”. However, the “polyethylene-
reflected BeRP ball” contains many more imprecisely known nuclear data parameters, in addition
to those that were incidentally investigated in [23]. Therefore, in order to ascertain whether the
conclusion/implication in [23] is warranted or not, it is important to compute all of the 1st-order and
2nd-order sensitivities of responses of the “polyethylene-reflected BeRP ball” to the imprecisely known
nuclear data underlying this benchmark.

In preparation for the exhaustive 2nd-order sensitivity analysis of the “polyethylene-reflected
BeRP ball”, Cacuci [24–26] has specialized the 2nd-ASAM [10–12] to the generic neutron transport
equation that models multiplying subcritical systems comprising fission, scattering, and external
neutron sources. In particular, by considering responses that are functionals of the forward and adjoint
fluxes, Cacuci [24,25] has generalized to second-order the methodology presented by Gandini [27],
while the work [26] on responses that are ratios of functionals of the forward and adjoint fluxes has
been generalized to second-order the methodology presented by Stacey [28,29]. This work (and several
subsequent works to follow this one, as will be mentioned in the concluding section of this work)
will apply the general theoretical formulas derived in [24–26] to the “polyethylene-reflected BeRP
ball”. All in all, this application constitutes a pioneering demonstration of the unique capabilities
of the 2nd-ASAM to overcome the “curse of dimensionality”, which has thus far impeded the exact
computation of all of the 1st-order and 2nd-order response sensitivities for systems characterized by
large numbers of imprecisely known parameters.

This work is organized, as follows: Section 2 describes briefly the polyethylene-reflected plutonium
metal (“polyethylene-reflected BeRP ball”) benchmark, which shall henceforth be called the PERP
benchmark, in order to distinguish this benchmark from the other benchmarks, which also used
the plutonium sphere (“BeRP Ball”) as the source of particles, but surrounded by materials other
than polyethylene. Section 2 also describes the computational tools that will be used to solve the
neutron transport equation that models the PERP benchmark. Section 3 reports the numerical results
for the vector (comprising 180 elements) of 1st-order sensitivities of the benchmark’s total leakage
response with respect to the benchmark’s group-averaged isotopic total cross sections. Section 4
presents the numerical results for the matrix (comprising 32,400 elements) of 2nd-order sensitivities
of the benchmark’s leakage response with respect to the benchmark’s group-averaged isotopic total
cross sections. These results will highlight the finding that many of the 2nd-order sensitivities are much
larger than the corresponding 1st-order sensitivities. Section 5 presents the numerical results for the
180 first-order and 32,400 second-order sensitivities of the benchmark’s leakage response with respect
to the group-averaged isotopic capture cross sections, and compares these results to the corresponding
results presented in Sections 3 and 4 for the total cross sections. Section 6 quantifies the effects of the
2nd-order leakage response sensitivities with respect to the isotopic total cross sections on the leakage
responses expected value, variance, and skewness, and compares them to the corresponding effects
stemming from the 1st-order sensitivities. It is shown that the effects of the 2nd-order sensitivities are
very significant; neglecting them would cause large non-conservative errors by under-estimating the
response variance and expected value. The 2nd-order sensitivities shift the leakage response’s expected
value significantly away from the computed value of the leakage response, and cause asymmetries in
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the response distribution. Section 7 presents conclusions that highlight the significance of the novel
results that were obtained in this work and sets the stage for the subsequent works in this sequel,
which will present the results for the 1st- and 2nd-order sensitivities to the remaining imprecisely
known nuclear data parameters that characterize the PERP benchmark.

2. Methodology for Computing the Leakage Response of the Polyethylene-Reflected Plutonium
Metal Sphere (PERP) Benchmark

The inner sphere of the PERP benchmark has a radius r1 = 3.794 cm and it contains α-phase
plutonium. It is surrounded by a spherical shell reflector made of polyethylene of thickness 3.81 cm;
the radius of the outer shell containing polyethylene is r2 = 7.604 cm. Table 1 specifies the constitutive
materials of the PERP benchmark.

Table 1. Dimensions and material composition of the polyethylene-reflected plutonium (PERP) benchmark.

Materials Isotopes Weight
Fraction Density (g/cm3) Zones

Material 1
(plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6 Material 1 is assigned to zone 1,
which has a radius of 3.794 cm.

Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1
0.95

Material 2 is assigned to zone 2,
which has an inner radius of 3.794 cm

and an outer radius of 7.604 cm.
Isotope 6 (1H) 1.4370 × 10−1

The neutron flux distribution within the PERP benchmark is computed by using the PARTISN [30]
multigroup discrete ordinates particle transport code to solve the following multi-group approximation
of the neutron transport equation with a spontaneous fission source being provided by the code
SOURCES4C [31]:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (1)

ϕg(rd, Ω) = 0, rd ∈ Sb, Ω · n < 0, g = 1, . . . , G, (2)

where rd denotes the external radius of the PERP benchmark, and where

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (r)ϕ

g(r, Ω)

−

G∑
g′=1

∫
4π

Σg′→g
s

(
r, Ω

′

→ Ω
)
ϕg′

(
r, Ω

′
)
dΩ

′

− χg(r)
G∑

g′=1

∫
4π

(νΣ)g′

f (r)ϕ
g′
(
r, Ω

′
)
dΩ

′

, (3)

Qg(r) ,
N f∑
k=1

λkNk,1FSF
k ν

SF
k e−Eg/ak sinh

√
bkEg, g = 1, . . . , G. (4)

The PARTISN [30] computations used MENDF71X [32] 618-group cross sections collapsed to
G = 30 energy groups, with group boundaries, Eg, as presented in Table 2. The MENDF71X library uses
ENDF/B-VII.1 Nuclear Data [33]. The group boundaries, Eg, are user-defined and they are therefore
considered to be perfectly-well known parameters.
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Table 2. Energy group structure, in [MeV], for PERP Benchmark computations.

g 1 2 3 4 5 6
Eg 1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100 6.07 × 100

Eg−1 1.70 × 101 1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100

g 7 8 9 10 11 12
Eg 3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100 8.23 × 10−1

Eg−1 6.07 × 100 3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100

g 13 14 15 16 17 18
Eg 5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2 9.12 × 10−3

Eg−1 8.23 × 10−1 5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2

g 19 20 21 22 23 24
Eg 3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5 2.26 × 10−5

Eg−1 9.12 × 10−3 3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5

g 25 26 27 28 29 30
Eg 8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7 1.39 × 10−10

Eg−1 2.26 × 10−5 8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7

PARTISN [30] uses the discrete-ordinates approximation to discretize the angular variable in the
first and second terms on the right side of Equation (3), and it uses a finite-moments expansion in
spherical harmonics to approximate the angular variable in the third and fourth terms on the right side
of Equation (3). The specific computations in this work were performed while using a P3 Legendre
expansion of the scattering cross section, an angular quadrature of S256, and a fine-mesh spacing of
0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 cm, and 762 meshes for
the polyethylene shell of thickness of 3.81 cm). It is convenient to retain the continuous representation
in the angular and radial variables since the spatial and angular discretization parameters will not
be considered for sensitivity analysis in this work, as in Equation (1). The various quantities in
Equations (1)–(4) have their usual meanings for the standard form of the multigroup neutron transport
equation [34], as follows:

1. The quantityϕg(r, Ω) is the customary “group-flux” for group g, and is the unknown state-function
obtained by solving Equations (1) and (2).

2. The vector n denotes the outward unit normal vector at each point on the sphere’s outer boundary,
denoted as Sb.

3. The spontaneous-fission isotopes in the PERP benchmark are “isotope 1” (239Pu) and “isotope 2”
(240Pu). The quantity N f denotes the total number of spontaneous-fission isotopes; for the PERP
benchmark, N f = 2. The spontaneous fission neutron spectrum of 239Pu and, respectively, 240Pu,
is approximated by a Watts fission spectrum while using two evaluated parameters, denoted as ak
and bk, respectively. The decay constant for actinide nuclide k is denoted as λk, and FSF

k denotes
the fraction of decays that are spontaneous fission (the “spontaneous-fission branching fraction”).

4. The quantity Ni,m denotes the atom density of isotope i in material m; i = 1, . . . , I, m = 1, . . . , M,
where I denotes the total number of isotopes, and M denotes the total number of materials.
The computation of Ni,m uses the well-known expression

Ni,m ,
ρmwi,mNA

Ai
, (5)

where ρm denotes the mass density of material m, m = 1, . . . , M; wi,m denotes the weight fraction
of isotope i in material m; Ai denotes the atomic weight of isotope i, i = 1, . . . , I; NA denotes the
Avogadro’s number. For the PERP benchmark, I = 6 and M = 2, but since the respective isotopes
are all distinct (i.e., are not repeated) in the PERP benchmark’s distinct materials, as specified
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in Table 1, it follows that only the following isotopic number densities exist for this benchmark:
N1,1, N2,1, N3,1, N4,1, N5,2, N6,2.

5. The quantity Σg′→g
s

(
r, Ω

′

→ Ω
)

represents the scattering transfer cross section from energy group
g′, g′ = 1, . . . , G into energy group g, g = 1, . . . , G, and it is computed in terms of the l-th
order Legendre coefficient σg′→g

s,l,i (of the Legendre-expanded microscopic scattering cross section
from energy group g′ into energy group g for isotope i), which are tabulated parameters, in the
following finite-order expansion:

Σg′→g
s

(
Ω
′

→ Ω
)
=

M=2∑
m=1

Σg′→g
s,m

(
Ω
′

→ Ω
)
,

Σg′→g
s,m

(
Ω
′

→ Ω
)
�

I=6∑
i=1

Ni,m
ISCT=3∑

l=0
(2l + 1)σg′→g

s,l,i (r)Pl
(
Ω
′

·Ω
)
, m = 1, 2,

(6)

where ISCT = 3 denotes the order of the respective finite expansion in Legendre polynomial.
The variable r will henceforth no longer appear in the arguments of the various cross sections
since the cross-sections for every material are treated in the PARTISN [30] calculations as being
space-independent within the respective material.

6. The total cross section Σg
t for energy group g, g = 1, . . . , G, and material m, is computed for the

PERP benchmark while using the following expression:

Σg
t =

M=2∑
m=1

Σg
t,m; Σg

t,m =
I∑
i

Ni,mσ
g
t,i =

I∑
i

Ni,m

σg
f ,i + σ

g
c,i +

G∑
g′=1

σ
g→g′

s,l=0,i

, m = 1, 2, (7)

where σg
f ,i and σ

g
c,i denote, respectively, the tabulated group microscopic fission and neutron

capture cross sections for group g, g = 1, . . . , G. Other nuclear reactions, including (n,2n) and
(n,3n) reactions, are not present in this benchmark. The expressions in Equations (6) and (7)
indicate that the zeroth order (i.e., l = 0) scattering cross sections must be separately considered
from the higher order (i.e., l ≥ 1) scattering cross sections, since the former contribute to the total
cross sections, while the latter do not.

7. To solve Equation (1), PARTISN [30] computes the quantity
(
νΣ f

)g
using directly the quantities

(νσ)
g
f ,i, which are provided in data files for each isotope i, and energy group g, as follows

(
νΣ f

)g
=

M=2∑
m=1

(
νΣ f

)g

m
;
(
νΣ f

)g

m
=

I=6∑
i=1

Ni,m
(
νσ f

)g

i
, m = 1, 2. (8)

For the purposes of sensitivity analysis, the quantity νg
i , which quantifies the number of neutrons

that were produced per fission by isotope i and energy group g, can be obtained by using the
relation νg

f ,i = (νσ)
g
f ,i/σ

g
f ,i, where the isotopic fission cross sections σg

f ,i are available in data files
for computing reaction rates.

8. The quantity χg denotes the fission spectrum in energy group g, and it is defined in PARTISN [30]
as a space-independent quantity, as follows:

χg ,

N f∑
i=1

χ
g
i Ni,m

G∑
g′=1

(
νσ f

)g′

i
f g′

i

N f∑
i=1

Ni,m
G∑

g′=1

(
νσ f

)g′

i
f g′

i

, with
G∑

g=1

χ
g
i = 1, (9)
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where χg
i denotes the isotopic fission spectrum in group g, while f g

i denotes the corresponding
spectrum weighting function.

9. The vector α, which appears in the expression of the Boltzmann-operator Bg(α), represents the
“vector of imprecisely known model parameters” having 21,976 components, which are presented
in Table 3. The mathematical expression of α will be defined in the next section.

Table 3. Summary of imprecisely known parameters for the PERP benchmark.

Symbol Parameter Name Number of Parameters

σ
g
t,i

Multigroup microscopic total cross section for isotope i
and energy group g

180
f or i = 1, . . . , 6; g = 1, . . . , 30

σ
g′→g
s,l,i

Multigroup microscopic scattering cross section for l-th
order Legendre expansion, from energy group g′ into

energy group g, for isotope i

21,600
f or l = 0, . . . , 3; i = 1, . . . , 6;

g, g′ = 1, . . . , 30

σ
g
f ,i

Multigroup microscopic fission cross section i and energy
group g

60
f or i = 1, 2; g = 1, . . . , 30

ν
g
i

Average number of neutrons per fission for isotope i and
energy group g

60
f or i = 1, 2; g = 1, . . . , 30

χ
g
i Fission spectrum for isotope i and energy group g 60

f or i = 1, 2; g = 1, . . . , 30

q j Source parameters:λ1,λ2; FSF
1 , FSF

2 ; a1, a2; b1, b2; νSF
1 , νSF

2 10

Ni,m Isotopic number density for isotope i and material m 6
N1,1, N2,1, N3,1, N4,1, N5,2, N6,2

Jα Total number of parameters: 21,976

Symbol Parameter name Number of parameters

σ
g
c,i

Multigroup microscopic capture cross section for isotope
i and energy group g

180
f or i = 1, . . . , 6; g = 1, . . . , 30

As has been previously mentioned (see also Ref. [20–23] and references therein), the fundamental
quantities (i.e., system responses) of interest for subcritical benchmarks (such as the PERP benchmark)
are singles counting rate, doubles counting rate, the leakage multiplication, and the total leakage.
The total leakage is physically more meaningful than the count rates, because it does not depend on
the detector configuration. For this reason, many systems are characterized for practical applications
by their total leakage rather than by the count rate that a particular detector would see at a particular
distance. For this reason, this work considers the total leakage from the PERP benchmark to be the
paradigm response of interest for sensitivity analysis; sensitivities analyses of counting rates and
other responses can be performed in an analogous manner, by following the general ideas that will be
presented in this work (and in the subsequent related works).

Mathematically, the total neutron leakage from the PERP sphere, which is denoted as L(α),
will depend on all model parameters (indirectly, through the neutron flux) and it is defined, as follows:

L(α) ,
∫
Sb

dS
G∑

g=1

∫
Ω·n>0

dΩ Ω · nϕg(r, Ω). (10)

Figure 1 shows the histogram plot of the leakage for each energy group for the PERP
benchmark. The total leakage computed while using Equation (10) for the PERP benchmark is
1.7648× 106 neutrons/sec.



Energies 2019, 12, 4219 9 of 43

Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark

3. First-Order Sensitivities of the Total Leakage Response of the Polyethylene-Reflected
Plutonium (PERP) Metal Sphere Benchmark with Respect to the Parameters Underlying the
Benchmark’s Total Cross Sections

The first- and second-order sensitivities of the leakage response defined in Equation (10) will be
computed by particularizing the expressions that were provided by Cacuci [24] to the particular model
parameters and response pertaining to the PERP benchmark. Therefore, for convenient referencing,
the notation that was introduced by Cacuci [24] will also be used in this work. The various macroscopic
cross sections, fission spectra, and sources that appear in Equation (1) will depend on imprecisely
known model parameters, as will be discussed below.

In view of Equation (7), the total cross section Σg
t → Σg

t (t) is characterized by the vector of
parameters t, which is defined, as follows:

t ,
[
t1, . . . , tJt

]†
,

[
t1, . . . , tJσt ; n1, . . . , nJn

]†
, [σt; N]†, Jt , Jσt + Jn, (11)

where
N ,

[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6, (12)

σt ,
[
t1, . . . , tJσt

]†
,

[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σg
t,i, . . . , σ

1
t,i=I, . . . , σ

G
t,i=I

]†
,

i = 1, . . . , I; g = 1, . . . , G; Jσt = I ×G.
(13)

In Equations (11)–(13), the dagger denotes “transposition”, σg
t,i denotes the microscopic total cross

section for isotope i and energy group g, Ni,m denotes the respective isotopic number density, and Jn

denotes the total number of isotopic number densities in the model. Thus, the vector t comprises a
total of Jt = 30× 6 + 6 = 186 imprecisely known components (“model parameters”).

