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Abstract: Energy losses and bus voltage levels are key parameters in the operation of electricity
distribution networks (EDN), in traditional operating conditions or in modern microgrids with
renewable and distributed generation sources. Smart grids are set to bring hardware and software
tools to improve the operation of electrical networks, using state-of the art demand management at
home or system level and advanced network reconfiguration tools. However, for economic reasons,
many network operators will still have to resort to low-cost management solutions, such as bus
reactive power compensation using optimally placed capacitor banks. This paper approaches the
problem of power and energy loss minimization by optimal allocation of capacitor banks (CB) in
medium voltage (MV) EDN buses. A comparison is made between five metaheuristic algorithms used
for this purpose: the well-established Genetic Algorithm (GA); Particle Swarm Optimization (PSO);
and three newer metaheuristics, the Bat Optimization Algorithm (BOA), the Whale Optimization
Algorithm (WOA) and the Sperm-Whale Algorithm (SWA). The algorithms are tested on the IEEE
33-bus system and on a real 215-bus EDN from Romania. The newest SWA algorithm gives the best
results, for both test systems.

Keywords: electricity distribution networks; optimal capacitor allocation; Genetic Algorithm;
Particle Swarm Optimization; Bat Algorithm; Whale Algorithm; Sperm-Whale Algorithm

1. Introduction

Distribution Network Operators take into account the implementation of smart solutions to
improve both the voltage level in the subordinate networks and the power factor, with the aim to
maintain the balance between power generation and consumption while meeting the quality of supply
standards and regulations.

In this context, the use of capacitor banks is an easy solution to be implemented with technical and
economic benefits to the smart grid, maximizing the long-term return on investment as the network
develops. An intelligent control of capacitor banks leads to improved energy efficiency and voltage
level in the buses of distribution networks, resulting in an increase in the percentage of energy delivered
to consumers [1].

The advantages of integrating capacitor banks in the flexible smart grid communication and
control infrastructure are the increase of network energy efficiency and power quality improvement [2].
Thus, the technologies and modern techniques enable today the large-scale integration of capacitor
banks managed with smart control algorithms.

In the literature, many methods have been proposed to solve the Optimal Capacitor Banks
Allocation (OCBA) in distribution networks as a combinatorial optimization problem. These techniques
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can be grouped in four main categories: numerical [3]; analytical [4]; heuristic [5–7]; and artificial
intelligence, population based (Artificial Neural Networks, metaheuristics) [8,9]. An overview about
the metaheuristics used for the problem of capacitor banks allocation is made in the following,
highlighting their specific purpose. The OCBA solution for power losses or cost minimization is
obtained using a genetic algorithm in [10,11], a fuzzy technique in [12] and an artificial neural network
in [9]. Regarding the metaheuristics, a significant number of papers consider the joule loss minimization,
voltage bus improvement, and total cost minimization. Thus, in [13–15] a Multi-Objective Particle
Swarm Optimization (MOPSO) algorithm is proposed. For active power loss reduction using load flow
computation, the branch and bound method is generally preferred, for its reduced computation time.
For example, for the minimization of the total annual costs, the Crow Search Algorithm (CSA) is used
in [16,17], the Particle Swarm Optimization (PSO) and hybrid PSO algorithm are adapted in [18–21],
the Flower Pollination Algorithm (FPA) is preferred in [22,23], and an Improved Harmony Algorithm
is chosen in [24]. On the other hand, the OCBA problem based on active power minimization was
approached in [25,26] using the Bacterial Foraging Optimization Algorithm, the Intersect Mutation
Differential Evolution (IMDE) Algorithm in [27], the Artificial Bee Colony (ABC) in [5,28] and the Ant
Lion Optimization Algorithm in [29]. The improvement of the voltage profile carried out using the
Symbiotic Organisms Search Algorithm (SOSA) in [30]. Another paper proposes the JAYA optimization
algorithm [31] for power factor correction. For voltage profile improvement, the Oppositional
Cuckoo Optimization Algorithm (OCOA) was used in [32]. It must be mentioned that the authors’
previous approaches regarding the OCBA problem used several metaheuristic algorithms, such as
PSO, BOA, Fireworks Algorithm (FWA), and WOA [33].

A brief description of the papers that use metaheuristics in the CBA problem considering both
objective functions (OF) and constraints (C) is presented in Table 1. The considered objective functions
are: OF1, active power losses minimization; OF2, voltage profile improvement; OF3, voltage deviation
minimization; OF4, cost minimization; OF5—net savings maximization; OF6, voltage stability
improvement. The main constraints for the OCBA problem are a combination of the following:
C1, bus voltage allowable limits; C2, current flow limits on the branches; C3, bus reactive allowable
limits; C4, maximum stock of capacitors; C5, bus apparent power balance; C6, maximum number of
transformer tap changer steps; C7, the total reactive power injected should not exceed the total reactive
power demand; C8, power flow limits on the branches; and C9, bus power factor limits.

This paper is focused on a comparative study of several metaheuristic algorithms adapted for
solving the OCBA problem with the objective of energy loss minimization in MV distribution networks.
During the analysis, the well-known GA and PSO are tested against two newer metaheuristics that have
seen previous uses in power engineering applications, the BOA and WOA, and another recent but much
less used method, the SWA. The latter is shown to outperform all its predecessors, when tested on two
MV distribution networks with different characteristics: the smaller IEEE 33—bus test network [5,13,25]
and a larger 215—bus 20/0.4 kV distribution network from Romania. During the case study, the
algorithms use the same initial population and fitness function. Results are shown regarding active
power and energy losses and bus voltage levels, for which the best results are obtained with the SWA.
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Table 1. Literature review regarding the capacitor allocation problem based on artificial intelligence.

Objective
Function

Constraints
Test Network References

C1 C2 C3 C4 C5 C6 C7 C8 C9

OF1

X X - - - - - - - 38 bus—Roy–Billinton
Test System [8]

X - X - X X - - - IEEE 30, 57, 118 and 300
bus [10,27,29]

X - X - X - - - - IEEE 33 bus [13]

X X X X - - - - - IEEE 33 and 94 bus [14,15]

X X X - X X - - - IEEE 30 bus [21]

X X X - X - - - - IEEE 33 and 85 bus [25,28]

X X X X X - - - - IEEE 33 and 119 bus [5]

OF2
X - - - - - - - - IEEE 10, 23 and 34 bus [12]

X - X - X - - - - IEEE 22, 69, 85 and 141
bus [32]

OF3
X - X - X X - - - IEEE 30, 57, 118 and 300

bus [10,27]

X X X - X X - - - IEEE 30 bus [21]

OF4

X - X - - - X - X IEEE 10, 33 and 69 bus [16,17,22,
26]

X - X - - - - X - IEEE 10, 15 and 34 bus [19]

X - X - - - - - - IEEE 30 and 85 bus [20]

X - X - - - - - - IEEE 33, 34, 69 and 85
bus [23,27]

X - X - X - X - X IEEE 85 and 118 bus [24]

OF5
X - - - X - - - - IEEE 28-bus [11]

X - - - - - - - - IEEE 9-bus [30]

OF6

X - X - - X X - - IEEE 30 bus [18]

X - X - X X X - - IEEE 30, 57 and 118 bus [27]

X - X - X - - - - IEEE 30, 118 and 300
bus [29]
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2. Metaheuristic Algorithms

Metaheuristics are a special class of algorithms that can be used to solve search and optimization
problems. As described in [34], they are approximate, usually non-deterministic methods that aim to
search for solutions near the global optimum, exploring this space through a partly guided and partly
random search. While the main disadvantage of metaheuristics is the uncertainty of reaching the global
optimal solution, their advantages lie in not being problem-specific (allowing the flexibility of applying
the same solving principle to several types of problems) and having intuitive mathematical models,
borrowing concepts and approaches from the natural world, rather than from theoretical mathematical
models. This contributes to their accessibility for a wider range of users. Most modern metaheuristics are
population-based, starting from an initial group of solutions, called ‘population’, generated randomly,
and refining it in an iterative process, according to a set of specific steps, until a stopping criterion is
met. The performance of each individual from the population is assessed by computing its fitness
function. The basic block diagram of a population-based metaheuristic algorithm (PMA) is depicted in
Figure 1, where the steps common to all algorithms are represented with white boxes, and the part
specific to each algorithm, delimited by symbols (A) and (B) is presented in gray.

Figure 1. The basic flowchart of a population-based metaheuristic algorithm.

The initial parameters are partially common to all algorithms, such as population size N or
maximum number of iterations maxit, and partially specific to each algorithm, such as the mutation
rate rmut for the Genetic Algorithm (GA) or inertia value w for the Particle Swarm Optimization (PSO).
An individual from a population with N members, denoted in the following as

Xi = [x1, x2, . . . , xm], i = 1 . . .N (1)

is encoded as a vector with length m, and element types and values dictated by the problem that
needs to be solved. It usually represents an input parameter combination or a possible solution for the
problem, which must satisfy all the constraints of the optimization model. The fitness evaluation of each
population member requires the decoding of the information contained in the solution that it represents,
solving the problem and evaluating the results. The optimality degree of the solution is assessed with
the fitness function value associated to the respective population member. For a population with N
members, Xi, i = 1, ..., N, N fitness functions will be computed and ranked.

The (A) to (B) section from Figure 1 consists of several steps, which describe each specific
metaheuristic algorithm. While in the figures accompanying Sections 2.1–2.5 are presented all the
details specific to each algorithm, delimited by (A) to (B), Table 2 summarizes their main steps,
emphasizing their particularities.
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Table 2. The metaheuristic algorithms used in the paper for solving the OCBA problem.

Algorithm Main Steps

Genetic Algorithm (GA) Selection, crossover, mutation, using the entire
population

Particle Swarm Optimization (PSO)
Speed and position update, using the entire

population, and exploration followed by exploitation
of the search space

The Bat Optimization Algorithm (BOA)
Speed and position update, frequency adaptation,
and local search in each iteration, using the entire
population, exploration followed by exploitation

The Whale Optimization Algorithm (WOA)
Continuous choice between three search methods:
exploration, encircling, and spiral attack, using the

entire population

The Sperm Whale Algorithm (SWA)
Population divided in subgroups that perform the
search independently, using dominant crossover in

each subgroup

Among the various metaheuristic algorithms available in the literature, those from Table 2 were
chosen taking into account the following reasoning: the genetic algorithm and the particle swarm
optimization are the best known and widely used metaheuristics, with numerous applications in
power systems, which makes them a valid basis for comparison. The bat algorithm and the whale
optimization algorithm are newer algorithms, previously used by the authors in solving similar
optimization problems and shown to improve the quality of the results, compared with GA and
PSO [35,36]. On the other hand, the sperm whale algorithm is a novelty in solving optimization
problems in the power systems field. The results from the case study will show that the SWA
outperforms the previous algorithms, making it a viable new alternative for solving optimization
problems related to power systems applications.

The best-known PMAs are the genetic algorithm and the particle swarm optimization, which also
describe two fundamental search principles used by metaheuristic algorithms: the evolutionary and
performance-based patterns.

2.1. Genetic Algorithms

The Genetic Algorithm (GA), proposed in [37], is probably the best-known metaheuristic algorithm.
In the GA, population members are named ‘chromosomes’, and their elements are ‘genes’. The search
and optimization mechanisms use Darwinist natural evolution, based on perpetuation through genetic
material exchange and mutation inside a population of same-species individuals, across a significant
number of generations (iterations).

For finding new and improved solutions for an optimization problem, the GA relies on changing
the population by using in each iteration the three main genetic operators (Figure 2):

• Selection: From the existing population, whole individuals are selected based on their performance,
expressed by the fitness function. The better-adapted individuals are favored for surviving. In the
standard GA, the population size is constant. Thus, the lesser adapted individuals, which are
discarded, are replaced by clones of the survivors.

• Crossover: Pairs of parent chromosomes exchange a number of genes, the resulting offspring
having new characteristics, possibly resulting in better solutions for the problem.

• Mutation: Randomly generated variations on gene values, resulting in chromosomes with minor
structural changes, simulating genetic mutations of real living organisms.
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Optionally, an elitist procedure can also be incorporated in the GA, which ensures the preservation
of the best-found optimal solution and its fitness function across generations.

The literature offers a high variety of selection [38] and crossover [39] types, which together
with the user-chosen crossover and mutation rates provide significant customization possibilities,
making the GA a flexible problem-solving tool.

In this paper, the tournament selection method was used, which draws randomly p members
from the existing population, out of which retains the best q, according to their fitness function.
The procedure is repeated until a new population of size N is created.

The method of choice for the crossover operator was the uniform crossover, illustrated in Figure 3.
Two parents are randomly chosen from the population and, for each gene, a random number is
generated. The parents swap the genes only if the generated random number exceeds a customizable
threshold tr.

Figure 3. The uniform crossover.

2.2. Particle Swarm Optimization

On the other hand, the PSO algorithm [40] uses a different search method, based on variable
travel speeds and position shifting in the search space. Each individual (‘particle’) from the population
(‘swarm’) changes its speed in each iteration based on its current distance from two reference points:
The best solution found so far by the swarm leader and the best position ever achieved by the particle
itself. Compared with the GA, the PSO mechanism, presented in Figure 4, is very simple, requiring for
each particle j, j = 1, ..., N, only the computation of its new speed and position:

sp(it)j = w · sp
(it− 1)

j + 2 · rnd1 · (x
(it)
j,best − x(it)j,crt) + 2 · rnd2 · (leader(it) − x(it)j,crt) (2)

x j
(it+1) = x j

(it) + sp j
(it) (3)

followed by the update of each particle’s best position and the change of the leader position, if better
solutions are found. The particle speeds are initialized with low random values, which would not
influence the search direction.

Figure 4. The flowchart of a PSO iteration.

In Equations (2) and (3), spj
(it) and spj

(it − 1) are the speed of particle xj (j = 1 . . . N) in the previous (it
− 1) and current (it) iteration, rnd1 and rnd2 are random vectors, x j,best

(it) and x j,crt
(it) are the best personal
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and the current position of particle xj, leader(it) is the position of the leader in iteration it, and xj
(it) is

the position of particle x in the current iteration. The factor w from Equation (2) is an inertia term,
which decreases over the iteration count, larger initial values encouraging exploration, and smaller
final values enabling the exploitation or local search around the best-known optimal solution.

It should be noted that while the GA explores the search space using crossover to make random
changes of the information that is already present in the population, the mutation probability being
much smaller, PSO changes randomly the speed of each particle element, moving it in the direction of
the leader and personal best position.

The newer metaheuristic methods used in this paper, while sharing the natural inspiration of
GA and PSO, combine elements found in the two algorithms and increase the number of input
parameters and the complexity of their mathematical model in order to improve their optimization
performance. They are the Bat Optimization Algorithm (BOA), Whale Optimization Algorithm (WOA)
and Sperm-Whale Algorithm (SWA).

2.3. The Bat Optimization Algorithm

Bats hunt for prey using echolocation. In the initial search stage, they emit high amplitude/low
frequency ultrasound impulses, with low emission rate (10–20 imp/sec), decoding in real time the
reflected waves in order to identify the approximate position of the prey. When a potential target is
identified, the bat increases the pulse rate up to 200 imp/sec, and the pulse frequency, which enables
it to search accurately the space separating it from the prey, identifying the obstacles in its path and
precisely locating the victim and its movement pattern.