In view of Equation (6), the scattering cross section Σg′→g
s

(
Ω
′

→ Ω
)
→ Σg′→g

s

(
s; Ω

′

→ Ω
)

is
characterized by the vector of parameters s, which is defined, as follows:

s ,
[
s1, . . . , sJs

]†
,

[
s1, . . . , sJσs ; n1, . . . , nJn

]†
, [σs; N]†, Js , Jσs + Jn, (14)
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where

σs ,
[
s1, . . . , sJσs

]†
,

[
σ

g′=1→g=1
s,l=0,i=1 , σg′=2→g=1

s,l=0,i=1 , . . . , σg′=G→g=1
s,l=0,i=1 , σg′=1→g=2

s,l=0,i=1 , σg′=2→g=2
s,l=0,i=1 , . . . , σg′→g

s,l,i , . . . , σG→G
s,ISCT,i=I

]†
,

l = 0, . . . , ISCT; i = 1, . . . , I; g, g′ = 1, . . . , G; Jσs = (G×G) × I × (ISCT + 1).
(15)

In view of Equation (8), the quantity
(
νΣ f

)g
→

(
νΣ f

)g
(f) in the fission integral∫

4π
(νΣ)g′

f ϕ
g′
(
r, Ω

′
)
dΩ

′

depends on the vector of parameters f, which is defined, as follows:

f ,
[

f1, . . . , fJσ f ; fJσ f +1, . . . , fJσ f +Jν ; fJσ f +Jν+1, . . . , fJ f

]†
,

[
σ f ;ν; N

]†
, J f = Jσ f + Jν + Jn, (16)

with

σ f ,
[
σ1

f ,i=1, σ2
f ,i=1, . . . , σG

f ,i=1, . . . , σg
f ,i, . . . , σ

1
f ,i=N f

, . . . , σG
f ,i=N f

]†
,

[
f1, . . . , fJσ f

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jσ f = G×N f ,
(17)

ν ,
[
ν1

i=1, ν2
i=1, . . . , νG

i=1, . . . , νg
i , . . . , ν1

i=N f
, . . . , νG

i=N f

]†
,

[
fJσ f +1, . . . , fJσ f +Jν

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jν = G×N f ,
(18)

where σg
f ,i denotes the microscopic fission cross section for isotope i and energy group g, νg

i denotes
the average number of neutrons per fission for isotope i and energy group g, and N f denotes the total
number of fissionable isotopes.

The fission spectrum is considered to depend on the vector of parameters p, being defined
as follows:

p ,
[
p1, . . . , pJp

]†
,

[
χ

g=1
i=1 ,χg=2

i=1 , . . . ,χG
i=1, . . . ,χg

i , . . . ,χG
N f

]†
, i = 1, . . . , N f ; g = 1, . . . , G; Jp = G×N f . (19)

In view of Equation (9), the quantities χg further depend on the parameters χg
i , Ni,m, f g

i ,
(
νσ f

)g

i
,

but these latter dependences can be taken into account by applying the chain rule on the 1st-order
sensitivities ∂L/∂χg, once these sensitivities have been obtained.

In view of Equation (4), the source Qg(r)→ Qg(q; N) depends on the vector of model parameters
q, which is defined, as follows:

q ,
[
q1, . . . , qJq

]†
,

[
λ1,λ2; FSF

1 , FSF
2 ; a1, a2; b1, b2; νSF

1 , νSF
2

]†
, Jq = 10. (20)

In view of Equations (11)–(20), the model parameters characterizing the PERP benchmark can all
be considered to be the components of the following “vector of model parameters:”

α ,
[
α1, . . . ,αJα

]†
,

[
σt;σs;σ f ;ν; p; q; N

]†
, Jα = Jσt + Jσs + Jσ f + Jν + Jp + Jq + Jn. (21)

Thus, the total number of imprecisely known model parameters for the PERP benchmark is:
Jα = (I ×G) + (G×G) × I × (ISCT + 1) + 2

(
G×N f

)
+ G×N f + 10 + Jn = 21976. Table 3 summarizes

these parameters, together with their symbols. Furthermore, the 1st- and 2nd-order sensitivities of the
PERP benchmark’s total leakage response to the multigroup microscopic capture cross sections will also
be computed and presented in Section 5, for comparing these results to those that were obtained in
Section 4 for the sensitivities of the leakage response to the multigroup microscopic total cross sections.
Therefore, the last row of Table 3 lists the symbols and number of multigroup microscopic capture
cross sections.
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The components of the vector of 1st-order sensitivities of the leakage response with respect to the
model parameters is denoted as S(1)(α), and it is defined, as follows:

S(1)(α) ,

[
∂L(α)
∂σt

;
∂L(α)
∂σs

;
∂L(α)
∂σ f

;
∂L(α)
∂ν

;
∂L(α)
∂p

;
∂L(α)
∂q

;
∂L(α)
∂N

]†
. (22)

The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters is denoted as S(2)(α), and it is defined, as follows:

S(2)(α) ,



∂2L(α)
∂σt∂σt

∗ ∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σs∂σt

∂2L(α)
∂σs∂σs

∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σ f ∂σt

∂2L(α)
∂σ f ∂σs

∂2L(α)
∂σ f ∂σ f

∗ ∗ ∗ ∗

∂2L(α)
∂ν∂σt

∂2L(α)
∂ν∂σs

∂2L(α)
∂ν∂σ f

∂2L(α)
∂ν∂ν ∗ ∗ ∗

∂2L(α)
∂p∂σt

∂2L(α)
∂p∂σs

∂2L(α)
∂p∂σ f

∂2L(α)
∂p∂ν

∂2L(α)
∂p∂p ∗ ∗

∂2L(α)
∂q∂σt

∂2L(α)
∂q∂σs

∂2L(α)
∂q∂σ f

∂2L(α)
∂q∂ν

∂2L(α)
∂q∂p

∂2L(α)
∂q∂q ∗

∂2L(α)
∂N∂σt

∂2L(α)
∂N∂σs

∂2L(α)
∂N∂σ f

∂2L(α)
∂N∂ν

∂2L(α)
∂N∂p

∂2L(α)
∂N∂q

∂2L(α)
∂N∂N



. (23)

The expressions and numerical values of the components of S(1)(α) and S(2)(α) have been
obtained by particularizing the general results presented by Cacuci [24]. Evidently, the complete results
cannot be reported in a single article. Therefore, this work will only report the results for the 1st- and
2nd-order sensitivities of the leakage response with respect to the group-averaged total microscopic
cross sections, namely the vector ∂L(α)/∂σt and the matrix ∂2L(α)/∂σt∂σt. The 1st-order sensitivities
of the leakage response to the model parameters that underlie the total cross section are computed
from the following particular form of Equation (150) in [24]:

∂L(α)

∂σ
g
t,i

= −
G∑

g=1

∫
dV

∫
4π

dΩψ(1),g(r, Ω)ϕg(r, Ω)
∂Σg

t (t)

∂σ
g
t,i

, i = 1, . . . , I; g = 1, . . . , G, (24)

where the multigroup adjoint fluxes ψ(1),g(r, Ω) are the solutions of the following particular form of
1st-Level Adjoint Sensitivity System (1st-LASS) that is presented in Equations (156) and (157) of [24]:

A(1),g(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (25)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G, (26)

where rd is the radius of the PERP sphere, and where

A(1),g(α)ψ(1),g(r, Ω)

, −Ω·∇ψ(1),g(r, Ω) + Σg
t (t)ψ

(1),g(r, Ω) −
G∑

g′=1

∫
4π

dΩ
′

Σg→g′
s

(
s; Ω→ Ω

′
)
ψ(1),g′

(
r, Ω

′
)

−νΣg
f (f)

G∑
g′=1

∫
4π

dΩ
′

χg′(p)ψ(1),g′
(
r, Ω

′
)
, g = 1, . . . , G.

(27)

As detailed in [30], the PARTISN solver module solves the adjoint transport equation by transposing
(in energy) the matrices of scattering cross sections and inverting the group order of the problem.
The transposition of the scattering matrix converts a downscattering problem to an upscattering
problem, so that, the problem will execute in a downscatter-like mode by inverting the group order.
In addition to transposing the scattering matrices, the fission source term in the transport equation
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is also transposed, so that the summation χg
G∑

g′=1

(
νσ f

)g′
φg′(r) becomes

(
νσ f

)g G∑
g′=1

χg′φg′(r), where

φg′(r) =
MM∑
m=1

wm
∫

wm

ϕg′(r, Ω)dΩ and where the quantity wm denotes the weights in angle while the

quantity MM denotes the total number of angular discretization. The code does not transpose the
angular direction matrix that is associated with the leakage terms in the transport equation. Instead,
the adjoint calculation of the leakage operator proceeds as in the direct (forward) calculation, but the
results of the adjoint calculation for direction Ω must be identified as the adjoint solution for direction
Ω. For example, the vacuum boundary condition at a surface (no incoming angular flux) in an adjoint
calculation must be interpreted as a condition of no outgoing flux. Likewise, the adjoint leakage at a
surface is “incoming” instead of “outgoing”.

For the PERP benchmark, the following relations hold:

∂Σt
g

∂σ
g j

t,i j

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂σ

g j

t,i j

= δg j gNi j,m j , (28)

where the subscripts i j, g j, and m j denote the isotope, the energy group, and material associated with

the parameter σ
g j

t,i j
, respectively; and, δg j g denote the Kronecker-delta functionals (e.g., δg j g = 1 if

g j = g; δg j g = 0 if g j , g). Inserting Equation (28) into Equation (24) yields the following expression
for computational purposes:

∂L(α)

∂σ
g
t,i

= −Ni,m

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)ϕg(r, Ω), i = 1, . . . , I; g = 1, . . . , G; m = 1, . . . , M. (29)

The numerical values of the 1st-order relative sensitivities S(1)
(
σ

g
t,i

)
,

(
∂L/∂σg

t,i

)(
σ

g
t,i/L

)
, i =

1, . . . , 6; g = 1, . . . , 30 for the six isotopes contained in the PERP benchmark will be presented in Section 4,
below, in tables that will also include comparisons with the numerical values of the corresponding
2nd-order relative sensitivities S(2)

(
σ

g
t,i, σ

g
t,i

)
,

(
∂2L/∂σg

t,i∂σ
g
t,i

)(
σ

g
t,iσ

g
t,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30.

4. Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters
Underlying the Benchmark’s Total Cross Sections

The expressions of the 2nd-order sensitivities of the leakage response to the parameters that
underlie the total cross section will be obtained in this Section by starting with the following general
result presented in Equation (158) by Cacuci [24]:

∂2L
∂t j∂tm2

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂t j∂tm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂tm2

,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσt,

(30)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, are the
solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS) that is presented in
Equations (164)–(166) of [24]:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −ϕg(r, Ω)

∂Σt
g(t)
∂t j

, j = 1, . . . , Jσt; g = 1, . . . , G, (31)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσt; g = 1, . . . , G, (32)
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A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t)
∂t j

, j = 1, . . . , Jσt; g = 1, . . . , G, (33)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσt; g = 1, . . . , G. (34)

For the PERP benchmark, when the parameters t j and tm2 correspond to the total cross sections,

i.e., t j ≡ σ
g j

t,i j
and tm2 ≡ σ

gm2
t,im2

, respectively, the following relations hold:

∂2Σt
g(t)

∂t j∂tm2

=
∂2Σt

g(t)

∂σ
g j

t,i j
∂σ

gm2
t,im2

=

∂

∂Σt
g(t)

∂σ
gj
t,i j


∂σ

gm2
t,im2

= 0, (35)

∂Σt
g(t)

∂tm2

=
∂Σt

g(t)

∂σ
gm2
t,im2

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂σ

gm2
t,im2

= δgm2 gNim2 ,mm2
, (36)

∂Σt
g(t)
∂t j

=
∂Σt

g(t)

∂σ
g j

t,i j

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂σ

g j

t,i j

= δg j gNi j,m j , (37)

where the subscripts im2 , gm2 and mm2 denote the isotope, the energy group and material associated
with the parameter tm2 , respectively. Inserting Equations (35)–(37) into Equations (30), (31) and (33)
yields the following expression for the 2nd-order sensitivities of the leakage response to the parameters
involved in the definitions of the total cross sections:

∂2L
∂t j∂tm2

= −
∫

V dV
∫

4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
Nim2 ,mm2

,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσt,
(38)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, and ψ(2),g

2, j (r, Ω), j =
1, . . . , Jσt; g = 1, . . . , G, are the solutions of the following particular forms of Equations (31) and (33):

Bg
(
α0

)
ψ
(2),g
1, j (r,Ω) = −δg j gNi j,m jϕ

g(r,Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (39)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (40)

subject to the boundary conditions shown in Equations (32) and (34). All of the quantities appearing in
Equations (38)–(40) are evaluated at the nominal values of all the model parameters.

The 2nd-order absolute sensitivities of the leakage response with respect to the total cross sections,
i.e., ∂2L/∂t j∂tm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσt, for the I = 6 isotopes and G = 30 energy groups of
the PERP benchmark are computed while using Equation (38). The (Hessian) matrix ∂2L/∂t j∂tm2

of 2nd-order absolute sensitivities has dimensions Jσt × Jσt (= 180× 180), since Jσt = G× I = 30× 6.

The matrix of 2nd-order relative sensitivities, denoted as S(2)
(
σ

g
t,i, σ

g′

t,k

)
, is defined, as follows:

S(2)
(
σ

g
t,i, σ

g′

t,k

)
,

∂2L

∂σ
g
t,i∂σ

g′

t,k

σ
g
t,iσ

g′

t,k

L

, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30. (41)
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The numerical results obtained for the matrix S(2)
(
σ

g
t,i, σ

g′

t,k

)
, i, k = 1, . . . , 6 = I; g, g′ = 1, . . . , 30 = G,

have been partitioned into I × I = 36 submatrices, each of dimensions G × G(= 30× 30), and the

summary of the main features of each submatrix is presented in Table 4. The matrix S(2)
(
σ

g
t,i, σ

g′

t,k

)
is

symmetric, so only the results for the upper triangular submatrices are presented in the following
form: when a submatrix comprises elements with relative sensitivities with absolute values that are
greater than 1.0, the total number of such elements are counted and shown in the shaded cells of the
table. Otherwise, if the relative sensitivities of all the elements of a submatrix have values that lie in
the interval (−1.0, 1.0), only the element having the largest absolute value in the submatrix is listed in
Table 4, together with the phase-space coordinates of that element. The sub-matrices in Table 4, which
comprise components with absolute values greater than 1.0, will be discussed in detail in subsequent
sub-sections of this Section.

Table 4. Summary presentation of the matrix S(2)
(
σ

g
t,i, σ

g′

t,k

)
.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)
(
σ

g
t,1, σg′

t,1

)
98 elements

with
absolute

values >1.0

S(2)
(
σ

g
t,1, σg′

t,2

)
Max. value =
2.91× 10−1 at
g = 12, g′ = 12

S(2)
(
σ

g
t,1, σg′

t,3

)
Max. value =
1.30× 10−2 at
g = 12, g′ = 12

S(2)
(
σ

g
t,1, σg′

t,4

)
Max. value =
8.86× 10−3 at
g = 12, g′ = 12

S(2)
(
σ

g
t,1, σg′

t,5

)
10 elements with

absolute
values >1.0

S(2)
(
σ

g
t,1, σg′

t,6

)
135 elements with

absolute
values >1.0

i = 2
(240Pu)

S(2)
(
σ

g
t,2, σg′

t,2

)
Max. value =
2.50× 10−2 at

g = 27, g′ = 27

S(2)
(
σ

g
t,2, σg′

t,3

)
Max. value =
8.27× 10−4 at

g = 12, g′ = 12

S(2)
(
σ

g
t,2, σg′

t,4

)
Max. value =
5.61× 10−4 at

g = 12, g′ = 12

S(2)
(
σ

g
t,2, σg′

t,5

)
Max. value =
1.13× 10−1 at
g = 12, g′ = 12

S(2)
(
σ

g
t,2, σg′

t,6

)
3 elements with

absolute
values >1.0

i = 3
(69Ga)

S(2)
(
σ

g
t,3, σg′

t,3

)
Max. value =
3.76× 10−5 at

g = 13, g′ = 13

S(2)
(
σ

g
t,3, σg′

t,4

)
Max. value =
2.54× 10−5 at
g = 13, g′ = 13

S(2)
(
σ

g
t,3, σg′

t,5

)
Max. value =
1.28× 10−3 at

g = 12, g′ = 16

S(2)
(
σ

g
t,3, σg′

t,6

)
Max. value =
6.08× 10−2 at
g = 12, g′ = 30

i = 4
(71Ga)

S(2)
(
σ

g
t,4, σg′

t,4

)
Max. value =
1.71× 10−5 at

g = 12, g′ = 12

S(2)
(
σ

g
t,4, σg′

t,5

)
Max. value =
3.45× 10−3 at

g = 12, g′ = 30

S(2)
(
σ

g
t,4, σg′

t,6

)
Max. value =
4.12× 10−2 at
g = 12, g′ = 30

i = 5
(C)

S(2)
(
σ

g
t,5, σg′

t,5

)
1 element with

absolute
value >1.0

S(2)
(
σ

g
t,5, σg′

t,6

)
33 elements with

absolute
values >1.0

i = 6
(1H)

S(2)
(
σ

g
t,6, σg′

t,6

)
259 elements with

absolute
values >1.0

4.1. Second-Order Unmixed Relative Sensitivities S(2)
(
σ

g
t,1, σg

t,1

)
, i = 1, . . . , 6; g = 1, . . . , 30

The 2nd-order unmixed sensitivities S(2)
(
σ

g
t,1, σg

t,1

)
,

(
∂2L/∂σg

t,i=1∂σ
g
t,k=1

)(
σ

g
t,1σ

g
t,1/L

)
, i =

1, . . . , 6; g = 1, . . . , 30, are particularly important, since, as will be shown in Section 6, below, these
sensitivities will contribute to the moments (namely: expected values, variances/covariances, skewness)
of the response distribution, even when the model parameters are uncorrelated. The term “unmixed”
denotes the 2nd-order sensitivity with respect to the same parameter, and the term “mixed” denotes the
2nd-order sensitivity with respect to different parameters. Furthermore, the values of these unmixed
2nd-order relative sensitivities of the response to the model parameters can be directly compared to
the values of the 1st-order relative sensitivities S(1)

(
σ

g
t,1

)
,

(
∂L/∂σg

t,1

)(
σ

g
t,1/L

)
, i = 1, . . . , 6; g = 1, . . . , 30.