The bat optimization algorithm [41] uses the PSO principle of changing the speed and position
of the population members (here called ‘bats’), but the speed update formula is more elaborated,
considering the principle of raising the signal frequency and pulse rate as the bats are getting close to
the prey, i.e., to the optimal solution. The basic flowchart of a BOA iteration is depicted in Figure 5.

Figure 5. The flowchart of a BOA iteration.

The bats’ speeds are initialized in the same manner as in the PSO algorithm but are accompanied by
the initial signal amplitude, Aj, maximum pulse rate, rj,max and random pulse frequency fj ∈ [fmin, fmax],
j = 1, ..., N.

In each iteration it, every bat from the population performs three operations:

• Frequency update:
f j = fmin + rnd · ( fmax − fmin) (4)

• Speed update, with an equation inspired from (2):

sp(it)j = w · sp
(it− 1)

j + f j · rnd1 · (x
(it)
j,crt − x(it)j,best) (5)

• Position update, identical to the formulation from (3):

x j
(it+1) = x j

(it) + sp j
(it) (6)



Energies 2019, 12, 4239 8 of 36

The BOA also includes a local search. The best individuals from the population are randomly
moved in the search space, with

x j
(it+1) = x j

(it+1) + pp ·A, j = 1 . . .M, M < N (7)

where A is the average bat amplitude for iteration it and pp ∈ [–1, 1].
The new bat positions computed with Equations (4) to (7) are accepted in the population with

random probability and only if the newly obtained position is better than the previous.
At the end of each iteration, if a bat improves its position, its signal amplitude is decreased:

A j
(it+1) = α ·A j

(it) (8)

and its pulse emission rate increases:

r j
(it+1) = r j

(it)
· (1− e−γ·it) (9)

where α ∈ (0, 1) and γ > 0.
This behavior, much like the inertia term for PSO, increases the probability of performing local

searches when the iteration count is nearing itmax.

2.4. The Whale Optimization Algorithm

The hunting behavior of humpback whales is the source of inspiration for the Whale Optimization
Algorithm (WOA). The whales hunt in groups, and when they find their prey, consisting of schools of
krill or small fish near the water surface, they attack it from below using two maneuvers: encircling
and spiraling.

The WOA uses a population of vector solutions (‘whales’), which are hunting for prey
independently, guiding their search by following a reference individual, usually their leader,
i.e., the whale closest to the problem solution (‘food’), according to its fitness function.

During the algorithm, whales use initially encircling, then spiral attack, in the same way PSO and
BOA use the broad exploration and the exploitation of the search space near the optimal solution.

In each iteration it, the encircling performed by each whale j from the population is described
by [42]:

x j
(it+1) = re f erence(it) −A ·D1 (10)

where
A = 2 · a · rnd1 − a (11)

D1 =
∣∣∣C · re f erence(it) − x(it)

∣∣∣, C = 2 · rnd2 (12)

The coefficient a from equation (11) is a scalar value decreasing during the iterative from a positive
value to 0. The (·) sign denotes the element-by-element multiplying of vectors, and | |, an absolute value.

For the extreme values of a = 0 and a = 1, equations (10) to (12) show that position xj
(it+1) will

always lie between xj
(it) and reference(it), thus moving any whale towards the reference solution used

to guide the population. If values larger than 1 are given to a, factor A from (11) will also increase,
moving the wales beyond the target and exploring a possibly uncharted portion of the search space.

If the reference position is reference(it) = leader(it), the leader from the current iteration, when A
decreases, whales get closer to the leader, encircling the prey or the optimal solution. If another whale
is used as reference, reference(it) = random(x(it)), the search will shift towards its path, simulating the
exploration of the sea in search for food performed by real whales.

The spiral attack phase is described by an equation that combines oscillatory and exponentially
variating components:

x j
(it+1) = D2 · eb·l

· cos(2 ·π · l) + leader(it) (13)
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with
D2 =

∣∣∣leader(it) − x j
(it)

∣∣∣ (14)

In equation (13), b is a constant, and l is a random value from the [–1, 1] interval [42].
The initially large, then gradually decreasing values of a, so that first |A| > 1, then |A| < 1, |A|→ 0,

first move the whales away from the leader in exploration, then encourage encircling, followed by
spiral attack. If p denotes a random number, the general equation for changing the position of a whale
follows as:

x(it+1)
j =

 re f erence(it) −A ·D1, if p ≥ 0.5

D2 · ebl
· cos(2 ·π · l) + leader(it) if p < 0.5

(15)

The flowchart of a WOA iteration is presented in Figure 6.

Figure 6. The flowchart of a WOA iteration.

WOA has two specific parameters that can be tuned for better performance: coefficient a from
Equation (11) and constant b from (13).

2.5. The Sperm-Whale Algorithm

The search used by the SWA mimics the hunting behavior of sperm whales, which live alone
or in small groups at the bottom of the sea and must come to the surface to hunt and breathe [43].
In each iteration, the population of the SWA is split into smaller search groups consisting in uniformly
distributed better and worse adapted members (‘sperm whales’). Consequently, the search for the
optimal solution occurs independently in each group. First, the sperm whales change their position
from the bottom of the sea to the surface. This step is simulated only for the worst adapted member of
the group, for which the opposite position is computed. The positions of the leader and of the worst
individual in a group g, leader(g,it) and worst(g,it), are used to compute an in-between distance dist(g,it):

dist(g,it) = worst(g,it) + w · leader(g,it) (16)

The reflex position of worst(g,it) is then computed with Equation (17).

re f lex(g,it) = worst(g,it) + 2 · (dist(g,it)
−worst(g,it)) = 2 · dist(g,it)

−worst(g,it) (17)

The newly computed individual reflex(g,it) will replace worst(g,it) only if its fitness function is better.
At the beginning of the iterative process, when the inertia w from Equation (16) is large, the individual
will search beyond leader(g,it) (exploration phase, Figure 7a). As w decreases, the search will focus
between worst(g,it) and leader(g,it), exploiting the search space around the known optimal solution
(Figure 7b).
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Figure 7. Reflex search in the SWA algorithm: (a) exploration, (b) exploitation.

In the second stage, a Good Gang is formed within the group, gathering the best gg individuals
ranked according to their fitness function. Every Good Gang member performs several local searches
in which its elements k are displaced randomly, within a small radius r:

x j,k = ±r · x j,k, j = 1 . . . gg (18)

The original Good Gang members are replaced only if better sperm-whale positions are found
during the local search.

Finally, the best Good Gang member from the group (the dominant sperm-whale) performs genetic
crossover with all other group individuals. One of the two resulting children is chosen randomly to
replace the worst of the two parents.

At the end of the iteration, the groups are reunited in the final population, which will repeat
the search process until the stopping criterion of the algorithm is met. The basic flowchart of a SWA
iteration is presented in Figure 8.

Figure 8. The flowchart of a SWA iteration.

The SWA offers several tuning options for the user. The population size, number of search groups
within the population, the inertia w and its decrement, the Good Gang size and number of local
searches for its members, the local search radius r, and the crossover method can be adjusted for
better performance.