These comparisons are presented in Tables 5–10 for the six isotopes that are contained in the PERP
benchmark. Thus, Table 5 presents a side-by-side comparison of 1st-order relative sensitivities S(1)

(
σ

g
t,1

)
and 2nd-order relative sensitivities S(2)

(
σ

g
t,1, σg

t,1

)
, for isotope 1 (239Pu) and for all energy groups

g = 1, . . . , 30. This comparison indicates that the values of the 2nd-order sensitivities are generally
greater than the corresponding values of the 1st-order sensitivities for the same energy group. The
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largest values (shown in bold in the table) for both the 1st-order and 2nd-order relative sensitivities are
for the 12th energy group, while the next largest values are for the 13th energy group. It is noteworthy
that all of the 1st-order relative sensitivities are negative, which signifies that an increase in σg

t,1 will
cause a decrease in L.

Table 5. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=1

)(
σ

g
t,i=1/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

t,i=1∂σ
g
t,k=1

)(
σ

g
t,1σ

g
t,1/L

)
, g = 1, . . . , 30, for isotope 1 (239Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −0.0003 0.0003 16 −0.779 3.487
2 −0.0007 0.0005 17 −0.364 1.578
3 −0.0019 0.0015 18 −0.227 0.995
4 −0.009 0.007 19 −0.181 0.789
5 −0.046 0.043 20 −0.155 0.601
6 −0.135 0.162 21 −0.137 0.479
7 −0.790 1.987 22 −0.099 0.297
8 −0.726 1.768 23 −0.081 0.205
9 −0.843 2.205 24 −0.051 0.123

10 −0.845 2.177 25 −0.060 0.138
11 −0.775 1.879 26 −0.063 0.158
12 −1.320 4.586 27 −0.017 0.022
13 −1.154 4.039 28 −0.003 0.002
14 −0.952 3.435 29 −0.035 0.072
15 −0.690 2.487 30 −0.461 1.353

Table 6. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=2

)(
σ

g
t,i=2/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

t,i=2∂σ
g
t,k=2

)(
σ

g
t,i=2σ

g
t,k=2/L

)
, g = 1, . . . , 30, for isotope 2 (240Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −2.060 × 10−5 1.052 × 10−6 16 −4.864 × 10−2 1.357 × 10−2

2 −4.117 × 10−5 2.089 × 10−6 17 −2.236 × 10−2 5.943 × 10−3

3 −1.192 × 10−4 6.055 × 10−6 18 −1.358 × 10−2 3.571 × 10−3

4 −5.638 × 10−4 2.947 × 10−5 19 −1.021 × 10−2 2.522 × 10−3

5 −2.894 × 10−3 1.730 × 10−4 20 −8.914 × 10−3 2.000 × 10−3

6 −8.513 × 10−3 6.485 × 10−4 21 −6.716 × 10−3 1.159 × 10−3

7 −4.958 × 10−2 7.836 × 10−3 22 −4.676 × 10−3 6.577 × 10−4

8 −4.574 × 10−2 7.026 × 10−3 23 −7.458 × 10−3 1.760 × 10−3

9 −5.318 × 10−2 8.769 × 10−3 24 −4.371 × 10−3 8.923 × 10−4

10 −5.345 × 10−2 8.711 × 10−3 25 −8.131 × 10−4 2.522 × 10−5

11 −4.909 × 10−2 7.547 × 10−3 26 −9.171 × 10−4 3.322 × 10−5

12 −8.364 × 10−2 1.842 × 10−2 27 −1.862 × 10−2 2.499 × 10−2

13 −7.145 × 10−2 1.548 × 10−2 28 −9.671 × 10−3 1.545 × 10−2

14 −5.953 × 10−2 1.342 × 10−2 29 −1.364 × 10−4 1.120 × 10−6

15 −4.267 × 10−2 9.506 × 10−3 30 −7.909 × 10−3 3.978 × 10−4
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Table 7. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=3

)(
σ

g
t,i=3/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

t,i=3∂σ
g
t,k=3

)(
σ

g
t,i=3σ

g
t,k=3/L

)
, g = 1, . . . , 30, for isotope 3 (69Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −9.214 × 10−7 2.104 × 10−9 16 −2.551 × 10−3 3.733 × 10−5

2 −1.974 × 10−6 4.804 × 10−9 17 −1.262 × 10−3 1.893 × 10−5

3 −6.012 × 10−6 1.541 × 10−8 18 −8.411 × 10−4 1.371 × 10−5

4 −3.036 × 10−5 8.545 × 10−8 19 −8.605 × 10−4 1.790 × 10−5

5 −1.587 × 10−4 5.204 × 10−7 20 −6.458 × 10−4 1.050 × 10−5

6 −4.353 × 10−4 1.696 × 10−6 21 −3.919 × 10−4 3.949 × 10−6

7 −2.107 × 10−3 1.415 × 10−5 22 −1.489 × 10−4 6.668 × 10−7

8 −1.717 × 10−3 9.897 × 10−6 23 −1.104 × 10−4 3.859 × 10−7

9 −1.912 × 10−3 1.133 × 10−5 24 −3.199 × 10−5 4.778 × 10−8

10 −1.956 × 10−3 1.166 × 10−5 25 −1.726 × 10−5 1.136 × 10−8

11 −1.943 × 10−3 1.182 × 10−5 26 −5.147 × 10−5 1.046 × 10−7

12 −3.756 × 10−3 3.714 × 10−5 27 −2.586 × 10−5 4.825 × 10−8

13 −3.522 × 10−3 3.762 × 10−5 28 −8.496 × 10−7 1.192 × 10−10

14 −2.987 × 10−3 3.371 × 10−5 29 −6.754 × 10−7 2.747 × 10−11

15 −2.182 × 10−3 2.485 × 10−5 30 −2.542 × 10−5 4.111 × 10−9

Table 8. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=4

)(
σ

g
t,i=4/L

)
, g = 1, . . . , 30,

and 2nd-order relative sensitivities
(
∂2L/∂σg

t,i=4∂σ
g
t,k=4

)(
σ

g
t,i=4σ

g
t,k=4/L

)
, g = 1, . . . , 30, for isotope

4 (71Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −6.266 × 10−7 9.730 × 10−10 16 −1.662 × 10−3 1.585 × 10−5

2 −1.345 × 10−6 2.230 × 10−9 17 −8.176 × 10−4 7.950 × 10−6

3 −4.103 × 10−6 7.176 × 10−9 18 −5.318 × 10−4 5.479 × 10−6

4 −2.069 × 10−5 3.967 × 10−8 19 −4.939 × 10−4 5.898 × 10−6

5 −1.072 × 10−4 2.374 × 10−7 20 −3.976 × 10−4 3.979 × 10−6

6 −2.906 × 10−4 7.557 × 10−7 21 −2.344 × 10−4 1.413 × 10−6

7 −1.397 × 10−3 6.218 × 10−6 22 −2.170 × 10−3 1.416 × 10−4

8 −1.149 × 10−3 4.436 × 10−6 23 −1.337 × 10−4 5.659 × 10−7

9 −1.295 × 10−3 5.202 × 10−6 24 −1.322 × 10−5 8.156 × 10−9

10 −1.327 × 10−3 5.368 × 10−6 25 −7.518 × 10−6 2.154 × 10−9

11 −1.318 × 10−3 5.439 × 10−6 26 −2.313 × 10−5 2.112 × 10−8

12 −2.549 × 10−3 1.710 × 10−5 27 −1.201 × 10−5 1.041 × 10−8

13 −2.375 × 10−3 1.711 × 10−5 28 −4.131 × 10−7 2.818 × 10−11

14 −2.005 × 10−3 1.521 × 10−5 29 −3.512 × 10−7 7.429 × 10−12

15 −1.481 × 10−3 1.145 × 10−5 30 −1.665 × 10−5 1.764 × 10−9
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Table 9. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=5

)(
σ

g
t,i=5/L

)
, g = 1, . . . , 30,

and 2nd-order relative sensitivities
(
∂2L/∂σg

t,i=5∂σ
g
t,k=5

)(
σ

g
t,i=5σ

g
t,k=5/L

)
, g = 1, . . . , 30, for isotope

5 (C).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −9.992 × 10−6 1.066 × 10−6 16 −2.074 × 10−1 1.415 × 10−1

2 −2.017 × 10−5 2.185 × 10−6 17 −1.665 × 10−1 9.779 × 10−2

3 −6.373 × 10−5 7.901 × 10−6 18 −1.439 × 10−1 7.678 × 10−2

4 −2.996 × 10−4 3.873 × 10−5 19 −1.310 × 10−1 6.625 × 10−2

5 −1.597 × 10−3 2.359 × 10−4 20 −1.212 × 10−1 5.905 × 10−2

6 −4.403 × 10−3 6.521 × 10−4 21 −1.129 × 10−1 5.347 × 10−2

7 −3.698 × 10−2 9.376 × 10−3 22 −1.036 × 10−1 4.747 × 10−2

8 −4.631 × 10−2 1.447 × 10−2 23 −9.589 × 10−2 4.280 × 10−2

9 −4.502 × 10−2 1.114 × 10−2 24 −8.693 × 10−2 3.756 × 10−2

10 −5.135 × 10−2 1.368 × 10−2 25 −8.213 × 10−2 3.496 × 10−2

11 −5.645 × 10−2 1.633 × 10−2 26 −7.550 × 10−2 3.142 × 10−2

12 −1.345 × 10−1 6.055 × 10−2 27 −6.727 × 10−2 2.701 × 10−2

13 −1.529 × 10−1 8.249 × 10−2 28 −6.224 × 10−2 2.437 × 10−2

14 −1.504 × 10−1 8.573 × 10−2 29 −5.995 × 10−2 2.298 × 10−2

15 −1.299 × 10−1 6.928 × 10−2 30 −7.847 × 10−1 3.016

Table 10. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

t,i=6

)(
σ

g
t,i=6/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

t,i=6∂σ
g
t,k=6

)(
σ

g
t,i=6σ

g
t,k=6/L

)
, g = 1, . . . , 30, for isotope 6 (1H).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −8.471 × 10−6 7.636 × 10−7 16 −1.164 4.460
2 −2.060 × 10−5 2.280 × 10−6 17 −1.173 4.853
3 −6.810 × 10−5 9.021 × 10−6 18 −1.141 4.828
4 −3.932 × 10−4 6.673 × 10−5 19 −1.094 4.619
5 −2.449 × 10−3 5.549 × 10−4 20 −1.033 4.284
6 −9.342 × 10−3 2.935 × 10−3 21 −9.692 3.937
7 −7.589 × 10−2 3.949 × 10−2 22 −8.917 × 10−1 3.515
8 −9.115 × 10−2 5.604 × 10−2 23 −8.262 × 10−1 3.177
9 −1.358 × 10−1 1.014 × 10−1 24 −7.495 × 10−1 2.792
10 −1.659 × 10−1 1.428 × 10−1 25 −7.087 × 10−1 2.604
11 −1.899 × 10−1 1.849 × 10−1 26 −6.529 × 10−1 2.349
12 −4.446 × 10−1 6.620 × 10−1 27 −5.845 × 10−1 2.039
13 −5.266 × 10−1 9.782 × 10−1 28 −5.474 × 10−1 1.885
14 −5.772 × 10−1 1.262 29 −5.439 × 10−1 1.891
15 −5.820 × 10−1 1.391 30 −9.366 4.296 × 102

The results that are presented in Tables 6–9 indicate that both the 1st-order and 2nd-order unmixed
sensitivities for the isotopes 240Pu, 69Ga, 71Ga, and C, respectively, are very small. Furthermore,
the 1st-order relative sensitivities are all greater than the 2nd-order relative sensitivities, except for the
2nd-order unmixed sensitivities of the leakage with respect to the total cross section of Carbon in the
lowest-energy group. For the isotopes 240Pu, 69Ga, 71Ga, the largest values for both the 1st-order and
2nd-order relative sensitivities are for the 12th energy group. For the isotope C, the largest values for
both the 1st-order and 2nd-order relative sensitivities are for the 30th, i.e., the lowest energy group. It is
noteworthy that all of the 1st-order relative sensitivities that are presented in Tables 6–9 are negative,
which signify that an increase in the corresponding microscopic cross sections will cause a decrease in
the value of the response L (i.e., fewer neutrons will leak out of the sphere).

As shown in Tables 6–9, the 1st-order relative sensitivities are all greater than the 2nd-order
relative sensitivities for isotopes 2, 3, 4, and 5 (with one exception, for isotope 5 at g = 30). However,
the results that are presented in Tables 5 and 10 indicate that, for isotope 1 (239Pu) and isotope 6
(1H), the 1st-order relative sensitivities are generally smaller than the 2nd-order relative sensitivities.
For isotope 6 (1H), the largest relative sensitivities (marked in bold digits) occur for the lowest-energy
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group. Remarkably, the respective 2nd-order unmixed sensitivity is larger by a factor of about 50 than
the corresponding 1st-order relative sensitivity. As for the other isotopes comprising the PERP sphere,
all of the 1st-order relative sensitivities that are presented in Table 9 are negative, which signify that
an increase in the corresponding microscopic group cross sections of 1H will also cause a decrease
in the value of the response L (i.e., fewer neutrons will leak out of the sphere). All in all, the results
in Tables 5–10 indicate that largest 1st- and 2nd-order sensitivities, and hence the most important
consequent effects, arise from the total microscopic cross sections of isotopes 1H and 239Pu.

All the values for the 1st-order and unmixed 2nd-order relative sensitivities, as shown in Tables 5–10,
have been independently verified with the results being obtained from the central-difference estimates
by repeated forward PARTISN computations, in which the isotopic cross section for each group was
perturbed by a small amount at a time. These verifications showed good agreement between the
sensitivities that were computed while using the 2nd-LASS and the corresponding ones that were
computed using central-difference methods. For the large sensitivities in group 30, the verifications
were as follows:

(1) As shown in Table 10, the 2nd-LASS-computed 1st-order relative sensitivity for the 30th group of
isotope 1H has the value −9.366; the value of the corresponding absolute sensitivity computed
using the central-difference method is −5.59657 × 105, which yields the relative sensitivity value(
∂L/∂σ30

t,6

)(
σ30

t,6/L
)
=

(
−5.59657× 105

)(
29.54327/1.7648× 106

)
= −9.369; the two values agree

well with one another.
(2) As shown in Table 10, the 2nd-LASS-computed unmixed 2nd-order relative sensitivity for the

30th group of isotope 1H has the value of 429.6; the value of the corresponding absolute sensitivity
computed while using the central-difference method is 8.706316 × 105, which yields the relative
sensitivity value

(
∂2L/∂σ30

t,6∂σ
30
t,6

)(
σ30

t,6σ
30
t,6/L

)
=

(
8.70632× 105

)(
29.543272/1.7648× 106

)
= 430.6;

the two values agree well with one another.
(3) As shown in Table 9, the 2nd-LASS-computed unmixed 2nd-order relative sensitivity for the 30th

group of isotope C has the value of 3.016; the value of the corresponding absolute sensitivity
computed while using the central-difference method is 2.179357 × 105, which yields the relative
sensitivity value

(
∂2L/∂σ30

t,5∂σ
30
t,5

)(
σ30

t,5σ
30
t,5/L

)
=

(
2.179357× 105

)(
4.946312/1.7648× 106

)
= 3.021;

the two values show good agreement with each other.

Additional verifications of the results shown in Tables 4–10, especially for the large sensitives
for group 30 of isotopes C and 1H, the neutron flux was re-computed by using PARTISN [30] that
was coupled to the spontaneous fission source computed while using the code MISC [35] instead of
SOURCES4C [31]. MISC provides an alternative to SOURCES4C for computing the source for the
neutron transport equation. The sensitivities of the leakage response to the total cross sections obtained
by using PARTISN+MISC agree very well with those obtained while using PARTISN+SOURCES4C.
For example, MISC+PARTISN yields the values −9.36595 and 429.627, respectively, for the 1st- and
2nd-order relative sensitivities to the 30th group of the total cross section for isotope 1H. These values
match very well the corresponding values of −9.36599 and 429.643, respectively, which were obtained
using PARTISN+SOURCES4C, as listed in Table 10. These additional independent verifications (using
PARTISN+MISC) of the results obtained using the coupled codes PARTISN+SOURCES4C alleviate
any concerns regarding the accuracy of the computations of the spontaneous fission source for the
PERP benchmark.