3. The Implementation of the Optimal Reactive Compensation for Loss Minimization Problem

The five metaheuristic algorithms presented in the previous chapter were run in an implementation
of the Optimal Capacitor Banks Allocation (OCBA) problem for active energy loss minimization. The
approach used in this paper is stated as follows: Find the optimal buses in an EDN where capacitor
banks (CB) should be installed and the amount of reactive load compensation in each bus, with the
objective of operating the EDN with minimal active power and energy losses for the interval of a typical
day. For an EDN with NN buses (nodes) and NB branches, the mathematical expression of the objective
function of the OCBA problem was defined as:

∆P[%] =
24∑

h=1

∆Ph/

 24∑
h=1

NN∑
bus=1

Pb,h+
24∑

h=1

∆Ph

 ∗ 100 = min (19)
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The mathematical model of the fitness function considered the following constraints:
Cr1. The available CB stock cannot be exceeded:

NN∑
bus=1

NCBbus ≤ stockCB (20)

Cr2. The compensation level in each bus cannot exceed the reactive bus load (avoid reversed
reactive power flows):

NCBbus · qCB ≤ Qbus, bus = 1 . . .NN (21)

Cr3. Branch current flows after compensation cannot exceed the branch rated current:

Ibr <= Imax,br, br = 1 . . .NB (22)

Cr4. Bus voltages after compensation cannot exceed the maximum allowed value:

Ubus <= Umax,bus, bus = 1 . . .NN (23)

In Equations (19) to (22), ∆P[%] is the percent active power loss in the EDN over 24 h, ∆Ph is the
active power loss in the EDN at hour h, NCBbus is the number of CBs installed in a generic bus; qCB is
the reactive power rating of a CB, Qbus is the reactive load of a generic bus, stockCB is the CB stock; Ibr is
the current flow on a generic branch br, Imax,br is the rated current of branch br, Ubus is the voltage of
a generic bus after compensation, and Umax,bus is the maximum bus voltage allowed in a generic bus.

All the algorithms tested in the case study used the same solution encoding for their population
members. They were generated as vectors of the type described by Equation (1), with integer
numbers and length equal to the number of buses in which compensation was possible in the network.
The significance of the value of a generic element represented the number of CBs placed in the bus to
which it was designated. All the algorithms started in the first iteration with the same population,
generated randomly but considering constraint Cr2 of maximum allowed number of CBs in each bus
and Cr1, the maximum CB stock (Figure 9).

Figure 9. The encoding of the solutions used by the OCBA problem.

The fitness of the optimal solutions was assessed in all the algorithms using the objective function
(19), which also considered the constraints from Equations (20) to (23). The methodology employed for
calculating the fitness of each solution is described in Figure 10.

Figure 10. Fitness computation and solution validation for the OCBA problem.

By applying any of the equations (2) to (18) or by genetic crossover and mutation, the changes
undergone by population members can result in their invalidation because of

• Non-integer values, leading to invalid number of CBs installed in a bus;
• Values exceeding the interval [0, NCBbus] allowed by the constraint Cr2;
• Violation of constraint Cr1, by exceeding the available CB stock;
• Solutions otherwise valid but which lead to the violation of the constraints Cr3 or Cr4.
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Thus, every newly generated population member, for each algorithm, must pass through
a validation procedure before being allowed in the population created for the next iteration.

If constraint Cr1 is not satisfied, the solution is always discarded as unfeasible. If the constraint
Cr2 is not fulfilled, the solution is modified by setting the unfeasible values to the nearest allowed
value, using for each element xj from Figures 1 and 9 the following correction:

x j =

{
0, if x j = 0

NCB j, otherwise
(24)

For each population member, the active power losses used in equation (19) are computed with the
Newton–Raphson load flow (LF) algorithm, which is slower, but generally considered more accurate
than the branch-and-bound methods preferred in the analysis of distribution networks. The LF
algorithm also provides the results required for checking the constraints Cr3 and Cr4, bus voltage
and branch current flow limits. Prior to computing the LF, the compensation solution is simulated
subtracting from the bus reactive loads the CB injection for each compensated bus, according to the
population member/solution being tested.

4. Results

The OCBA problem was solved using the metaheuristics presented in Section 2, with the aim of
comparing the performance of the newer algorithm designs, BOA, WOA, and SWA against the two
well established methods, GA and PSO. For comparison purposes, all the algorithms had a common
representation for the members of the population, illustrated in Figure 9, and the same fitness function,
active power and energy loss minimization, computed with Equation (19) and subjected to the
constraints given by Equations (20) to (23), Section 3. The initial parameters used for the algorithms
are presented in Table 3.

Since for all algorithms there was no improvement for the optimal solution beyond generation
350, the graphical representations of the results will be limited to the first 360 generations.

Two test networks were used to validate the comparison: the smaller sized IEEE 33-bus MV radial
voltage distribution system (Figure 11) and a larger 215-bus MV EDN from a residential area of a major
city from Romania (Figure 12).

Synthetic data regarding the physical characteristics for the IEEE 33-bus system is given in
Table 4. The system does not include MV/LV transformer data; thus, the active power losses
computed by the algorithms do not include transformer losses. The extended data regarding branch
characteristics (connecting buses, type line or transformer, electrical parameters resistance and reactance,
maximum branch current) is provided in Appendix A, Table A1. For the active and reactive bus loads,
the study uses a custom representation consisting of daily 24-h profiles, described below.

For this particular test system, the literature provides only a set of instantaneous active and
reactive bus loads. In this paper, these values were used as reference, in conjunction with a set of
typical load profiles (TLP) provided in the Supplementary Materials attached to the paper, to create
24-h profiles. The TLPs considered several types of loads, residential, industrial, and their distribution
in the network is summarized in Table 5.
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Table 3. The initial parameters used for the metaheuristic algorithms.

Common Parameters for All the Algorithms:

Population size: 40, Number of generations: 500

GA

Selection method: tournament—keep best 2 from a random draw of 4
Crossover method: uniform at threshold 0.5

Mutation: random
Crossover and mutation rates: 0.9/0.1

PSO

Inertia: 0.9 decreasing to 0.4, linear descent

BOA

Initial amplitude: 1
Initial pulse emission rate: 0.3

Amplitude attenuation rate: 0.7
Pulse emission increase rate: 0.3

Pulse frequency domain: [–0.9, 1.2]
Number of bats used for local search: dynamic. If a randomly generated number is greater than the bat’s pulse

emission rate, the bat is selected for local search in the current iteration.

WOA

Coefficient a: decreasing from 3 to 0, linear descent
Coefficient l: random

Coefficient b: 1

SWA

Number of search groups: 4
Good Gang size: half of the search group size, rounded to the nearest integer

Number of searches performed by each Good Gang member: 10
Local search radius: 1

Crossover type: uniform

Figure 11. The IEEE 33-bus test system.
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Figure 12. The residential 215-bus EDN.

Table 4. The physical characteristics of the IEEE 33-bus system.

Number of Buses Transformer Rated
Power/Number Feeder Type

Feeder
Cross-Section

(mm2)
Total Length(km)

12.66 kV: 33 None Unknown(1) Unknown(1) Unknown(1)

(1) Only the total resistance and reactance is known for each branch

Table 5. The TLP categories used for the IEEE 33 -bus system and their bus distribution.

TLP Category Bus

Residential 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14, 15, 16, 17, 18
Industry 2, 3, 19, 20, 21, 22, 23, 24, 25

Commercial 26, 27, 28, 29, 30, 31, 32, 33

The second test system used in the case study is a much larger EDN, consisting of 135 MV buses
to which 80 loads are connected through MV/LV transformers. For simplicity, the transformers are
omitted in Figure 12, together with the corresponding 80 bus numbers for the transformer LV busbars
(from 136 to 215). A summary of the transformer rated power, together with the feeder and bus general
information, is given in Table 6. The electrical parameters of the branches are given in Appendix A,
Table A2. For this network, the bus loads were also modelled as 24-h daily profiles, being measured by
the smart metering infrastructure installed by the local distribution utility for a typical working day.
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Table 6. The physical characteristics of the 215-bus EDN.

Number of Buses Transformer Rated
Power/Number Feeder Type

Feeder
Cross-Section

(mm2)
Total Length (km)

20 kV: 135 (1–135)
0.4 kV: 80 (136–215)

63 kVA: 33; 100
kVA: 14

160 kVA: 15, 250
kVA: 15

400 kVA: 3

Cable
3 × 95
3 × 120
3 × 150

2.5
84.45

3.2

Because a 24-h voltage profile was not available for the 215-bus network, the voltage reference for
the slack bus was recommended by the distribution utility at the value of 1.06 pu. For the IEEE 33-bus
system, the setpoint was 1 pu (nominal voltage). The slack bus for both networks is bus 1, and all the
other buses are modeled as PQ (consumer) buses.