4.2. Second-Order Mixed Relative Sensitivities for the Leakge Response with respect to the Microscopic Total

Cross Sections of Isotope 239Pu, S(2)
(
σ

g
t,i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30

Figure 2 depicts the results that were obtained for S(2)
(
σ

g
t,i=1, σg′

t,k=1

)
,(

∂2L/∂σg
t,i=1∂σ

g′

t,k=1

)(
σ

g
t,i=1σ

g′

t,k=1/L
)
, g, g′ = 1, . . . , 30, referring to 239Pu. This matrix is symmetrical,
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of course, with respect to its principal diagonal. As shown in this figure, 98 elements have relative
sensitivities greater than 1.0, the majority (93 out of 98) of which are concentrated in the energy region
that was confined by the energy groups g = 7, . . . , 16 and g′ = 7, . . . , 16. Table 11 presents the actual
numerical values of these elements. The largest value among these sensitivities is attained by the

relative 2nd-order unmixed sensitivity S(2)
(
σ

g=12
t,i=1 , σg′=12

t,k=1

)
= 4.586 of the leakage response with respect

to the total cross section, σg=12
t,1 , of 239Pu in energy group 12.

Figure 2. The matrix of sensitivities S(2)
(
σ

g
t,i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30, for 239Pu.

In addition to the sensitivities presented in Table 11, the following 2nd-order relative sensitivities
of the leakage response with respect to the group-averaged total microscopic cross sections of
239Pu are greater than 1.0: S(2)

(
σ30

t,i=1, σ12
t,k=1

)
= S(2)

(
σ12

t,i=1, σ30
t,k=1

)
= 1.179, S(2)

(
σ30

t,i=1, σ13
t,k=1

)
=

S(2)
(
σ13

t,i=1, σ30
t,k=1

)
= 1.056, and S(2)

(
σ30

t,i=1, σ30
t,k=1

)
= 1.354.

Table 11. Components of S(2)
(
σ

g
t,i=1, σg′

t,k=1

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

g′ = 6 7 8 9 10 11 12 13 14 15 16 17

g = 6 0.162 0.194 0.176 0.204 0.205 0.188 0.319 0.280 0.233 0.170 0.194 0.091
7 0.194 1.987 1.022 1.182 1.179 1.080 1.842 1.622 1.349 0.985 1.123 0.530
8 0.176 1.022 1.768 1.107 1.092 0.994 1.695 1.493 1.244 0.909 1.037 0.490
9 0.204 1.182 1.107 2.205 1.279 1.157 1.970 1.735 1.445 1.056 1.205 0.570

10 0.205 1.179 1.092 1.279 2.178 1.175 1.975 1.740 1.448 1.059 1.209 0.573
11 0.188 1.080 0.994 1.157 1.175 1.879 1.825 1.591 1.328 0.971 1.109 0.527
12 0.319 1.842 1.695 1.970 1.975 1.825 4.586 2.733 2.264 1.655 1.897 0.906
13 0.280 1.622 1.493 1.735 1.740 1.591 2.733 4.039 2.013 1.462 1.676 0.804
14 0.233 1.349 1.244 1.445 1.448 1.328 2.264 2.013 3.435 1.249 1.390 0.672
15 0.170 0.985 0.909 1.056 1.059 0.971 1.655 1.462 1.249 2.487 1.076 0.493
16 0.194 1.123 1.037 1.205 1.209 1.109 1.897 1.676 1.390 1.076 3.487 0.608
17 0.091 0.530 0.490 0.570 0.573 0.527 0.906 0.804 0.672 0.493 0.608 1.578

4.3. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope 239Pu and Isotope C, S(2)
(
σ

g
t,i=1, σg′

t,k=5

)
, g, g′ = 1, . . . , 30

The 30 × 30-matrix, S(2)
(
σ

g
t,i=1, σg′

t,k=5

)
, g, g′ = 1, . . . , 30, comprising the 2nd-order relative

sensitivities of the leakage response with respect to the total microscopic cross sections of isotope 1
(239Pu) and isotope 5 (C), has just 10 components that have absolute values greater than 1.0; Table 12
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presents these components. All of these components involve the total cross section σg′=30
t,k=5 , which

corresponds to the lowest energy group g′ = 30 of isotope 5 (C).

Table 12. Components of S(2)
(
σ

g
t,i=1, σg′

t,k=5

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Energy
Groups

g = 7
g′ = 30

g = 9
g′ = 30

g = 10
g′ = 30

g = 11
g′ = 30

g = 12
g′ = 30

g = 13
g′ = 30

g = 14
g′ = 30

g = 15
g′ = 30

g = 16
g′ = 30

g = 30
g′ = 30

Values 1.019 1.105 1.115 1.032 1.789 1.607 1.360 1.006 1.159 1.260

4.4. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope 239Pu and Isotope 1H, S(2)
(
σ

g
t,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30

Figure 3 depicts the mixed relative sensitivities S(2)
(
σ

g
t,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30 of the leakage

response with respect to the total cross sections of isotope 1 (239Pu) and isotope 6 (1H). This figure
comprises 135 mixed 2nd-order relative sensitivities having values that are greater than 1.0, the large
majority of which are concentrated in the energy region confined by the energy groups g = 7, . . . , 16 and
g′ = 16, . . . , 26, respectively. The largest of these sensitivities is S(2)

(
σ12

t,i=1, σ30
t,k=6

)
= 21.35; the second

largest value is S(2)
(
σ30

t,i=1, σ30
t,k=6

)
= 15.04. Tables 13 and 14 present the 135 elements of the sensitivity

matrix, S(2)
(
σ

g
t,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, which have relative sensitivity values that are greater

than 1.0.

4.5. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope 240Pu and Isotope 1H, S(2)
(
σ

g
t,i=2, σg′

t,k=6

)
, g, g′ = 1, . . . , 30

Only three components of the sensitivity matrix S(2)
(
σ

g
t,i=2, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, of the

2nd-order sensitivities of the leakage response with respect to the total cross sections of isotope 2 (240Pu)

and isotope 6 (1H) have values greater than 1.0. These three sensitivities are: S(2)
(
σ

g=12
t,i=2 , σg′=30

t,k=6

)
= 1.353,

S(2)
(
σ

g=13
t,i=2 , σg′=30

t,k=6

)
= 1.187, and S(2)

(
σ

g=14
t,i=2 , σg′=30

t,k=6

)
= 1.014, all involving the total cross section σg′=30

t,k=6

of isotope 6 (1H).

Figure 3. The matrix of sensitivities S(2)
(
σ

g
t,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, for 239Pu and 1H.
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Table 13. Components of S(2)
(
σ

g
t,i=1, σg′

t,k=6

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

g′ = 13 14 15 16 17 18 19 20 21

g = 6 0.100 0.115 0.120 0.246 0.253 0.248 0.239 0.227 0.213
7 0.585 0.671 0.699 1.437 1.476 1.449 1.396 1.323 1.243
8 0.544 0.624 0.649 1.335 1.370 1.346 1.296 1.228 1.154
9 0.636 0.729 0.759 1.561 1.602 1.573 1.515 1.435 1.348

10 0.643 0.737 0.766 1.576 1.617 1.588 1.529 1.448 1.361
11 0.596 0.682 0.709 1.459 1.497 1.469 1.415 1.340 1.260
12 1.049 1.182 1.228 2.529 2.596 2.548 2.454 2.324 2.184
13 1.132 1.076 1.103 2.271 2.332 2.290 2.205 2.088 1.963
14 0.718 1.117 0.946 1.919 1.972 1.937 1.866 1.768 1.661
15 0.527 0.611 0.878 1.428 1.458 1.433 1.381 1.309 1.230
16 0.617 0.712 0.749 1.927 1.677 1.646 1.588 1.505 1.415
17 0.310 0.360 0.379 0.794 1.055 0.785 0.757 0.718 0.676
18 0.205 0.240 0.255 0.535 0.565 0.731 0.475 0.451 0.424
19 0.169 0.198 0.211 0.444 0.469 0.472 0.600 0.356 0.335
20 0.147 0.172 0.183 0.387 0.408 0.410 0.402 0.497 0.279
21 0.131 0.154 0.164 0.346 0.365 0.366 0.359 0.347 0.421
22 0.096 0.113 0.121 0.254 0.267 0.268 0.263 0.253 0.245
23 0.079 0.093 0.098 0.207 0.218 0.218 0.214 0.206 0.198
24 0.050 0.059 0.063 0.133 0.139 0.140 0.137 0.132 0.126
25 0.060 0.070 0.075 0.157 0.164 0.164 0.161 0.155 0.148
26 0.063 0.074 0.078 0.164 0.173 0.172 0.169 0.162 0.156
27 0.017 0.020 0.021 0.045 0.047 0.047 0.046 0.044 0.042
28 0.003 0.004 0.004 0.009 0.009 0.009 0.009 0.009 0.009
29 0.035 0.041 0.044 0.091 0.096 0.096 0.093 0.090 0.086
30 0.469 0.550 0.585 1.226 1.283 1.280 1.252 1.204 1.153

Table 14. Continuation of Table 13.

g′ = 22 23 24 25 26 27 28 29 30

g = 6 0.196 0.181 0.164 0.156 0.144 0.128 0.120 0.121 2.086
7 1.142 1.058 0.957 0.909 0.838 0.746 0.700 0.704 12.17
8 1.060 0.982 0.888 0.843 0.777 0.693 0.650 0.653 11.29
9 1.239 1.148 1.038 0.986 0.908 0.810 0.759 0.763 13.19

10 1.251 1.159 1.048 0.995 0.917 0.817 0.766 0.770 13.31
11 1.157 1.072 0.970 0.921 0.848 0.756 0.709 0.713 12.32
12 2.007 1.859 1.682 1.596 1.471 1.312 1.230 1.235 21.35
13 1.804 1.671 1.512 1.435 1.322 1.179 1.105 1.110 19.18
14 1.527 1.414 1.280 1.214 1.119 0.998 0.935 0.939 16.23
15 1.130 1.047 0.947 0.899 0.828 0.739 0.693 0.695 12.01
16 1.301 1.205 1.091 1.035 0.954 0.850 0.798 0.801 13.83
17 0.622 0.576 0.521 0.495 0.456 0.407 0.382 0.384 6.622
18 0.391 0.362 0.328 0.312 0.287 0.256 0.240 0.242 4.170
19 0.309 0.287 0.259 0.246 0.227 0.202 0.190 0.191 3.297
20 0.257 0.239 0.216 0.205 0.189 0.169 0.158 0.159 2.748
21 0.222 0.206 0.186 0.177 0.163 0.146 0.137 0.137 2.372
22 0.293 0.148 0.134 0.127 0.117 0.105 0.098 0.099 1.706
23 0.188 0.228 0.107 0.102 0.094 0.084 0.079 0.079 1.366
24 0.120 0.115 0.140 0.065 0.060 0.054 0.050 0.051 0.873
25 0.140 0.134 0.127 0.159 0.070 0.062 0.058 0.059 1.012
26 0.147 0.140 0.132 0.130 0.163 0.066 0.062 0.062 1.069
27 0.040 0.038 0.036 0.035 0.034 0.043 0.017 0.017 0.296
28 0.008 0.008 0.007 0.007 0.007 0.006 0.008 0.003 0.058
29 0.081 0.077 0.072 0.070 0.067 0.064 0.063 0.084 0.581
30 1.087 1.033 0.969 0.938 0.894 0.837 0.812 0.818 15.04
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4.6. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope C, S(2)
(
σ

g
t,i=5, σg′

t,k=5

)
, g, g′ = 1, . . . , 30

A single component of the sensitivity matrix S(2)
(
σ

g
t,i=5, σg′

t,k=5

)
, g, g′ = 1, . . . , 30, of 2nd-order

sensitivities of the leakage response with respect to the total cross sections of isotope 5 (C) is larger

than 1.0, namely S(2)
(
σ

g=30
t,5 , σg′=30

t,5

)
= 3.016.

4.7. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope C and Isotope 1H, S(2)
(
σ

g
t,i=5, σg′

t,k=6

)
, g, g′ = 1, . . . , 30

As presented in Table 15, there are 33 elements in the sensitivity matrix S(2)
(
σ

g
t,i=5, σg′

t,k=6

)
, g, g′ =

1, . . . , 30, of 2nd-order sensitivities of the leakage response with respect to the total cross sections of
isotope 5 (C) and isotope 6 (1H), which have values that are greater than 1.0. Specifically, 18 out of
the 33 elements involve the cross section σg′=30

t,6 for group g′ = 30 of isotope 6 (1H), and the other

15 elements involve the cross section σg=30
t,5 for group g = 30 of isotope 5 (C).

Table 15. Components of S(2)
(
σ

g
t,i=5, σg′

t,i=6

)
, g, g′ = 1, . . . , 30 having values greater than 1.0.

Energy
Groups

g = 12
g′ = 30

g = 13
g′ = 30

g = 14
g′ = 30

g = 15
g′ = 30

g = 16
g′ = 30

g = 17
g′ = 30

g = 18
g′ = 30

g = 19
g′ = 30

g = 20
g′ = 30

g = 21
g′ = 30

g = 22
g′ = 30

Values 1.945 2.446 2.598 2.380 4.003 3.353 2.979 2.772 2.618 2.494 2.352
Energy
Groups

g = 23
g′ = 30

g = 24
g′ = 30

g = 25
g′ = 30

g = 26
g′ = 30

g = 27
g′ = 30

g = 28
g′ = 30

g = 29
g′ = 30

g = 30
g′ = 16

g = 30
g′ = 17

g = 30
g′ = 18

g = 30
g′ = 19

Values 2.238 2.103 2.037 1.942 1.814 1.740 1.696 1.883 1.979 1.979 1.939
Energy
Groups

g = 30
g′ = 20

g = 30
g′ = 21

g = 30
g′ = 22

g = 30
g′ = 23

g = 30
g′ = 24

g = 30
g′ = 25

g = 30
g′ = 26

g = 30
g′ = 27

g = 30
g′ = 28

g = 30
g′ = 29

g = 30
g′ = 30

Values 1.868 1.793 1.696 1.615 1.519 1.473 1.407 1.321 1.282 1.289 36.00

4.8. Second-Order Mixed Relative Sensitivities for the Leakge Response with Respect to the Microscopic Total

Cross Sections of Isotope 1H, S(2)
(
σ

g
t,i=6, σg′

t,k=6

)
, g, g′ = 1, . . . , 30

Figure 4 depicts the matrix S(2)
(
σ

g
t,i=6, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, comprising the 2nd-order

relative sensitivities of the leakage response with respect to the total cross sections of isotope 6
(1H). This submatrix is symmetrical regarding its principal diagonal.

Figure 4. The matrix of sensitivities S(2)
(
σ

g
t,i=6, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, for 1H.
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Of the 900 components of S(2)
(
σ

g
t,i=6, σg′

t,k=6

)
, g, g′ = 1, . . . , 30 that are depicted in Figure 4,

259 components have relative sensitivities greater than 1.0, which are also listed in Tables 16 and 17.
The unmixed 2nd-order sensitivity S(2)

(
σ30

t,i=6, σ30
t,k=6

)
= 429.6, of the leakage response with respect to

σ
g=30
t,6 , is the largest of all 2nd-order sensitivities. The 2nd-order sensitivity of the leakage response

with respect to the parameters σg=17
t,6 and σ

g=30
t,6 , namely, S(2)

(
σ17

t,i=6, σ30
t,k=6

)
= 23.6, is the second

largest. Thirty-six (36) additional sensitivities that involve energy groups g = 30, g′ = 12, . . . , 29
and energy groups g = 12, . . . , 29; g′ = 30 have values larger than 5.0. In addition to the
sensitivities presented in Tables 16 and 17, the following sensitivities are also larger than 1.0:
S(2)

(
σ8

t,i=6, σ30
t,k=6

)
= S(2)

(
σ30

t,i=6, σ8
t,k=6

)
= 1.020, S(2)

(
σ9

t,i=6, σ30
t,k=6

)
= S(2)

(
σ30

t,i=6, σ9
t,k=6

)
= 1.610,

S(2)
(
σ10

t,i=6, σ30
t,k=6

)
= S(2)

(
σ30

t,i=6, σ10
t,k=6

)
= 2.071, and S(2)

(
σ11

t,i=6, σ30
t,k=6

)
= S(2)

(
σ30

t,i=6, σ11
t,k=6

)
= 2.513.

Table 16. Components of S(2)
(
σ

g
t,i=6, σg′

t,k=6

)
, g, g′ = 1, . . . , 30, having values greater than 1.0.

g′ = 12 13 14 15 16 17 18 19 20 21 22

g = 12 0.653 0.315 0.340 0.356 0.740 0.763 0.751 0.725 0.688 0.648 0.597
13 0.315 0.974 0.471 0.471 0.976 1.005 0.988 0.953 0.904 0.851 0.784
14 0.340 0.471 1.261 0.579 1.158 1.192 1.172 1.130 1.072 1.009 0.930
15 0.356 0.471 0.579 1.391 1.255 1.277 1.255 1.210 1.148 1.081 0.996
16 0.740 0.976 1.158 1.255 4.461 2.700 2.647 2.553 2.421 2.280 2.100
17 0.763 1.005 1.192 1.277 2.700 4.853 2.789 2.684 2.546 2.398 2.209
18 0.751 0.988 1.172 1.255 2.647 2.789 4.828 2.689 2.546 2.399 2.210
19 0.725 0.953 1.130 1.210 2.553 2.684 2.689 4.619 2.498 2.349 2.165
20 0.688 0.904 1.072 1.148 2.421 2.546 2.546 2.498 4.284 2.266 2.085
21 0.648 0.851 1.009 1.081 2.280 2.398 2.399 2.349 2.266 3.937 2.004
22 0.597 0.784 0.930 0.996 2.100 2.209 2.210 2.165 2.085 2.004 3.515
23 0.554 0.728 0.863 0.924 1.949 2.050 2.051 2.010 1.936 1.857 1.760
24 0.502 0.659 0.782 0.837 1.767 1.858 1.859 1.822 1.755 1.684 1.593
25 0.477 0.627 0.742 0.795 1.677 1.764 1.764 1.729 1.666 1.599 1.512
26 0.440 0.577 0.684 0.733 1.546 1.625 1.626 1.594 1.535 1.474 1.394
27 0.393 0.516 0.611 0.655 1.381 1.452 1.453 1.424 1.372 1.317 1.246
28 0.369 0.484 0.574 0.615 1.296 1.363 1.363 1.336 1.287 1.236 1.169
29 0.372 0.487 0.576 0.617 1.300 1.367 1.367 1.340 1.290 1.238 1.171
30 6.432 8.424 9.97 10.67 22.48 23.62 23.62 23.15 22.29 21.40 20.24

Table 17. Continuation of Table 16.

g′ = 23 24 25 26 27 28 29 30

g = 12 0.554 0.502 0.477 0.440 0.393 0.369 0.372 6.432
13 0.728 0.659 0.627 0.577 0.516 0.484 0.487 8.424
14 0.863 0.782 0.742 0.684 0.611 0.574 0.576 9.968
15 0.924 0.837 0.795 0.733 0.655 0.615 0.617 10.67
16 1.949 1.767 1.677 1.546 1.381 1.296 1.300 22.48
17 2.050 1.858 1.764 1.625 1.452 1.363 1.367 23.62
18 2.051 1.859 1.764 1.626 1.453 1.363 1.367 23.62
19 2.010 1.822 1.729 1.594 1.424 1.336 1.340 23.15
20 1.936 1.755 1.666 1.535 1.372 1.287 1.290 22.29
21 1.857 1.684 1.599 1.474 1.317 1.236 1.238 21.40
22 1.760 1.593 1.512 1.394 1.246 1.169 1.171 20.24
23 3.177 1.521 1.440 1.328 1.187 1.114 1.116 19.28
24 1.521 2.792 1.358 1.249 1.117 1.048 1.049 18.13
25 1.440 1.358 2.604 1.214 1.082 1.016 1.017 17.58
26 1.328 1.249 1.214 2.349 1.037 0.971 0.972 16.79
27 1.187 1.117 1.082 1.037 2.039 0.913 0.912 15.76
28 1.114 1.048 1.016 0.971 0.913 1.885 0.888 15.30
29 1.116 1.049 1.017 0.972 0.912 0.888 1.891 15.39
30 19.28 18.13 17.58 16.79 15.76 15.30 15.39 429.6
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5. First- and Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Capture Cross Sections

As indicated in Equation (7), the capture cross section is one of the components of the total cross
section. The total cross section reduces to the capture cross section in a purely absorbing medium.
Therefore, it is of interest to compute the 1st- and 2nd-order sensitivities of the PERP benchmark’s
leakage response with respect to the capture cross sections and compare these results with the results
that were obtained in Section 4 for the sensitivities with respect to the corresponding total cross
sections. Analogous to the definition given in Equation (13), it is convenient to define the vector

σc ,
[
c1, . . . , cJσc

]†
of parameters corresponding to the microscopic capture cross section, which is

defined, as follows:

σc ,
[
c1, . . . , cJσc

]†
,

[
σ1

c,i=1, σ2
c,i=1, . . . , σG

c,i=1, . . . , σg
c,i, . . . , σ

1
c,i=I, . . . , σ

G
c,i=I

]†
,

i = 1, . . . , I; g = 1, . . . , G; Jσc = I ×G.
(42)

5.1. First-Order Sensitivities ∂L(α)/∂σc

The 1st-order sensitivities of the leakage response to the capture cross sections are computed
while using the following particular form of Equation (150) in [24]:

∂L(α)

∂σ
g j

c,i j

= −
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂Σg
t (t)

∂σ
g j

c,i j

, j = 1, . . . , Jσc. (43)

The following relations hold:

∂Σt
g(t)

∂σ
gj
c,i j

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

gj
c,i j

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i+σ

g
c,i+

G∑
g′=1

σ
g→g′

s,l=0,i




∂σ
gj
c,i j

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
c,i

]
∂σ

gj
c,i j

= δg j gNi j,m j .

(44)

Inserting Equation (44) into Equation (43) yields the following expression for computational purposes:

∂L(α)

∂σ
g
c,i

= −Ni,m

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)ϕg(r, Ω), i = 1, . . . , I; g = 1, . . . , G; m = 1, . . . , M. (45)

The right hand side of Equation (45) is the same as that in Equation (29), which indicates that
the first-order absolute sensitivities of the leakage response with respect to the microscopic capture
cross sections are identical to those with respect to the corresponding microscopic total cross sections,
namely, ∂L(α)/∂σg

c,i = ∂L(α)/∂σg
t,i. However, the relative sensitivities of the leakage response with

respect to the microscopic total cross sections will differ from the relative sensitivities of the leakage
response with respect to the microscopic capture cross sections.

The numerical values of the 1st-order relative sensitivities of the leakage to the capture cross
sections, S(1)

(
σ

g
c,i

)
,

(
∂L/∂σg

c,i

)(
σ

g
c,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30, will be presented in Section 5.3,

in tables together with the numerical values of the corresponding unmixed 2nd-order relative
sensitivities S(2)

(
σ

g
c,i, σ

g
c,i

)
,

(
∂2L/∂σg

c,i∂σ
g
c,i

)(
σ

g
c,iσ

g
c,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30, for all six isotopes

contained in the PERP benchmark.

5.2. Second-Order Sensitivities ∂2L(α)/∂σc∂σc

The equation that is needed for deriving the expression of the 2nd-order sensitivities
∂2L(α)/∂σc ∂σc is obtained by particularizing Equation (158) in [24] to the PERP benchmark,
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in conjunction with the relations ∂2L
∂t j∂tm2

∂t j
∂c j

∂tm2
∂cm2

= ∂2L
∂c j∂cm2

, ∂Σt
g

∂tm2

∂tm2
∂cm2

= ∂Σt
g

∂cm2
, and ∂2Σt

g

∂t j∂tm2

∂t j
∂c j

∂tm2
∂cm2

= ∂2Σt
g

∂c jc fm2
,

which leads to the following expression:

∂2L
∂c j∂cm2

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂c j∂cm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂cm2

,

f or j = 1, . . . , Jσc; m2 = 1, . . . , Jσc,

(46)

where the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω) and ψ(2),g

2, j (r, Ω), j = 1, . . . , Jσc; g = 1, . . . , G, are the
solutions of the following 2nd-Level Adjoint Sensitivity System that is presented in Equations (164)–(166)
of [24]:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −ϕg(r, Ω)

∂Σt
g(t)
∂c j

, j = 1, . . . , Jσc; g = 1, . . . , G, (47)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσc; g = 1, . . . , G, (48)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t)
∂c j

, j = 1, . . . , Jσc; g = 1, . . . , G, (49)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσc; g = 1, . . . , G. (50)

In Equations (47) and (49), the parameter c j corresponds to the capture cross section indexed

by j, i.e., c j ≡ σ
g j

c,i j
. Inserting Equation (44) into Equations (47) and (49), yields the following

particular expressions:

Bg
(
α0

)
ψ
(2),g
1, j (r,Ω) = −δg j gNi j,m jϕ

g(r,Ω), j = 1, . . . , Jσc; g = 1, . . . , G, (51)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσc; g = 1, . . . , G. (52)

It is noteworthy that Equations (51) and (52) are the same as Equations (39) and (40), respectively.
Thus, the 2nd-Level Adjoint Sensitivity System for the capture cross sections (comprising Equations (48),
and (50)–(52)) is formally identical to the 2nd-LASS for the total cross sections [comprising Equations

(32), (34), (39) an(40)]. Consequently, the 2nd-level adjoint functions ψ(2),g
1, j (r, Ω), and ψ(2),g

2, j (r, Ω), j =
1, . . . , Jσc; g = 1, . . . , G for the capture cross sections are formally identical to the 2nd-level adjoint
functions for the total cross sections.

In Equation (46), the parameters c j and cm2 correspond to the capture cross sections, i.e., c j ≡ σ
g j

c,i j

and cm2 ≡ σ
gm2
c,im2

, respectively; therefore, the following relations hold:

∂2Σt
g(t)

∂c j∂cm2

=
∂2Σt

g(t)

∂σ
g j

c,i j
∂σ

gm2
c,im2

= 0, (53)

∂Σg
t (t)

∂cm2
=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

gm2
c,im2

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i+σ

g
c,i+

G∑
g′=1

σ
g→g′

s,l=0,i




∂σ
gm2
c,im2

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
c,i

]
∂σ

gm2
c,im2

= δgm2 gNim2 ,mm2
.

(54)
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Inserting Equations (53) and (54) into Equation (46) yields the following expression for the
2nd-order sensitivities of the leakage response with respect to the microscopic capture cross sections:

∂2L
∂c j∂cm2

= −
∫

V dV
∫

4π dΩ

[
ψ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω) +ψ

(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
Nim2 ,mm2

,

f or j = 1, . . . , Jσc; m2 = 1, . . . , Jσc.
(55)

The right hand side of Equation (55) is formally identical to the right side of Equation (38),
which indicates that the absolute 2nd-order sensitivities of the leakage response with respect to the
microscopic capture cross sections are exactly the same as that with respect to the corresponding
microscopic total cross sections, namely, ∂2L

∂c j∂cm2
= ∂2L

∂t j∂tm2
, j = 1, . . . , Jσt(= Jσc); m2 = 1, . . . , Jσt(= Jσc).

5.3. Numerical Results for ∂2L/∂c j∂cm2 , j = 1, . . . , Jσc; m2 = 1, . . . , Jσc

The 2nd-order absolute sensitivities of the leakage response with respect to the capture cross
sections, i.e., ∂2L/∂c j∂cm2 , j = 1, . . . , Jσc; m2 = 1, . . . , Jσc, for the 6 isotopes and 30 energy groups
of the PERP benchmark are computed while using Equation (55). The matrix ∂2L/∂c j∂cm2 , j =

1, . . . , Jσc; m2 = 1, . . . , Jσc has dimensions Jσc × Jσc (= 180× 180), since Jσc = G× I = 30× 6. The relative

sensitivities that correspond to ∂2L/∂c j∂cm2 , j = 1, . . . , Jσc; m2 = 1, . . . , Jσc, are denoted as S(2)
(
σ

g
c,i, σ

g′

c,k

)
and they are defined, as follows:

S(2)
(
σ

g
c,i, σ

g′

c,k

)
,

∂2L

∂σ
g
c,i∂σ

g′

c,k

σ
g
c,iσ

g′

c,k

L

, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30. (56)

Comparing Equation (56) to Equation (41) reveals that the respective expressions are not
identical. Thus, although the absolute 2nd-order sensitivities of the leakage response with
respect to the microscopic capture cross sections are exactly the same as that with respect to the
corresponding microscopic total cross sections, the respective relative sensitivities are scaled by the

factor
(
σ

g
c,iσ

g′

c,k

)
/
(
σ

g
t,iσ

g′

t,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30.

Table 18 presents the summary of the numerical results that were obtained for the elements

of the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30, partitioned into I × I = 36 submatrices,

each having dimensions G×G(= 30× 30). Table 18 only presents the results for the upper triangular

submatrices since the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
is symmetrical. As shown in Table 18, the values of the

mixed 2nd-order relative sensitivities in the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30, are all

smaller than 1.0, and they are mostly positive. Among all of the Jσc × Jσc = (180× 180) elements in
the matrix, a total of 3464 out of 3600 elements have positive values. The remaining 136 elements
of this matrix have negative values, which are all related to the capture cross sections of isotopes C
and 1H, and their values are very close to zero (e.g., in the order of 10−16). The overall maximum

relative sensitivity in the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30 is S(2)

(
σ30

c,1, σ30
c,1

)
= 0.103.

The results in Table 18 also indicate that the largest sensitivities in each of the respective submatrices
mostly involve the capture cross sections for the 30th energy group, and they otherwise involve the
capture cross sections for the 22th, 23th, and 27th energy groups of the isotopes.

The 2nd-order unmixed sensitivities S(2)
(
σ

g
c,i, σ

g
c,i

)
,

(
∂2L/∂σg

c,i∂σ
g
c,i

)(
σ

g
t,iσ

g
t,i/L

)
, i = 1, . . . , 6, g =

1, . . . , 30 of the leakage response with respect to the capture cross sections, which are the elements on

the diagonal of the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30, can be directly compared to

the values of the 1st-order relative sensitivities S(1)
(
σ

g
c,i

)
,

(
∂L/∂σg

c,i

)(
σ

g
c,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30.

Likewise, all of the values for the 1st-order and unmixed 2nd-order relative sensitivities to the capture
cross sections, as shown in Tables 19–24, have been independently verified while using re-computations
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with suitably altered parameter values in conjunction with central-difference formulas. The side-by-side
comparisons that are shown in Tables 19–24 for all six isotopes of the PERP benchmark indicate that,
for each isotope, the values of both the 1st-order and the unmixed 2nd-order relative sensitivities are
very small, and the unmixed 2nd-order sensitivity are generally smaller than the corresponding values
of the 1st-order sensitivity for the same energy group. As also shown in these tables, all of the 1st-order
relative sensitivities are negative, which signifies that an increase in σg

c,i, i = 1, . . . , 6; g = 1, . . . , 30 will
cause a decrease in the total leakage, L; and, all of the unmixed 2nd-order sensitivities are positive.

Table 18. Summary presentation of the matrix S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)
(
σ

g
c,1, σg′

c,1

)
Max. value

= 1.03× 10−1

at g = 30,
g′ = 30

S(2)
(
σ

g
c,1, σg′

c,2

)
Max. value =
6.39× 10−3 at
g = 30, g′ = 30

S(2)
(
σ

g
c,1, σg′

c,3

)
Max. value =
4.27× 10−5 at
g = 23, g′ = 23

S(2)
(
σ

g
c,1, σg′

c,4

)
Max. value =
6.64× 10−5 at
g = 22, g′ = 22

S(2)
(
σ

g
c,1, σg′

c,5

)
Max. value =
2.47× 10−4 at
g = 30, g′ = 30

S(2)
(
σ

g
c,1, σg′

c,6

)
Max. value =
4.24× 10−2 at
g = 30, g′ = 30

i = 2
(240Pu)

S(2)
(
σ

g
c,2, σg′

c,2

)
Max. value =
1.87× 10−2 at
g = 27, g′ = 27

S(2)
(
σ

g
c,2, σg′

c,3

)
Max. value =
5.82× 10−6 at
g = 23, g′ = 23

S(2)
(
σ

g
c,2, σg′

c,4

)
Max. value =
7.94× 10−6 at

g = 23, g′ = 23

S(2)
(
σ

g
c,2, σg′

c,5

)
Max. value =
1.64× 10−5 at

g = 27, g′ = 30

S(2)
(
σ

g
c,2, σg′

c,6

)
Max. value =
2.82× 10−3 at
g = 27, g′ = 30

i = 3
(69Ga)

S(2)
(
σ

g
c,3, σg′

c,3

)
Max. value =
1.03× 10−7 at
g = 23, g′ = 23

S(2)
(
σ

g
c,3, σg′

c,4

)
Max. value =
1.40× 10−7 at
g = 23, g′ = 23

S(2)
(
σ

g
c,3, σg′

c,5

)
Max. value =
5.74× 10−8 at

g = 23, g′ = 30

S(2)
(
σ

g
c,3, σg′

c,6

)
Max. value =
9.86× 10−6 at
g = 23, g′ = 30

i = 4
(71Ga)

S(2)
(
σ

g
c,4, σg′

c,4

)
Max. value =
1.91× 10−7 at

g = 23, g′ = 23

S(2)
(
σ

g
c,4, σg′

c,5

)
Max. value =
7.87× 10−8 at

g = 22, g′ = 30

S(2)
(
σ

g
c,4, σg′

c,6

)
Max. value =
1.35× 10−5 at
g = 22, g′ = 30

i = 5
(C)

S(2)
(
σ

g
c,5, σg′

c,5

)
Max. value =
1.51× 10−6 at

g = 30, g′ = 30

S(2)
(
σ

g
c,5, σg′

c,6

)
Max. value =
2.60× 10−4 at
g = 30, g′ = 30

i = 6
(1H)