4.1. Results for the IEEE 33-Bus System

The first step of the study was the choice of the maximum CB stock used for optimization. For this
purpose, the load profile of the network for 24 h, given in Figure 13, was analyzed. Since the purpose
was to test the performance of each algorithm, the CB stock was set at 70 × 7.5 kVar units, which would
ensure a maximum of 525 kVar of VAR compensation, about half of the minimal value of the reactive
load, occurring at night hours. In this way, the number of possible CB allocation variants is maximized,
while reducing the investment cost.

Figure 13. The active and reactive load profiles of the IEEE 33-bus test system—hourly values.

The GA, PSO, BOA, WOA, and SWA were run using this CB stock, the initial parameters from
Table 3, and the same initial population. The solution identified by each algorithm, compared with the
reference case (no reactive power compensation), and their corresponding fitness functions (percent
losses) are presented in Table 7. The first line of Table 7 also presents the maximum number of CBs
that can be allocated in each bus, computed according to the minimal reactive power load, so that
constraint Cr2 would be always fulfilled. The same results are displayed graphically in Figure 14. In
Figure 15, the parallel evolution of the fitness function of each algorithm over the first 350 generations
is presented, on a typical run, emphasizing the fact that the SWA and BOA obtain the solutions
corresponding to the lowest loss values, followed by the PSO, GA, and BAT.
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Table 7. The OCBA solutions found by the metaheuristic algorithms for the IEEE 33-bus system.

Bus 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CB
limit 3 2 4 0 0 6 3 1 4 0 6 4 4 0 0 0 14

Reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GA 1 1 1 0 0 1 1 1 2 0 5 1 2 0 0 0 13
PSO 0 0 0 0 0 4 0 1 0 0 0 4 4 0 0 0 14
BAT 0 2 4 0 0 3 1 1 1 0 6 4 3 0 0 0 2

WOA 0 0 0 0 0 0 0 1 0 0 1 4 4 0 0 0 14
SWA 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 0 14

Bus 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 CB Used Fitness

CB
limit 6 1 17 2 3 7 5 0 0 0 3 39 4 5 0 143 N/A

Reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.482
GA 1 1 1 1 1 1 1 0 0 0 1 27 4 2 0 70 4.982
PSO 0 1 0 0 0 0 0 0 0 0 3 39 0 0 0 70 4.947
BAT 0 1 0 1 3 7 2 0 0 0 2 24 2 1 0 70 5.038

WOA 0 1 0 0 0 0 0 0 0 0 0 39 1 5 0 70 4.939
SWA 0 0 0 0 0 0 0 0 0 0 0 35 4 5 0 70 4.934
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Figure 14. The number of CBs allocated in the buses of the IEEE 33-bus system by each algorithm.

Figure 15. The fitness of the optimal solution found by the metaheuristic algorithms after 360 iterations,
for the IEEE 33-bus system.

The results from Table 7 and Figure 14 show that the best fitness function values are obtained
when maximum compensation is applied at buses 18 (feeder end), 29–32 (feeder end), and 12–14,
while for other buses with compensation potential, such as 21–25, where the reactive load is high,
no capacitor banks are allocated. All the algorithms use the entire CB stock available, with differences
in the buses chosen for compensation and number of CBs allocated to each bus.

The results regarding the active power losses, for each hour and algorithm, compared with the
reference case are plotted in Figure 16 and presented in Table 8. Table 9 gives the loss reduction
in percent, against the reference case, for which the total values are represented in Figure 17. The
loss reduction ranges between 6.55% and 16.78%, depending on the algorithm and network load.
The improvement is higher in off-peak hours, and the best results are obtained with SWA (8.17%
to 16.78%), with a global value of 10.51% over 24 h. PSO, WOA, and SWA are the closest to the
optimal solution.
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Figure 16. Hourly active power losses in the IEEE 33-bus system, for each algorithm.

Table 8. Hourly and total active power losses in the IEEE 33-bus system, in kW, for each algorithm.

Hour Ref. BAT GA PSO WOA SWA

h01 140.04 122.53 120.22 118.98 118.74 118.51
h02 128.61 111.53 109.32 108.14 107.93 107.70
h03 122.58 105.89 103.74 102.65 102.45 102.22
h04 119.17 102.76 100.65 99.59 99.39 99.17
h05 118.50 102.35 100.31 99.31 99.13 98.90
h06 128.54 112.25 110.25 109.23 109.04 108.82
h07 205.62 184.05 181.30 179.43 178.99 178.75
h08 314.56 287.82 284.37 281.89 281.25 280.98
h09 374.57 345.89 342.50 340.05 339.35 339.12
h10 448.92 416.40 412.92 410.21 409.41 409.15
h11 462.22 427.75 424.10 421.26 420.40 420.17
h12 404.06 373.11 370.05 367.81 367.11 366.87
h13 408.02 377.17 373.94 371.64 370.97 370.72
h14 364.61 335.05 331.31 328.94 328.27 328.03
h15 324.39 296.90 293.33 291.25 290.70 290.45
h16 277.75 254.32 251.42 250.06 249.70 249.46
h17 298.98 275.44 272.52 271.10 270.71 270.50
h18 421.48 391.95 388.02 385.68 385.03 384.78
h19 466.73 436.14 431.94 429.53 428.93 428.60
h20 458.26 427.14 422.83 420.32 419.70 419.36
h21 329.63 302.53 298.48 295.98 295.44 295.03
h22 273.68 248.43 244.68 242.37 241.88 241.51
h23 187.07 167.53 164.73 163.25 162.98 162.67
h24 139.61 123.09 120.90 119.80 119.60 119.37
total 6917.59 6328.03 6253.83 6208.47 6197.11 6190.86
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Table 9. Hourly and total power loss reduction in the IEEE 33-bus system, in %, for each algorithm.

Hour BAT GA PSO WOA SWA

h01 12.50 14.15 15.03 15.21 15.37
h02 13.28 15.00 15.91 16.08 16.26
h03 13.62 15.37 16.26 16.42 16.61
h04 13.77 15.54 16.43 16.60 16.78
h05 13.62 15.35 16.19 16.35 16.54
h06 12.67 14.22 15.02 15.17 15.34
h07 10.49 11.83 12.74 12.95 13.06
h08 8.50 9.60 10.39 10.59 10.67
h09 7.66 8.56 9.22 9.40 9.47
h10 7.24 8.02 8.62 8.80 8.86
h11 7.46 8.25 8.86 9.05 9.10
h12 7.66 8.42 8.97 9.15 9.20
h13 7.56 8.35 8.92 9.08 9.14
h14 8.11 9.13 9.78 9.97 10.03
h15 8.47 9.57 10.21 10.38 10.46
h16 8.44 9.48 9.97 10.10 10.18
h17 7.87 8.85 9.32 9.46 9.53
h18 7.00 7.94 8.49 8.65 8.71
h19 6.55 7.46 7.97 8.10 8.17
h20 6.79 7.73 8.28 8.41 8.49
h21 8.22 9.45 10.21 10.37 10.50
h22 9.23 10.60 11.44 11.62 11.76
h23 10.45 11.94 12.73 12.88 13.04
h24 11.83 13.40 14.19 14.33 14.49
total 8.52 9.60 10.25 10.42 10.51

Figure 17. The total active power loss reduction in the IEEE 33-bus system, in kW, for each algorithm.

Compared with the reference case, the best compensation solution found by the SWA leads
to a loss reduction of 726.73 kW for the analyzed day, which, if it is extrapolated for a year, amounts
to 265.26 MW loss saving. The difference between SWA and the second best result, given by WOA,
is of 6.25 kW per day or 2.28 MW for an entire year. As Figure 16 shows, SWA achieves these savings
mainly during two hours, at 19.00 and 24.00.