S(2)
(
σ

g
c,6, σg′

c,6

)
Max. value =
4.47× 10−2 at
g = 30, g′ = 30

Table 19. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=1

)(
σ

g
c,i=1/L

)
, g = 1, . . . , 30 and

2nd-order unmixed relative sensitivities
(
∂2L/∂σg

c,i=1∂σ
g
c,k=1

)(
σ

g
c,1σ

g
c,1/L

)
, g = 1, . . . , 30, to the capture

cross sections for isotope 1 (239Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −1.145 × 10−7 3.249 × 10−11 16 −1.512 × 10−2 1.311 × 10−3

2 −2.510 × 10−7 7.767 × 10−11 17 −1.135 × 10−2 1.532 × 10−3

3 −7.830 × 10−7 2.614 × 10−10 18 −1.292 × 10−2 3.234 × 10−3

4 −3.514 × 10−6 1.145 × 10−9 19 −1.869 × 10−2 8.442 × 10−3

5 −6.145 × 10−6 7.800 × 10−10 20 −2.455 × 10−2 1.517 × 10−2

6 −8.015 × 10−6 5.749 × 10−10 21 −2.750 × 10−2 1.944 × 10−2

7 −1.775 × 10−4 1.004 × 10−7 22 −2.859 × 10−2 2.457 × 10−2

8 −2.526 × 10−4 2.144 × 10−7 23 −2.366 × 10−2 1.772 × 10−2

9 −5.375 × 10−4 8.957 × 10−7 24 −2.307 × 10−2 2.485 × 10−2

10 −9.783 × 10−4 2.918 × 10−6 25 −2.158 × 10−2 1.776 × 10−2

11 −1.422 × 10−3 6.334 × 10−6 26 −2.143 × 10−2 1.813 × 10−2

12 −4.660 × 10−3 5.717 × 10−5 27 −2.082 × 10−3 3.127 × 10−4

13 −1.059 × 10−2 3.400 × 10−4 28 −1.019 × 10−3 1.715 × 10−4

14 −1.400 × 10−2 7.416 × 10−4 29 −1.369 × 10−2 1.128 × 10−2

15 −1.244 × 10−2 8.073 × 10−4 30 −1.275 × 10−1 1.034 × 10−1
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Table 20. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=2

)(
σ

g
c,i=2/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

c,i=2∂σ
g
c,k=2

)(
σ

g
c,i=2σ

g
c,k=2/L

)
, g = 1, . . . , 30, to the capture cross

sections for isotope 2 (240Pu).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −2.499 × 10−9 1.547 × 10−14 16 −1.452 × 10−3 1.209 × 10−5

2 −6.870 × 10−9 5.819 × 10−14 17 −1.084 × 10−3 1.396 × 10−5

3 −2.428 × 10−8 2.514 × 10−13 18 −9.294 × 10−4 1.674 × 10−5

4 −1.600 × 10−7 2.374 × 10−12 19 −6.621 × 10−4 1.060 × 10−5

5 −1.281 × 10−6 3.388 × 10−11 20 −8.618 × 10−4 1.870 × 10−5

6 −5.753 × 10−6 2.962 × 10−10 21 −1.314 × 10−3 4.439 × 10−5

7 −7.137 × 10−5 1.624 × 10−8 22 −1.412 × 10−3 5.995 × 10−5

8 −1.268 × 10−4 5.397 × 10−8 23 −3.226 × 10−3 3.294 × 10−4

9 −2.568 × 10−4 2.044 × 10−7 24 −2.543 × 10−3 3.020 × 10−4

10 −4.359 × 10−4 5.795 × 10−7 25 −5.821 × 10−4 1.293 × 10−5

11 −5.226 × 10−4 8.551 × 10−7 26 −1.575 × 10−4 9.800 × 10−7

12 −1.043 × 10−3 2.866 × 10−6 27 −1.610 × 10−2 1.871 × 10−2

13 −1.050 × 10−3 3.345 × 10−6 28 −8.986 × 10−3 1.333 × 10−2

14 −1.021 × 10−3 3.944 × 10−6 29 −1.362 × 10−4 1.117 × 10−6

15 −9.080 × 10−4 4.304 × 10−6 30 −7.881 × 10−3 3.950 × 10−4

Table 21. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=3

)(
σ

g
c,i=3/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

c,i=3∂σ
g
c,k=3

)(
σ

g
c,i=3σ

g
c,k=3/L

)
, g = 1, . . . , 30, to the capture cross

sections for isotope 3 (69Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −2.053 × 10−10 1.045 × 10−16 16 −2.138 × 10−5 2.622 × 10−9

2 −4.744 × 10−10 2.775 × 10−16 17 −1.513 × 10−5 2.723 × 10−9

3 −1.419 × 10−9 8.586 × 10−16 18 −1.502 × 10−5 4.373 × 10−9

4 −4.719 × 10−9 2.064 × 10−15 19 −1.756 × 10−5 7.451 × 10−9

5 −2.376 × 10−8 1.166 × 10−14 20 −3.435 × 10−5 2.970 × 10−8

6 −1.515 × 10−7 2.055 × 10−13 21 −5.491 × 10−5 7.751 × 10−8

7 −2.325 × 10−6 1.722 × 10−11 22 −3.027 × 10−5 2.754 × 10−8

8 −3.489 × 10−6 4.088 × 10−11 23 −5.698 × 10−5 1.027 × 10−7

9 −5.361 × 10−6 8.912 × 10−11 24 −2.286 × 10−7 2.441 × 10−12

10 −7.098 × 10−6 1.536 × 10−10 25 −1.674 × 10−7 1.068 × 10−12

11 −8.740 × 10−6 2.392 × 10−10 26 −7.901 × 10−7 2.465 × 10−11

12 −1.955 × 10−5 1.006 × 10−9 27 −6.411 × 10−7 2.964 × 10−11

13 −2.104 × 10−5 1.343 × 10−9 28 −3.406 × 10−8 1.916 × 10−13

14 −2.032 × 10−5 1.563 × 10−9 29 −4.347 × 10−8 1.138 × 10−13

15 −1.554 × 10−5 1.261 × 10−9 30 −4.118 × 10−6 1.078 × 10−10

Table 22. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=4

)(
σ

g
c,i=4/L

)
, g = 1, . . . , 30,

and 2nd-order relative sensitivities
(
∂2L/∂σg

c,i=4∂σ
g
c,k=4

)(
σ

g
c,i=4σ

g
c,k=4/L

)
, g = 1, . . . , 30, to the capture

cross sections for isotope 4 (71Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −1.839 × 10−10 8.383 × 10−17 16 −1.352 × 10−5 1.049 × 10−9

2 −4.168 × 10−10 2.142 × 10−16 17 −1.060 × 10−5 1.335 × 10−9

3 −1.109 × 10−9 5.240 × 10−16 18 −9.678 × 10−6 1.815 × 10−9

4 −3.183 × 10−9 9.395 × 10−16 19 −1.486 × 10−5 5.341 × 10−9

5 −1.094 × 10−8 2.474 × 10−15 20 −1.847 × 10−5 8.588 × 10−9

6 −5.001 × 10−8 2.238 × 10−14 21 −1.537 × 10−5 6.075 × 10−9

7 −7.874 × 10−7 1.976 × 10−12 22 −7.731 × 10−5 1.796 × 10−7

8 −1.330 × 10−6 5.941 × 10−12 23 −7.778 × 10−5 1.914 × 10−7

9 −2.120 × 10−6 1.393 × 10−11 24 −4.854 × 10−7 1.100 × 10−11

10 −2.885 × 10−6 2.538 × 10−11 25 −3.219 × 10−7 3.953 × 10−12

11 −3.616 × 10−6 4.095 × 10−11 26 −1.465 × 10−6 8.478 × 10−11

12 −8.943 × 10−6 2.106 × 10−10 27 −1.173 × 10−6 9.917 × 10−11

13 −1.100 × 10−5 3.669 × 10−10 28 −6.199 × 10−8 6.345 × 10−13

14 −1.263 × 10−5 6.039 × 10−10 29 −7.896 × 10−8 3.754 × 10−13

15 −1.069 × 10−5 5.968 × 10−10 30 −7.472 × 10−6 3.550 × 10−10
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Table 23. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=5

)(
σ

g
c,i=5/L

)
, g = 1, . . . , 30,

and 2nd-order relative sensitivities
(
∂2L/∂σg

c,i=5∂σ
g
c,k=5

)(
σ

g
c,i=5σ

g
c,k=5/L

)
, g = 1, . . . , 30, to the capture

cross sections for isotope 5 (C).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −9.934 × 10−10 1.050 × 10−14 16 −8.425 × 10−7 2.335 × 10−12

2 −1.106 × 10−9 6.574 × 10−15 17 −4.651 × 10−7 7.633 × 10−13

3 −2.539 × 10−9 1.254 × 10−14 18 −3.363 × 10−7 4.193 × 10−13

4 −1.657 × 10−8 1.185 × 10−13 19 −3.362 × 10−7 4.366 × 10−13

5 −9.586 × 10−8 8.498 × 10−13 20 −4.126 × 10−7 6.841 × 10−13

6 −1.736 × 10−7 1.014 × 10−12 21 −5.639 × 10−7 1.333 × 10−12

7 −5.044 × 10−7 1.744 × 10−12 22 −8.195 × 10−7 2.969 × 10−12

8 −4.619 × 10−7 1.439 × 10−12 23 −1.250 × 10−6 7.274 × 10−12

9 −5.906 × 10−7 1.917 × 10−12 24 −1.868 × 10−6 1.735 × 10−11

10 −6.247 × 10−7 2.024 × 10−12 25 −2.907 × 10−6 4.382 × 10−11

11 −6.212 × 10−7 1.978 × 10−12 26 −4.402 × 10−6 1.068 × 10−10

12 −1.187 × 10−6 4.715 × 10−12 27 −6.457 × 10−6 2.489 × 10−10

13 −1.082 × 10−6 4.132 × 10−12 28 −9.842 × 10−6 6.094 × 10−10

14 −9.096 × 10−7 3.135 × 10−12 29 −1.559 × 10−5 1.555 × 10−9

15 −6.998 × 10−7 2.011 × 10−12 30 −5.560 × 10−4 1.514 × 10−6

Table 24. Comparison of 1st-order relative sensitivities
(
∂L/∂σg

c,i=6

)(
σ

g
c,i=6/L

)
, g = 1, . . . , 30 and

2nd-order relative sensitivities
(
∂2L/∂σg

c,i=6∂σ
g
c,k=6

)(
σ

g
c,i=6σ

g
c,k=6/L

)
, g = 1, . . . , 30, to the capture cross

sections for isotope 6 (1H).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 −4.006 × 10−10 1.708 × 10−15 16 −9.360 × 10−6 2.882 × 10−10

2 −8.966 × 10−10 4.318 × 10−15 17 −1.556 × 10−5 8.540 × 10−10

3 −2.775 × 10−9 1.498 × 10−14 18 −2.450 × 10−5 2.227 × 10−9

4 −1.425 × 10−8 8.766 × 10−14 19 −3.837 × 10−5 5.686 × 10−9

5 −7.512 × 10−8 5.218 × 10−13 20 −5.974 × 10−5 1.434 × 10−8

6 −2.434 × 10−7 1.993 × 10−12 21 −9.248 × 10−5 3.584 × 10−8

7 −1.549 × 10−6 1.645 × 10−11 22 −1.403 × 10−4 8.706 × 10−8

8 −1.542 × 10−6 1.604 × 10−11 23 −2.144 × 10−4 2.139 × 10−7

9 −1.983 × 10−6 2.160 × 10−11 24 −3.206 × 10−4 5.108 × 10−7

10 −2.070 × 10−6 2.222 × 10−11 25 −4.992 × 10−4 1.292 × 10−6

11 −2.001 × 10−6 2.052 × 10−11 26 −7.564 × 10−4 3.153 × 10−6

12 −3.647 × 10−6 4.455 × 10−11 27 −1.110 × 10−3 7.350 × 10−6

13 −3.321 × 10−6 3.889 × 10−11 28 −1.691 × 10−3 1.800 × 10−5

14 −3.244 × 10−6 3.988 × 10−11 29 −2.680 × 10−3 4.591 × 10−5

15 −3.479 × 10−6 4.972 × 10−11 30 −9.557 × 10−2 4.473 × 10−2

It is revealing to make the following comparisons:

(i) the values presented in Table 5 to the values presented in Table 19 for 239Pu;
(ii) the values presented in Table 6 to the values presented in Table 20 for 240Pu;
(iii) the values presented in Table 7 to the values presented in Table 21 for 69Ga;
(iv) the values presented in Table 8 to the values presented in Table 22 for 71Ga;
(v) the values presented in Table 9 to the values presented in Table 23 for C; and,
(vi) the values presented in Table 10 to the values presented in Table 24 for 1H.

The above comparisons indicate that, for each isotope, the values for both the 1st-order and
unmixed 2nd-order relative sensitivities of the leakage response with respect to the capture cross
sections are much smaller than those of the corresponding total cross sections for the same energy
group. This is because the values for the 1st-order sensitivities and, respectively, unmixed 2nd-order
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relative sensitivities with respect to the capture cross sections are scaled down from the corresponding

relative sensitivities to the total cross sections by factors of
(
σ

g
c,i/σ

g
t,i

)
and

(
σ

g
c,i/σ

g
t,i

)2
, respectively.

6. Second-Order Uncertainty Analysis of the PERP Leakage Response

Knowledge of the first- and second-order sensitivities is required to compute the following
moments of the response distribution:

(i) Up to 2nd-order response sensitivities, the 1st-order moment (expected values) of a response Rk
has the following expression [12]:

E(Rk) = Rk(α
0) +

1
2

Nα∑
i, j=1

{
∂2Rk
∂αi∂α j

}
α0
ρi jσiσ j, (57)

where ρi j denotes the correlation coefficient between parameters αi and α j, while σi denotes the
standard deviation of the model parameter αi.

(ii) Up to 2nd-order response sensitivities, the 2nd-order moment (covariance) of two responses
(Rk, Rl) has the following expression [12]:

cov(Rk, Rl) =
Nα∑
i=1

Nα∑
j=1

(
∂Rk
∂αi

∂Rl
∂α j

)
ρi jσiσ j +

1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

(
∂2Rk
∂αi∂α j

∂Rl
∂αµ

+
∂Rk
∂αi

∂2Rl
∂α j∂αµ

)
ti jµσiσ jσµ

+ 1
4

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

(
∂2Rk
∂αi∂α j

)(
∂2Rl
∂αµ∂αν

)(
qi jµν − ρi jρµν

)
σiσ jσµσν

+ 1
6

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

(
∂Rk
∂αi

∂3Rl
∂α j∂αµ∂αν

+
∂Rl
∂αi

∂3Rk
∂α j∂αµ∂αν

)
qi jµνσiσ jσµσν,

(58)

where ti jµ and qi jµν denote the triple-correlations and, respectively, the quadruple correlations
among the respective parameters.

(iii) Up to 2nd-order response sensitivities, the 3rd-order moment µ3(Rk, Rl, Rm) of three responses
has the following expression [12]:

µ3(Rk, Rl, Rm) =
Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

∂Rk
∂αi

∂Rl
∂α j

∂Rm
∂αµ

ti jµσiσ jσµ

+ 1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂Rk
∂αi

∂Rl
∂α j

∂2Rm
∂αµ∂αν

(
qi jµν − ρi jρµν

)
σiσ jσµσν

+ 1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂Rk
∂αi

∂2Rl
∂α j∂αµ

∂Rm
∂αν

(
qi jµν − ρiνρ jµ

)
σiσ jσµσν

+ 1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂2Rk
∂αi∂α j

∂Rl
∂αµ

∂Rm
∂αν

(
qi jµν − ρi jρµν

)
σiσ jσµσν.

(59)

In particular, the skewnessγ1 of a single response, R, which indicates the degree of the distribution’s
asymmetry with respect to its mean, is defined, as follows:

γ1(R) =
µ3(R)

[var(R)]
3
2

. (60)

6.1. Uncorrelated Total Microscopic Cross Sections

Correlations among the group total cross sections are not available for the PERP benchmark under
consideration. When such correlations are unavailable, the maximum entropy principle (see, e.g., [36])
indicates that neglecting them by setting ρii = 1, ρi j = 0, f or i , j in Equations (57)–(59) minimizes
the inadvertent introduction of spurious information into the computations of the various response
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moments. Thus, only considering the contributions from the group-averaged uncorrelated total microscopic
cross sections, the expected value of the leakage response has the following expressions:

[E(L)](U)
t = L

(
α0

)
+ [E(L)](2,U)

t , (61)

where the superscript “(2,U)” indicates “2nd-order, uncorrelated” cross sections, the subscript “t”
indicates contributions solely from the group-averaged total microscopic cross sections, and where the
quantity [E(L)](2,U)

t denotes second-order contributions to the expected value, [E(L)](U)
t of the leakage

response L(α), and it is given by the following expression:

[E(L)](2,U)
t =

1
2

G∑
g=1

I∑
i=1

∂2L(α)

∂σ
g
t,i∂σ

g
t,i

(
sg

t,i

)2
, G = 30, I = 6. (62)

In Equation (62), the quantity sg
t,i denotes the standard deviation that is associated with the model

parameter σg
t,i.