Reactive power compensation with capacitor banks is mainly used in EDN for voltage profile
improvement, where specific networks configurations and load patterns lead to high voltage drops
along the feeders. In the case of the IEEE 33-bus system, the nominal voltage setting for the slack bus
and the load profiles from Appendix A lead, in the reference case without compensation, to the voltage
profile described by Figure 18.
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Figure 18. The bus voltages in the IEEE 33-bus system without compensation, for each hour from the
analyzed day.

The values show voltage drops that exceed the lower limit of –10% prescribed by the Romanian
standards, in several buses located near the end of the main two supply paths, ending in buses 18 and
33. For bus 18, the voltage has the minimum value of 0.858 pu, at hours 19.00 and 20.00, while for bus
33, the minimum voltage is 0.882 pu, at hour 10.00.

The improvement of the voltages obtained hourly with each algorithm is depicted in Figure 19
for bus 18 and in Figure 20 for bus 33. The percent improvements over the reference values (no
compensation) are given in Tables 10 and 11, respectively. Again, the SWA gives the best results,
with the maximum voltage improvement. The minimum reference voltage value of 0.858 pu in bus
18 (hour 10.00) is raised by 1.65%, to 0.872 pu. However, the voltages remain below the 0.9 pu minimum
allowed limit, for 10 h from the 24-h analysis interval. Better voltage regulation can be possible using
a larger CB stock or raising the voltage in the reference bus, by changing the HV/MV transformer tap
position from the substation at bus 1.

Figure 19. Voltage improvement after compensation for bus 18, the IEEE 33-bus system.
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Figure 20. Voltage improvement after compensation for bus 33, the IEEE 33-bus system.

Table 10. Hourly reference voltage values for bus 18 and percent improvements after compensation,
the IEEE 33-bus test system.

Hour
Voltage, pu Improvement, %

Ref. BAT GA PSO WOA SWA

h01 0.914 0.82 1.26 1.38 1.38 1.42
h02 0.919 0.81 1.25 1.37 1.37 1.41
h03 0.921 0.80 1.24 1.36 1.36 1.40
h04 0.922 0.80 1.23 1.36 1.36 1.40
h05 0.922 0.80 1.23 1.36 1.36 1.40
h06 0.919 0.80 1.24 1.36 1.36 1.40
h07 0.905 0.84 1.29 1.42 1.42 1.46
h08 0.888 0.88 1.35 1.48 1.48 1.53
h09 0.886 0.88 1.36 1.49 1.49 1.54
h10 0.879 0.90 1.38 1.52 1.52 1.56
h11 0.878 0.91 1.39 1.53 1.53 1.57
h12 0.882 0.89 1.37 1.50 1.50 1.55
h13 0.882 0.89 1.37 1.51 1.51 1.55
h14 0.885 0.89 1.36 1.50 1.50 1.54
h15 0.890 0.88 1.35 1.48 1.48 1.52
h16 0.895 0.86 1.32 1.45 1.45 1.50
h17 0.892 0.86 1.33 1.46 1.46 1.51
h18 0.870 0.92 1.41 1.55 1.55 1.60
h19 0.858 0.95 1.45 1.60 1.60 1.65
h20 0.858 0.95 1.45 1.60 1.60 1.65
h21 0.869 0.92 1.42 1.55 1.56 1.60
h22 0.882 0.89 1.37 1.51 1.51 1.55
h23 0.898 0.85 1.31 1.44 1.44 1.48
h24 0.913 0.82 1.26 1.38 1.39 1.43

minimum
value, pu 0.858

max. improvement, % 0.95 1.45 1.60 1.60 1.65
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Table 11. Hourly reference voltage values for bus 33 and percent improvements after compensation,
the IEEE 33-bus test system.

Hour
Voltage, pu Improvement, %

Reference BAT GA PSO WOA SWA

h01 0.935 0.78 0.91 1.02 1.10 1.11
h02 0.937 0.77 0.90 1.01 1.09 1.10
h03 0.939 0.77 0.90 1.01 1.09 1.10
h04 0.939 0.77 0.90 1.01 1.09 1.10
h05 0.940 0.77 0.90 1.01 1.08 1.10
h06 0.938 0.77 0.90 1.01 1.09 1.10
h07 0.915 0.82 0.96 1.08 1.16 1.17
h08 0.896 0.86 1.01 1.14 1.22 1.24
h09 0.890 0.88 1.02 1.15 1.24 1.25
h10 0.882 0.90 1.05 1.18 1.27 1.28
h11 0.883 0.90 1.05 1.18 1.27 1.28
h12 0.895 0.87 1.01 1.14 1.23 1.24
h13 0.895 0.87 1.01 1.14 1.23 1.24
h14 0.899 0.86 1.00 1.13 1.22 1.23
h15 0.908 0.84 0.98 1.10 1.19 1.20
h16 0.921 0.81 0.94 1.06 1.14 1.15
h17 0.916 0.82 0.96 1.07 1.16 1.17
h18 0.894 0.87 1.02 1.14 1.23 1.24
h19 0.890 0.88 1.03 1.15 1.24 1.26
h20 0.890 0.88 1.03 1.15 1.24 1.26
h21 0.900 0.85 1.00 1.12 1.21 1.22
h22 0.908 0.84 0.98 1.10 1.19 1.20
h23 0.927 0.79 0.93 1.04 1.12 1.14
h24 0.937 0.77 0.90 1.01 1.09 1.11

minimum
value, p.u. 0.882

max. improvement, % 0.90 1.05 1.18 1.27 1.28

The voltage improvements are smaller for bus 33, with a maximum of 1.28% with the SWA,
but with three algorithms (SWA, PSO and WOA), the voltage levels are raised after compensation
above the maximum –10% deviation allowed by the regulations during 7 h (8.00, 9.00, 12.00, 13.00,
18.00, 19.00, and 20.00), only two hours remaining below this threshold (10.00 and 11.00), as it can be
seen in Figure 20.

4.2. Results for the 215-Bus Distribution Network

In this case, the CB stock used for compensation was chosen using the 24-h load profile of
the network from Figure 21. In comparison with the IEEE 33-bus system, the minimum off-peak
reactive load is reduced, while the number of buses available for compensation increases significantly,
allowing a higher number of possible solutions. Thus, the CB stock was set at 90 units of 7.5 kVar each,
providing a maximum of 675 kVar of reactive power. As the solutions from Figure 22 and Table 12
show, all the algorithms use the entire stock, with different bus allocation. The SWA provides the
best solution (6.19% active power losses), followed by the PSO (6.21%). In Table 12, since the VAR
compensation is performed at the LV side of the substation transformers, the bus numbers are given
for both the MV buses denoted in Figure 12, and for their corresponding LV transformer busbars.
In Figure 22, only the LV bus numbers are used, for better readability. Figure 23 presents the evolution
of the fitness function of each metaheuristic algorithm over the first 360 generations, on a typical run.
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Figure 21. The active and reactive load profiles of the 215-bus network—hourly values.

Figure 22. The number of CBs allocated in the buses of the 215-bus network by each algorithm:
(a)—buses 136-175, (b)—buses 176-215.

For this network, as Figure 22 shows, the best two solutions (SWA, PSO) are mainly differentiated
by the CB allocation at buses 151, LV side (28, MV side); 153 (31); 155 (34); 156 (35); and 157 (36),
located at the beginning of the network, and having significant reactive power loads. This behavior is
triggered by the use of the 90 CB stock, which is close to the maximum possible number of CBs that
can be allocated for compensation, 107, and because of the sufficient stock, most of the buses can use
the maximum possible CB allocation.

The comparison between the hourly active power losses computed by the Newton–Raphson
algorithm for the reference case (no compensation) and the losses determined for each best
compensation solution found by the metaheuristic algorithms is presented in Table 13 and Figure 24.
Furthermore, Table 14 gives the percent reduction in losses obtained using the compensation solutions,
while Figure 25 allows for an overview of the total losses obtained in each case, based on the values
computed in Table 13.
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Table 12. The OCBA solutions found by the metaheuristic algorithms for the 215-bus network.

MV Bus 2 3 5 6 7 10 11 13 15 17 19 21 23 24 26 28 29 31 32 34 35

LV Bus 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

bus limit 0 5 3 0 1 1 0 2 2 3 1 3 0 0 0 4 1 2 1 2 4
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 0 3 2 0 1 1 0 1 1 3 1 1 0 0 0 4 1 2 1 1 3
PSO 0 5 0 0 1 1 0 1 2 3 1 0 0 0 0 4 1 1 1 2 0
BAT 0 0 3 0 1 1 0 1 2 0 1 3 0 0 0 4 1 1 1 2 4

WOA 0 2 3 0 1 1 0 2 2 1 1 1 0 0 0 2 1 1 1 2 4
SWA 0 5 0 0 0 1 0 0 2 3 1 0 0 0 0 3 1 2 0 1 0

MV Bus 36 38 39 40 41 42 43 45 46 49 51 53 55 57 58 61 63 64 65 68 70

LV Bus 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

bus limit 2 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 1 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1
PSO 1 1 0 1 0 1 0 5 0 1 0 0 2 1 1 2 0 1 1 1 1
BAT 1 1 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1

WOA 1 1 0 1 0 1 0 5 0 1 0 1 1 1 1 2 0 1 1 1 1
SWA 2 0 0 1 0 1 0 5 0 1 0 2 2 1 1 2 0 1 1 1 1

MV Bus 71 72 74 76 77 79 81 83 85 87 90 91 92 94 96 97 99 102 103 105 107

LV Bus 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

bus limit 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GA 1 1 1 0 1 2 0 2 1 2 1 3 1 1 0 1 0 0 0 3 0
PSO 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0
BAT 1 1 1 0 1 1 0 1 1 1 1 3 1 1 0 1 0 0 0 3 0

WOA 1 1 1 0 1 1 0 1 1 1 1 3 1 1 0 1 0 0 0 4 0
SWA 1 1 1 0 1 2 0 3 1 2 1 3 1 1 0 1 0 0 0 4 0

MV Bus 109 111 112 115 117 118 119 121 122 123 124 126 128 130 132 133 135

LV Bus 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 CB
Used Fitness

bus limit 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 107
reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.8578

GA 1 2 1 1 1 0 0 2 0 1 4 0 1 2 4 1 0 90 6.2385
PSO 1 3 1 1 1 0 0 2 0 1 4 0 0 2 4 1 3 90 6.2050
BAT 1 3 1 1 1 0 0 1 0 1 4 0 2 2 4 1 3 90 6.2278

WOA 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 90 6.2175
SWA 1 3 1 1 1 0 0 2 0 1 4 0 2 2 4 1 3 90 6.1910
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Figure 23. The fitness of the optimal solution found by the metaheuristic algorithms after 360 iterations,
for the 215-bus network.

Table 13. Hourly and total active power losses in the 215-bus network, in kW, for each algorithm.

Hour Ref. BAT GA PSO WOA SWA

h01 67.331 55.673 55.609 55.539 55.583 55.305
h02 56.182 45.636 45.575 45.517 45.541 45.319
h03 53.214 43.113 43.053 43.000 43.016 42.817
h04 58.190 47.878 47.818 47.762 47.782 47.572
h05 90.377 77.534 77.467 77.382 77.446 77.109
h06 147.228 131.143 131.068 130.941 131.065 130.562
h07 245.758 223.025 223.059 222.583 222.867 222.029
h08 290.292 262.257 262.479 261.527 261.962 260.864
h09 303.227 270.552 271.077 269.405 270.026 268.696
h10 296.025 261.012 261.713 259.595 260.336 258.874
h11 354.181 312.943 313.922 311.078 312.050 310.247
h12 363.306 320.607 321.658 318.606 319.647 317.753
h13 352.690 310.099 311.147 308.090 309.134 307.242
h14 350.992 308.310 309.373 306.281 307.332 305.437
h15 394.674 349.439 350.570 347.313 348.428 346.400
h16 393.582 349.764 350.799 347.811 348.843 346.908
h17 505.757 458.845 459.845 456.827 457.938 455.824
h18 741.209 680.993 682.464 678.467 679.882 677.100
h19 892.805 825.937 827.555 823.210 824.773 821.637
h20 795.742 736.564 737.748 734.379 735.670 732.945
h21 672.197 623.613 624.385 621.999 622.971 620.808
h22 304.238 280.233 280.128 279.887 280.171 279.245
h23 194.076 175.399 175.315 175.153 175.327 174.688
h24 122.607 107.163 107.100 106.949 107.055 106.594
total 8045.88 7257.73 7270.93 7229.30 7244.84 7211.97
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Figure 24. Hourly active power losses in the IEEE 33-bus system, for each algorithm.

Table 14. Hourly and total power loss reduction in the 215-bus network, in %, for each algorithm.

Hour BAT GA PSO WOA SWA

h01 17.31 17.41 17.51 17.45 17.86
h02 18.77 18.88 18.98 18.94 19.33
h03 18.98 19.09 19.19 19.16 19.54
h04 17.72 17.82 17.92 17.89 18.25
h05 14.21 14.28 14.38 14.31 14.68
h06 10.92 10.98 11.06 10.98 11.32
h07 9.25 9.24 9.43 9.31 9.66
h08 9.66 9.58 9.91 9.76 10.14
h09 10.78 10.60 11.15 10.95 11.39
h10 11.83 11.59 12.31 12.06 12.55
h11 11.64 11.37 12.17 11.90 12.40
h12 11.75 11.46 12.30 12.02 12.54
h13 12.08 11.78 12.65 12.35 12.89
h14 12.16 11.86 12.74 12.44 12.98
h15 11.46 11.17 12.00 11.72 12.23
h16 11.13 10.87 11.63 11.37 11.86
h17 9.28 9.08 9.67 9.45 9.87
h18 8.12 7.93 8.46 8.27 8.65
h19 7.49 7.31 7.80 7.62 7.97
h20 7.44 7.29 7.71 7.55 7.89
h21 7.23 7.11 7.47 7.32 7.64
h22 7.89 7.92 8.00 7.91 8.22
h23 9.62 9.67 9.75 9.66 9.99
h24 12.60 12.65 12.77 12.68 13.06
total 9.80 9.63 10.15 9.96 10.36

Figure 25. The total active power loss reduction in the 215-bus network, in kW, for each algorithm.

The best CB allocation solution, obtained with the SWA, achieves a loss reduction of 833.91 kW or
10.36% for the entire network, in 24 h, which amounts to 304.38 MW in an entire year. The next best
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solution, found with the PSO algorithm, achieves only 816.58 kW (10.15%). The difference between the
two solutions is of 17.33 kW in the analyzed day, or 6.32 MW in a year. The improvement over the IEEE
33-bus system regarding the loss reduction can be attributed to the presence of the MV/LV transformers.

The bus voltage levels for all 24 h and buses from the 215-bus network are presented in Figure 26.
The length of the main feeder and the bus loadings lead to low voltage levels at the last buses on the
main supply path, with values below the 0.9 pu limit at the LV side. At the MV side, the voltages are
inside the allowed range, varying from 1.060 pu in the slack bus to 0.940 pu.

Figure 26. The bus voltages in the 215-bus network without compensation, for each hour from the
analyzed day.