Third- and fourth-order correlations for the group-averaged microscopic total cross sections are not
available in the open literature, so their effects on the uncertainties that they would cause in the leakage
response cannot be exactly quantified at this time. In the absence of any information whatsoever
regarding the triple correlations among the total group-averaged microscopic cross sections, the most
“reasonable” assumption (in the sense of introducing the least amount of spurious information into the
system, according to the maximum entropy principle [36]) is to set them to zero in Equations (58) and
(59). Actually, setting ti jµ ≡ 0 is rigorously correct if the total group-averaged microscopic cross section
were considered to be multivariate correlated normally distributed quantities. In such a case, it is also
well known that the following relation holds for the quadruple correlations qi jµν:

qi jµν = ρi jρµν + ρiµρ jν + ρiνρ jµ; f or all i, j,µ, ν = 1, . . . , Nα. (63)

Taking into account contributions solely from the group-averaged uncorrelated and normally-distributed
total microscopic cross sections (which will be indicated by using the superscript “(U,N)” in the following
equations), the expression for computing the variance, denoted as [var(L)](U,N)

t , of the leakage response
of the PERP benchmark takes on the following particular form of Equation (58):

[var(L)](U,N)
t = [var(L)](1,U,N)

t + [var(L)](2,U,N)
t , (64)

where the first-order contribution term, [var(L)](1,U,N)
t , to the variance [var(L)](U,N)

t is defined as

[var(L)](1,U,N)
t ,

G∑
g=1

I∑
i=1

∂L(α)

∂σ
g
t,i

2(
sg

t,i

)2
, G = 30, I = 6, (65)

while the second-order contribution term, [var(L)](2,U,N)
t , to the variance [var(L)](U,N)

t is defined,
as follows:

[var(L)](2,U,N)
t ,

1
2

G∑
g=1

I∑
i=1

 ∂2L(α)

∂σ
g
t,i∂σ

g
t,i

(
sg

t,i

)2
2

, G = 30, I = 6. (66)
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Again taking into account contributions solely from the group-averaged uncorrelated normally-
distributed total microscopic cross sections, the third-order moment, [µ3(L)]

(U,N)
t , of the leakage response

for the PERP benchmark takes on the following particular form of Equation (59):

[µ3(L)]
(U,N)
t = 3

G∑
g=1

I∑
i=1

∂L(α)

∂σ
g
t,i

2
∂2L(α)

∂σ
g
t,i∂σ

g
t,i

(
sg

t,i

)4
, G = 30, I = 6. (67)

As Equation (67) indicates, if the 2nd-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)
t —and hence the skewness γ1 of the leakage response—would vanish and the response

distribution would by default be assumed to be Gaussian.
The skewness, [γ1(L)]

(U,N)
t , of the leakage response, L, due to the variances of uncorrelated and

normally distributed microscopic total cross sections is defined, as follows:

[γ1(L)]
(U,N)
t = [µ3(L)]

(U,N)
t /

{
[var(L)](U,N)

t

}3/2
. (68)

6.2. Fully Correlated Total Microscopic Cross Sections

The effects of correlations among the group-averaged microscopic total cross sections, and hence
the impact of the second-order mixed sensitivities of the leakage response to these cross sections, can
be quantified in the extreme case of fully correlated cross sections. When the cross sections are fully
correlated, all of the correlation coefficients ρi j in Equations (57)–(59) are unity.

Thus, if the group-averaged microscopic total cross sections were fully correlated (denoted using
the superscript “FC”, the expression of the expected value, [E(L)](FC)

t , of the leakage response would
not be as given in Equation (61), but would instead be given by the following expression:

[E(L)](FC)
t = L

(
α0

)
+ [E(L)](2,FC)

t , (69)

where the quantity [E(L)](2,FC)
t denotes the contributions from both the unmixed and mixed 2nd-order

sensitivities when the total cross sections parameters are fully correlated, which is given by the
following expression:

[E(L)](2,FC)
t ,

1
2

G∑
g=1

G∑
g′=1

I∑
i=1

I∑
k=1

∂2L(α)

∂σ
g
t,i∂σ

g′

t,k

(
sg

t,is
g′

t,k

)
, G = 30, I = 6. (70)

The additional 2nd-order contributions to the expectation value of the leakage response when
the total cross sections are fully correlated is denoted as [E(L)](2,MSC)

t , where the superscript “MSC”
denotes “mixed second-order correlated”, and it is computed while using the following expression:

[E(L)](2,MSC)
t = [E(L)](2,FC)

t − [E(L)](2,U)
t . (71)

For fully correlated (ρi j = 1) and normally-distributed total cross sections, the use of Equation (63)
together with Equations (64)–(67) reduces Equation (58) to the following expression:

[var(L)](FC,N)
t = [var(L)](1,FC,N)

t + [var(L)](2,FC,N)
t . (72)
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In Equation (72), [var(L)](FC,N)
t denotes the variance that would be induced in the leakage response

if the total microscopic cross sections were fully correlated and normally-distributed [indicated by the
superscript “(FC,N)”], [var(L)](1,FC,N)

t denotes the contributions from the 1st-order sensitivities when
the total cross sections parameters are fully correlated, and it is given by the following expression:

[var(L)](1,FC,N)
t ,

G∑
g=1

G∑
g′=1

I∑
i=1

I∑
k=1

∂L(α)

∂σ
g
t,i

∂L(α)

∂σ
g′

t,k

(sg
t,is

g′

t,k

)
, G = 30, I = 6, (73)

and [var(L)](2,FC,N)
t denotes the contributions from both the mixed and unmixed 2nd-order sensitivities

when the total cross sections parameters are fully correlated and normally distributed, and it is given
by the following expression:

[var(L)](2,FC,N)
t ,

1
2

 G∑
g=1

G∑
g′=1

I∑
i=1

I∑
k=1

∂2L(α)

∂σ
g
t,i∂σ

g′

t,k

sg
t,is

g′

t,k




G∑
g=1

G∑
g′=1

I∑
µ=1

I∑
ν=1

∂2L(α)

∂σ
g
t,µ∂σ

g′
t,ν

sg
t,µsg′

t,ν

, G = 30, I = 6. (74)

The contributions to [var(L)](FC,N)
t involving the first-order sensitivities will be denoted as

[var(L)](1,MSC)
t , where the superscript “(1, MSC)” denotes “first-order, mixed sensitivities, correlated”,

and they are obtained by subtracting the uncorrelated terms from the fully correlated ones, i.e.,

[var(L)](1,MSC)
t = [var(L)](1,FC,N)

t − [var(L)](1,U,N)
t . (75)

The contributions to [var(L)](FC,N)
t involving the second-order sensitivities will be denoted as

[var(L)](2,MSC)
t and they are obtained by subtracting the respective uncorrelated terms from the

respective fully correlated ones, i.e.,

[var(L)](2,MSC)
t = [var(L)](2,FC)

t − [var(L)](2,U,N)
t . (76)

For fully correlated total cross sections, the use of Equation (63) together with Equations
(64)–(67) reduces Equation (59) to the following expression, in which the 3rd-order sensitivities
have been neglected:

[µ3(L)]
(FC,N)
t ,

 G∑
g=1

G∑
g′=1

I∑
i=1

I∑
k=1

∂L(α)

∂σ
g
t,i

sg
t,i
∂L(α)

∂σ
g′

t,k

sg′

t,k

 G∑
g=1

G∑
g′=1

I∑
µ=1

I∑
ν=1

∂2L(α)

∂σ
g
t,µ∂σ

g′
t,ν

sg
t,µsg′

t,ν


+

 G∑
g=1

G∑
g′=1

I∑
i=1

I∑
ν=1

∂L(α)

∂σ
g
t,i

sg
t,i
∂L(α)

∂σ
g′
t,ν

sg′

t,ν

 G∑
g=1

G∑
g′=1

I∑
k=1

I∑
µ=1

∂2L(α)

∂σ
g′

t,k∂σ
g
t,µ

sg′

t,ksg
t,µ


+

 G∑
g=1

G∑
g′=1

I∑
i=1

I∑
k=1

∂2L(α)

∂σ
g
t,i∂σ

g′

t,k

sg
t,is

g′

t,k

 G∑
g=1

G∑
g′=1

I∑
µ=1

I∑
ν=1

∂L(α)

∂σ
g
t,µ

sg
t,µ

∂L(α)

∂σ
g′
t,ν

sg′

t,ν

,
f or G = 30, I = 6.

(77)

The contributions stemming from the mixed 2nd-order sensitivities when the total cross
sections are fully correlated and normally distributed will be denoted as [µ3(L)]

(MSC,N)
t , where

the superscript “(MSC,N)” indicates “Mixed Second-order sensitivities, fully Correlated Normally
distributed parameters”. These contributions are computed by subtracting the uncorrelated terms,
[µ3(L)]

(U,N)
t , from the respective fully correlated ones, [µ3(L)]

(FC,N)
t , to obtain:

[µ3(L)]
(MSC,N)
t = [µ3(L)]

(FC,N)
t − [µ3(L)]

(U,N)
t . (78)
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For fully correlated total cross sections, the skewness, [γ1(L)]
(FC,N)
t , is defined as usual:

[γ1(L)]
(FC,N)
t = [µ3(L)]

(FC,N)
t /

{
[var(L)](FC,N)

t

}3/2
. (79)

6.3. Numerical Results

The effects of the first- and second-order sensitivities on the response moments (expected value,
variance, and skewness) can be quantified by considering uniform values for the standard deviations
of the group-averaged isotopic total microscopic cross sections and using these values together with
the respective sensitivities computed in Section 4 in Equations (61)–(79). The typical values for
group-averaged microscopic total cross sections range from about 1% to about 15%. Thus, a 1% relative
standard deviation can be considered to be “very small”, a 5% relative standard deviation can be
considered to be “typical”, and a 10% relative standard deviation can be considered to be “large”.
Tables 25 and 26 present the results thus obtained.

Table 25. Response moments for various relative standard deviations of total microscopic cross sections
that are uncorrelated.

Relative Standard Deviation 10% 5% 1%

L
(
α0

)
1.7648× 106 1.7648× 106 1.7648× 106

[E(L)](2,U)
t

4.5980× 106 1.1495× 106 4.5980× 104

[E(L)](U)
t

6.3628× 106 2.9143× 106 1.8108× 106

[var(L)](1,U,N)
t

3.4196× 1012 8.5490× 1011 3.4196× 1010

[var(L)](2,U,N)
t

2.8789× 1013 1.7993× 1012 2.8789× 109

[var(L)](U,N)
t

3.2208× 1013 2.6542× 1012 3.7075× 1010

[µ3(L)]
(U,N)
t

6.2267× 1019 3.8917× 1018 6.2267× 1015

[γ1(L)]
(U,N)
t

0.3407 0.8999 0.8722

Table 26. Response moments for various relative standard deviations of total microscopic cross section
which are fully correlated.

Relative Standard Deviation 10% 5% 1%

L
(
α0

)
1.7648× 106 1.7648× 106 1.7648× 106

[E(L)](2,FC)
t

2.9451× 107 7.3627× 106 2.9451× 105

[E(L)](2,MSC)
t

2.4853× 107 6.2132× 106 2.4853× 105

[E(L)](FC)
t

3.1216× 107 9.1275× 106 2.0593× 106

[var(L)](1,FC,N)
t

4.7601× 1013 1.1900× 1013 4.7601× 1011

[var(L)](1,MSC)
t

4.4181× 1013 1.1045× 1013 4.4181× 1011

[var(L)](2,FC,N)
t

1.7347× 1015 1.0842× 1014 1.7347× 1011

[var(L)](2,MSC)
t

1.7059× 1015 1.0662× 1014 1.7059× 1011

[var(L)](FC,N)
t

1.7823× 1015 1.2302× 1014 6.4948× 1011

[µ3(L)]
(FC,N)
t

8.4113× 1021 5.2571× 1020 8.4113× 1017

[µ3(L)]
(MSC,N)
t

8.3490× 1021 5.2181× 1020 8.3490× 1017

[γ1(L)]
(FC,N)
t

0.1118 0.3983 1.6070
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6.3.1. Very Small (1%) Relative Standard Deviations

When the total cross sections are considered to be uncorrelated and the respective standard
deviations are assumed to be very small (1%), the effects of the 2nd-order sensitivities, through
[E(L)](2,U)

t to the expected response value [E(L)](U)
t are negligibly small, so that the expected value

differs very little from the response’s nominal value, L
(
α0

)
, computed while using the nominal

parameter values. The fact the [E(L)](2,FC) > [E(L)](2,U) and, consequently, [E(L)](FC)
t > [E(L)](U)

t
indicates that the mixed 2nd-order sensitivities are at least as important as the unmixed 2nd-order
sensitivities, but even in the fully-correlated case, the 2nd-order sensitivities do not appreciably affect
the expected response value for 1% relative standard deviations in the total microscopic cross sections.
This result is not surprising, since the response is expected to behave almost linearly for very small (1%)
parameter variations, so the nonlinear effects, quantified by the 2nd-order sensitivities, are expected to
be insignificant.

For uncorrelated total cross sections, [var(L)](2,U.N)
t < [var(L)](1,U,N)

t and [var(L)](2,FC,N)
t <

[var(L)](1,FC,N)
t , indicate that the contributions of the 2nd-order sensitivities to the response

variance are smaller than the contributions stemming from the 1st-order sensitivities. However,
[var(L)](2,FC,N)

t � 60 × [var(L)](2,U,N)
t , which indicates that the mixed 2nd-order sensitivities are

significantly more important than the unmixed 2nd-order sensitivities in contributing to the response’s
variance. Finally, [γ1(L)]

(FC,N)
t � 2× [γ1(L)]

(U,N)
t > 0, which indicates that the 2nd-order sensitivities

give rise to a positive response skewness, thus causing the response distribution to be asymmetrically
“skewed” towards the “right”, in the “positive direction”, of the response’s expected value [E(L)](U)

t .

The relation [γ1(L)]
(FC,N)
t > [γ1(L)]

(U,N)
t indicates that the cross section correlations and mixed

2nd-order sensitivities are important because they skew the response distribution even more towards
the “positive direction” than in the absence of correlations.

6.3.2. Typical (5%) Relative Standard Deviations

The second column from the right in Tables 25 and 26 present the results that were obtained by
assuming that the relative standard deviations of the group-averaged microscopic total cross sections
were all 5%. Comparing the results shown in this column to the results discussed above for standard
deviations of 1% indicates that all of the trends observed for the “1% case” are magnified in the “5%
case”. Thus, for uncorrelated cross section, [E(L)](2,U)

t ' 0.65× L
(
α0

)
, indicating that the 2nd-order

contribution have become comparable to the computed leakage value L
(
α0

)
, thus causing a significant

shift, by about 40%, of the expected value for the leakage response [E(L)](U)
t by comparison to the

computed value L
(
α0

)
. This shift is even more pronounced when the cross sections are fully correlated,

in which case [E(L)](2,FC) � 4.2× L
(
α0

)
� 7× [E(L)](2,U), which indicates that the effects of the mixed

2nd-order sensitivities are much larger than the effects of the unmixed 2nd-order sensitivities. Thus,
the customary procedure of neglecting second (and higher) order sensitivities and considering that the
computed value, L

(
α0

)
, is the actual expected (i.e., mean) value of the distribution, would be about 40%

in error if the cross sections were uncorrelated and even more severely in error (by ca 700%) if the cross
sections were fully correlated, for typical (5%) relative standard deviations in the total cross sections.

For uncorrelated cross sections, the second-order unmixed sensitivities contribute over 68%,
through the quantity [var(L)](2,U,N)

t , to the response variance [var(L)](U)
t . On the other hand, if the cross

sections were fully correlated, the effects of the mixed 2nd-order sensitivities would greatly accentuate
this trend, as evidenced by the relations [var(L)](2,FC,N)

t � 50 × [var(L)](2,U,N)
t and [var(L)](FC,N)

t �

40× [var(L)](U,N)
t . The skewness remains positive, but the relation [γ1(L)]

(U,N)
t > [γ1(L)]

(FC,N)
t indicates

that the effects of the mixed 2nd-order sensitivities are to reduce the skewness and thus render the
distribution of the total cross sections more symmetric regarding its expected value.
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6.3.3. Large (10%) Relative Standard Deviations

The trends that were displayed by the results for a uniform standard deviation of 5% for the group
isotopic microscopic cross sections are significantly amplified when this uniform standard deviation is
increased to 10%. Thus, the 2nd-order contribution [E(L)](2,U)

t for uncorrelated cross sections is 260%
larger than the computed leakage value L

(
α0

)
, contributing 72% of the expected value for the leakage

response [E(L)](U)
t by comparison to 28% contributed by the computed value L

(
α0

)
. For fully correlated

cross sections, the results that are presented in Table 26 indicate that [E(L)](2,FC) > 6 × [E(L)](2,U)
t ,

highlighting the very significant impact of the mixed 2nd-order sensitivities on causing the expected
value of the leakage response to significantly differ from the computed response value, since, as shown
by the results that are presented in Table 26, [E(L)](FC)

t � 20×L
(
α0

)
� 5× [E(L)](U)

t . Thus, the customary
procedure of neglecting second (and higher) order sensitivities and considering that the computed
value, L

(
α0

)
, as the actual expected (i.e., mean) value of the distribution, would be in error by anywhere

from 360% to 2000%.
Furthermore, for uncorrelated cross sections, the contribution [var(L)](2,U,N)

t of the unmixed

2nd-order sensitivities to the response variance [var(L)](U)
t is 847% larger than the contribution

[var(L)](1,U,N)
t stemming from the first-order sensitivities. Hence, neglecting these 2nd-order

contributions would cause a very large non-conservative error by under-reporting the response
variance by a factor of 947%. The results that are shown in Tables 25 and 26 also indicate that
[var(L)](2,FC,N)

t � 60× [var(L)](2,U,N)
t , with the consequence that [var(L)](FC,N)

t � 60× [var(L)](U)
t , thus

demonstrating that the mixed 2nd-order sensitivities are extremely important in contributing to the
leakage response variance, when the cross sections are imprecisely known. The results that are
presented in Tables 25 and 26 also indicate that [γ1(L)]

(U,N)
t � 3× [γ1(L)]

(FC,N)
t , which implies that the

resulting distribution of the leakage response is still skewed to positive values relative to the expected
value, which, in turn, is significantly shifted to much larger positive values than the computed leakage
L
(
α0

)
. The effect of the correlations induced by the mixed 2nd-order sensitivities is to render the

leakage response distribution more symmetrical about the response’s expected value.

7. Conclusions

By particularizing the 2nd-ASAM expressions provided in [24], the 180 first-order
sensitivities

(
∂L/∂σg

t,i, i = 1, . . . , 6; g = 1, . . . , 30
)

and the 32400 = (180)2 second-order sensitivities(
∂2L/∂σg

t,i∂σ
g′

t,k; i, k = 1, . . . , 6; g, g′ = 1, . . . , 30
)

of the PERP benchmark’s total leakage with respect

to the microscopic total cross sections have been efficiently and exactly computed. Furthermore,
the 180 first-order sensitivities

(
∂L/∂σg

c,i, i = 1, . . . , 6; g = 1, . . . , 30
)

and the 32400 second-order

sensitivities
(
∂2L/∂σg

c,i∂σ
g′

c,k; i, k = 1, . . . , 6; g, g′ = 1, . . . , 30
)

of the PERP benchmark’s total leakage

to the microscopic capture cross sections have also been efficiently and exactly computed while using
the 2nd-ASAM. The following conclusions can be drawn from the results reported in this work:

1. The 1st-order relative sensitivities with respect to the total cross sections for all the six isotopes
are negative, as shown in Tables 5–10, signifying that an increase in σ

g
t,i, i = 1, . . . , 6; g =

1, . . . , 30 will cause a decrease in the leakage L (i.e., fewer neutrons will leak out of the sphere).
In contradistinction, all of the 2nd-order unmixed relative sensitivities are positive, which signifies
that an increase in σg

t,i will cause an increase in ∂L/∂σg
t,i, i = 1, . . . , 6; g = 1, . . . , 30.

2. Comparing the results for the 1st-order relative sensitivities to those that were obtained for the
2nd-order unmixed relative sensitivities indicate that for isotope 1 (239Pu) and isotope 6 (1H),
the absolute values of the 2nd-order sensitivities are generally greater than the corresponding
values of the 1st-order sensitivities. On the other hand, for isotopes 2–5 (i.e., 240Pu, 69Ga, 71Ga,
and C), the 1st-order and 2nd-order unmixed sensitivities are very small (generally of the order of
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10−2 or less) and the absolute values of the 2nd-order unmixed relative sensitivities are all smaller
than the corresponding values of the 1st-order relative sensitivities for all energy groups, except
for the lowest-energy group of isotope C.

3. For the isotopes 239Pu, 240Pu, 69Ga, and 71Ga, the largest 1st- and 2nd-order unmixed relative
sensitivities occur for the 12th energy group of the total microscopic cross section, respectively.
For the isotopes C and 1H, the largest relative sensitivities occur for the 30th, i.e., the lowest
energy, group. Overall, the largest 1st- and 2nd-order unmixed relative sensitivities of all isotopes
arise from the total microscopic cross section of isotopes 1H and 239Pu, and hence cause the most
important subsequent effects that arise from the various mixed 2nd-order sensitivities.

4. The 2nd-order mixed sensitivities ∂2L/∂t j∂tm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσt, are generally
positive. The corresponding relative sensitivities that involve the total cross sections of isotopes
2–5 (namely, 240Pu, 69Ga, 71Ga, and C) are generally small. However, some 2nd-order relative
sensitivities involving the total cross sections of isotope 1 (239Pu) and isotope 6 (1H) are very
large. Specially, among the total of 32400 = 180× 180 second-order sensitivities, 720 elements
have relative sensitivities that are greater than 1.0. The majority of these 720 elements stem from

the submatrices S(2)
(
σ

g
t,1, σg′

t,1

)
, S(2)

(
σ

g
t,1, σg′

t,6

)
, and S(2)

(
σ

g
t,6, σg′

t,1

)
, characterized by energy groups

g, g′ = 1, . . . , 30. The parameters σ12
t,1 and σ30

t,6 are the most important among the entire total
cross sections, since the largest sensitivities in the submatrices are always related to those two
parameters. The overall largest relative sensitivity is S(2)

(
σ30

t,6, σ30
t,6

)
= 429.6, which occurs in group

30 for 1H, as noted in Table 10.
5. The 1st-order relative sensitivities with respect to the capture cross sections for all the 6 isotopes

are negative, as shown in Tables 19–24, signifying that an increase in σg
c,i, i = 1, . . . , 6; g = 1, . . . , 30

will cause a decrease in the leakage L; whereas, all of the unmixed 2nd-order relative sensitivities
are positive. For all six isotopes, the values of both the 1st-order and the unmixed 2nd-order
relative sensitivities with respect to the capture cross sections are very small; the values of the
unmixed 2nd-order sensitivities are generally smaller than the corresponding values of the
1st-order sensitivities.

6. The 1st-order and the unmixed 2nd-order absolute sensitivities of the leakage response with
respect to the capture cross sections are identical to the corresponding 1st-order and unmixed
2nd-order absolute sensitivities for the total cross sections, respectively. However, the relative
sensitivities for the capture cross sections are significantly smaller than those for the total cross
sections; this is because the values for both the 1st- and unmixed 2nd-order relative sensitivities
to the capture cross sections are scaled down from those of the corresponding total cross sections

by factors of
(
σ

g
c,i/σ

g
t,i

)
and

(
σ

g
c,i/σ

g
t,i

)2
, respectively.

7. The mixed 2nd-order absolute sensitivities of the leakage response with respect to the capture cross
sections, ∂2L/∂c j∂cm2 , j = 1, . . . , Jσc; m2 = 1, . . . , Jσc, are generally positive, and their values are
identical to the corresponding absolute sensitivities to the total cross sections, ∂2L/∂t j∂tm2 , j =
1, . . . , Jσt; m2 = 1, . . . , Jσt. However, the values of the relative sensitivities for the capture

cross-sections, S(2)
(
σ

g
c,i, σ

g′

c,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30, are all smaller than 1.0, and they

are smaller than the corresponding values of the relative sensitivities for the total cross sections,

S(2)
(
σ

g
t,i, σ

g′

t,k

)
, i, k = 1, . . . , 6; g, g′ = 1, . . . , 30. The overall largest mixed 2nd-order relative

sensitivity to the capture cross section is S(2)
(
σ30

c,1, σ30
c,1

)
= 0.103.

8. Even when the group-averaged microscopic total cross sections are uncorrelated, the results in
Table 25 indicate that the importance of the 2nd-order sensitivities relative to the importance of
the 1st-order ones increase as the parameters uncertainties increase. The effects of the 2nd-order
sensitivities are to increase the value of the expected response versus the computed response value,
which shifts to positive values of the distribution of the leakage response in parameters space.
Additionally, the contributions of the 2nd-order sensitivities to the response’s variance overtake
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the contributions of the 1st-order sensitivities to the response’s variance already for relatively
small (ca. 5%) parameter standard deviations. These effects are rapidly amplified when the
parameters are less precisely known. In particular, it has been shown that, for a uniform standard
deviation of 10%, the 2nd-order sensitivities contribute 72% of the expected value for the leakage
response E(L) by comparison to 28% contributed by the computed value L

(
α0

)
. Furthermore,

the contribution [var(L)](2,U,N) of the second-order sensitivities to the response variance var(L)
is 847% larger than the contribution [var(L)](1,U,N) stemming from the first-order sensitivities.
Thus, the customary procedure of neglecting second (and higher) order sensitivities and while
considering that the computed value, L

(
α0

)
, is the actual expected (i.e., mean) value, E(L), of the

distribution, would be in error by 362%. Hence, neglecting these second-order contributions
would cause a very large non-conservative error by under-reporting of the response variance
by a factor of 947%. In all cases, the second-order sensitivities cause the leakage distribution in
parameter space to be skewed to positive values relative to the expected value, which, in turn,
is significantly shifted to much larger positive values than the computed leakage L

(
α0

)
. All in all,

neglecting the second-order sensitivities would erroneously predict a Gaussian distribution for the
leakage distribution in parameter space, centered about the computed leakage L

(
α0

)
.

9. As the results that are presented in Tables 25 and 26 indicate that the mixed 2nd-order sensitivities
play a very significant role in determining the moments of the leakage response distribution for
correlated cross sections. The importance of the mixed 2nd-order sensitivities increases as the
relative standard deviations for the cross sections increase. For example, for fully correlated cross
sections, neglecting the 2nd-order sensitivities would cause an error as large as 2000% in the
expected value of the leakage response, and up to 6000% in the variance of the leakage response.
Furthermore, the effects of the mixed 2nd-order sensitivities underscore the need for reliable
values for the correlations that might exist among the total cross sections, which are unavailable
at this time.

Subsequent works will report the values and effects of the 1st-order and 2nd-order sensitivities of
the PERP’s leakage response with respect to the imprecisely known group-averaged isotopic scattering
microscopic cross sections [37], fission cross sections and average number of neutrons per fission [38],
source parameters [39], isotopic number densities, fission spectrum and overall conclusions [40].

The results for the following 2nd-order relative sensitives corresponding to: ∂2L(α)
∂σt∂σt

, ∂
2L(α)
∂σt∂σs

, ∂2L(α)
∂σt∂σ f

,
∂2L(α)
∂σt∂ν

, ∂2L(α)
∂σs∂σt

, ∂2L(α)
∂σs∂σs

, ∂
2L(α)
∂σs∂ν

, ∂2L(α)
∂σ f ∂σt

, ∂2L(α)
∂σ f ∂σs

, ∂2L(α)
∂σ f ∂σ f

, ∂
2L(α)
∂σ f ∂ν

, ∂
2L(α)
∂ν∂σt

, ∂
2L(α)
∂ν∂σs

, ∂
2L(α)
∂ν∂σ f

, and ∂2L(α)
∂ν∂ν have

been posted in the online open access repository Figshare.com. The DOI for public access for this data
is: https://doi.org/10.6084/m9.figshare.9876365.v3.
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Nomenclature

Symbols
A(1) adjoint operator
Ai atomic weight of isotope i
ak, bk parameters used in Watt’s fission spectra approximation for isotope k
B forward operator
c j, cm2 parameters in vector σc indexed by j and m2

cov
(
Rk, Rl

)
2nd-order moment (covariance) of two responses

(
Rk, Rl

)
Eg boundary of energy group g
E(L) expected value of the leakage response taking
FSF

k fraction of isotope k decays that are spontaneous fission events
f j, fm2 parameters in vector σ f indexed by j and m2

G total number of energy groups
I number of isotopes
Jα total number of parameters in vector α
Jn total number of parameters in vector N
Jp total number of parameters in vector p
Jq total number of parameters in vector q
Jσc total number of parameters in vector σc

Jσ f total number of parameters in vector σ f
Jσs total number of parameters in vector σs

Jσt total number of parameters in vector σt

Jt total number of parameters in vector t
Jν total number of parameters in vector ν

l
variable for the order of Legendre-expansion of the microscopic scattering cross
sections, l = 1, . . . , ISCT

L, L(α) total neutron leakage from the PERP sphere
M total number of materials
NA Avogadro’s number
N f total number of fissionable isotopes
Ni,m atom number density for isotope i and material m
Pl

(
Ω
′

·Ω
)

Legendre and associated Legendre polynomials appreciate for the geometry
Pl(µ) spherical harmonics appreciate for the geometry
Qg(r) source term in group g
qi jµν quadruple-correlations
Rk, Rl responses
r spatial variable
rd external radius of the PoRP benchmark
Sb outer surface of the PoRP sphere
sg

t,i standard deviation associated with the model parameter σg
t,i

t j, tm2 parameters in vector σt indexed by j and m2

ti jµ triple-correlations
var(L) variance of the leakage response
wi,m weight fraction of isotope i in material m
Vectors and Matrices

α vector of imprecisely known model parameters, α ,
[
σt;σs;σ f ;ν; p; q; N

]†
α0 nominal values of the parameters in the vector α
t vector of imprecisely known total parameters, t , [σt; N]†

s vector of imprecisely known scatter parameters, s , [σs; N]†

f vector of imprecisely known fission parameters, f ,
[
σ f ;ν; N

]†
σt vector of imprecisely known total cross sections
σc vector of imprecisely known capture cross sections
σs vector of imprecisely known scattering cross sections
σ f vector of imprecisely known fission cross sections
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ν
vector of imprecisely known parameters underlying the average number of
neutrons per fission

N of imprecisely known atom number densities
n the outward unit normal vector at each point on the sphere’s outer boundary
p vector of imprecisely known fission spectrum parameters
q vector of imprecisely known source parameters
S(1) vector of first-order relative sensitivities of the leakage response
S(2) matrix of first-order relative sensitivities of the leakage response
Greek symbols
αi, α j parameters in vector α indexed by i and j
γ1 skewness
δ Kronecker-delta functionals
λk decay constant for isotope k
µ3(L) third-order moment of the leakage response
ν

g
i number of neutrons produced per fission by isotope i and energy group g
νSF

k the spontaneous emission of an average neutrons of an isotope k(
νΣ f

)g
macroscopic quantity for fission for energy group g in PARTISN

(νσ)
g
f ,i microscopic quantity for fission for energy group g of isotope i in PARTISN

ρi j correlation coefficient between parameters αi and α j
ρµν correlation coefficient between parameters αµ and αν
ρiν correlation coefficient between parameters αi and αν
ρ jµ correlation coefficient between parameters α j and αµ
ρm mass density of material m, m = 1, . . . , M
σ cross sections
σ

g
c,i microscopic capture cross section in group g of isotope i
σ

g
f ,i microscopic fission cross section in group g of isotope i

σ
g′→g
s,l,i

the lth order Legendre-expanded microscopic scattering cross section from energy
group g′ into energy group g for isotope i

σ
g
t,i microscopic total cross section in group g of isotope i

Σg
t (t) macroscopic total cross section for energy group g

Σg
f (f) macroscopic fission cross section for energy group g

Σg′→g
s

(
s; Ω

′

→ Ω
) macroscopic scattering transfer cross section from energy group g′ into energy

group g
ϕg(r, Ω) forward angular flux in group g at point r in direction Ω

χg material fission spectrum in energy group g
ψ(1),g(r, Ω) adjoint angular flux in group g at point r in direction Ω

ψ
(2),g
1, j (r,Ω),ψ(2),g

2, j (r,Ω)
2nd-level adjoint functions in group g at point r in direction Ω associated with the
total cross section parameter indexed by j (e.g., t j)

Ω, Ω
′

directional variable
Subscripts, superscripts
(1, U, N) first-order contributions from uncorrelated and normally-distributed parameters

(1, FC, N)
first-order contributions from fully-correlated and normally-distributed
parameters

(2, FC) 2nd-order contributions from fully correlated parameters

(1, FC, N)
2nd -order contributions from fully-correlated and normally-distributed
parameters

(2, MSC) 2nd-order contributions from mixed sensitivities, correlated parameters
(2, U) 2nd-order contributions from uncorrelated parameters
(2, U, N) 2nd-order contributions from uncorrelated and normally-distributed parameters
(FC) fully-correlated parameters
(FC, N) fully-correlated and normally-distributed parameters
f fission
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g, g′ energy group variable g, g′ = 1, . . . , G

g j,gm2

energy group associated with parameter indexed by j (e.g., f j, t j and s j) or m2

(e.g., fm2 , tm2 and sm2 )
i index variable for isotopes, i = 1, . . . , I

i j, im2

isotope associated with the parameter indexed by j (e.g., f j, t j and s j) or m2 (e.g.,
fm2 , tm2 and sm2 )

j index variable for parameters
k index variable for isotopes, k = 1, . . . , I

l
order of Legendre expansion associated with the microscopic scattering cross
section

ν number of neutrons produced per fission
m index variable for materials, m = 1, . . . , M
m2 index variable for parameters

m j, mm2

material associated with parameter indexed by j (e.g., f j, t j and s j) or m2 (e.g., fm2 ,
tm2 and sm2 )

t total
s scatter
(U) uncorrelated parameters
(U, N) uncorrelated and normally-distributed parameters
Abbreviations
1st
− LASS 1st-Level adjoint sensitivity system

2nd
−ASAM second-order adjoint sensitivity analysis methodology

2nd
− LASS Level adjoint sensitivity system

ISCT order of the finite expansion in Legendre polynomial
PERP polyethylene-reflected plutonium
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