Figures 27 and 28 depict the effect of VAR compensation on the voltages at bus 135 (MV) and 215
(LV). By allocating the available CB stock according to the solutions found by the five metaheuristic
algorithms, the bus voltages increase with maximum 1.36%, as shown in Table 15 for bus 215 (LV).
This increase is not sufficient for raising the lowest voltage values above the desired limit of 0.9 pu.
Since the CB stock is near the maximum allowed reactive load compensation which fulfills constraint
Cr2 specified by the optimization model, an alternative solution is to change the MV/LV transformer
tap settings in the affected buses.

Figure 27. Voltage improvement after compensation for bus 135, medium voltage, the 215-bus network.
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Figure 28. Voltage improvement after compensation for bus 215, low voltage, the 215-bus network.

Table 15. Hourly reference voltage values for bus 215 and percent improvements after compensation,
the 215-bus network.

Hour
Voltage, pu Improvement, %

Ref. BAT GA PSO WOA SWA

h01 1.019 0.86 0.36 0.86 0.87 0.88
h02 1.022 0.85 0.35 0.86 0.86 0.87
h03 1.022 0.85 0.35 0.86 0.86 0.87
h04 1.021 0.86 0.35 0.86 0.86 0.87
h05 1.014 0.87 0.36 0.87 0.88 0.89
h06 1.004 0.89 0.37 0.89 0.90 0.91
h07 0.983 0.94 0.39 0.94 0.95 0.96
h08 0.965 0.99 0.41 0.99 0.99 1.01
h09 0.948 1.04 0.43 1.04 1.04 1.06
h10 0.940 1.06 0.45 1.07 1.07 1.09
h11 0.922 1.12 0.47 1.13 1.13 1.15
h12 0.917 1.14 0.48 1.15 1.15 1.16
h13 0.918 1.14 0.48 1.14 1.15 1.16
h14 0.918 1.14 0.48 1.14 1.15 1.16
h15 0.911 1.16 0.49 1.17 1.17 1.18
h16 0.916 1.14 0.48 1.15 1.15 1.17
h17 0.905 1.17 0.49 1.18 1.18 1.20
h18 0.876 1.28 0.54 1.28 1.29 1.30
h19 0.863 1.33 0.57 1.33 1.34 1.36
h20 0.884 1.24 0.53 1.25 1.25 1.27
h21 0.903 1.17 0.50 1.17 1.18 1.19
h22 0.985 0.93 0.39 0.94 0.94 0.95
h23 0.998 0.90 0.38 0.91 0.91 0.92
h24 1.008 0.88 0.37 0.89 0.89 0.90

minimum
value, pu 0.863

max. improvement, % 1.33 0.57 1.33 1.34 1.36

5. Discussions and Conclusions

The reactive power flow in the active electricity distribution networks has an important influence
on the bus voltage level and the active power losses. Therefore, in order to control the reactive power
absorbed by consumers, their consumption must be characterized by a power factor approximately
equal to the neutral value (0.9 in Romania). Optimal allocation of reactive sources in the electricity
distribution networks is made for power losses reduction, power factor correction and/or voltage
profile improvement.

The optimization model considered in the paper has as main objective the optimal allocation
of capacitor banks (CBs) in the medium voltage networks to minimize the power/energy losses,
taking into account the technical restrictions imposed by the available CB stock, the compensation
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level in each bus, branch current flows, and bus voltages. This is very useful for distribution network
operators that install now large amounts of capacitor banks (CB) in the distribution networks. In order
to optimize the location of these CBs, the used test networks (the IEEE 33-bus system and a real 215-bus
EDN from Romania) were modelled considering the MV lines, the MV/LV transformers from the
electric distribution substations, where available, and the MV and LV buses. The different algorithms
(Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Optimization Algorithm (BOA),
Whale Optimization Algorithm (WOA) and Sperm-Whale Algorithm (SWA)) were tested to see which
would be the best to solve the problem of capacitor bank allocation. The study, made using the IEEE
33-bus system, highlighted the fact that the SWA leads to the best results compared to the other
algorithms. Compared with the reference case, the best compensation solution found by the SWA leads
to a loss reduction of 726.73 kW for the analyzed day, which, if it is extrapolated for a year, amounts to
265.26 MW loss saving. The difference between SWA and the second best result, given by WOA, is of
6.25 kW per day or 2.28 MW for an entire year. In the case of the voltage level, an improvement was
observed on the entire electricity distribution network, in all nodes, also obtained with the help of
SWA. The minimum reference voltage value in bus 18 (the farthest node), at hour 10.00, was increased
by 1.65%.

Moreover, the algorithms were tested in a real electricity distribution network (215-bus EDN)
from Romania. The best CB allocation solution, obtained again with the SWA, achieves a loss reduction
of 833.91 kW or 10.36% for the entire network, in 24 h, which amounts to 304.38 MW in an entire year.
The next best solution, found with the PSO algorithm, achieves only 816.58 kW (10.15%). The difference
between the two solutions is of 17.33 kW in the analyzed day, or 6.32 MW in a year. The solutions
found led to an increase of the voltage in the farthest node (215) with maximum 1.36%.

Based on the obtained results, it can be affirmed that the use of capacitor banks is an easy solution
to be implemented with technical and economic benefits to the electricity distribution networks that
maximizes long-term return on investment as the network develops. An intelligent control of capacitor
banks leads to improved energy efficiency and voltage level in the buses of electricity distribution
networks, resulting in an increase in the percentage of energy delivered to consumers. Amongst the
tested algorithms, the SWA finds the best compensation solutions, which can lead to significant
additional loss savings and shorter investment recovery times.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/22/4239/
s1, file IEEE33_load_data.xls, active and reactive load profiles for the IEEE-33bus test system, and file
EDN215_load_data.xls, active and reactive load profiles for the 215-bus distribution network.
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Appendix A

Table A1. Branch parameters for the IEEE 33-bus system.

Bus 1 Bus 2 Imax, A Type1 Resistance, Ω Reactance, Ω

1 2 420 1 0.092 0.047
2 3 420 1 0.493 0.251
3 4 420 1 0.366 0.186
4 5 420 1 0.381 0.194
5 6 420 1 0.819 0.707
6 7 420 1 0.187 0.619
7 8 420 1 0.711 0.235
8 9 420 1 1.03 0.74

http://www.mdpi.com/1996-1073/12/22/4239/s1
http://www.mdpi.com/1996-1073/12/22/4239/s1
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Table A1. Cont.

Bus 1 Bus 2 Imax, A Type1 Resistance, Ω Reactance, Ω

9 10 420 1 1.044 0.74
10 11 420 1 0.197 0.065
11 12 420 1 0.374 0.124
12 13 420 1 1.468 1.155
13 14 420 1 0.542 0.713
14 15 420 1 0.591 0.526
15 16 420 1 0.746 0.545
16 17 420 1 1.289 1.721
17 18 420 1 0.732 0.574
19 20 420 1 1.504 1.356
2 19 420 1 0.164 0.157
20 21 420 1 0.41 0.478
21 22 420 1 0.709 0.937
23 24 420 1 0.898 0.709
24 25 420 1 0.896 0.701
26 27 420 1 0.284 0.145
27 28 420 1 1.059 0.934
28 29 420 1 0.804 0.701
29 30 420 1 0.508 0.259
3 23 420 1 0.451 0.308
30 31 420 1 0.975 0.963
31 32 420 1 0.311 0.362
32 33 420 1 0.341 0.53
6 26 420 1 0.203 0.103

1 Branch type can be 1—line; 2—transformer.

Table A2. Branch parameters for the 215-bus distribution network.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

1 2 235 1 0.80625 0.314159
2 3 315 1 0.1051 0.061104
2 4 295 1 0.7701 0.358142
4 5 295 1 0.00154 0.000716
4 6 295 1 0.30804 0.143257
6 7 295 1 0.021306 0.009909
7 8 295 1 0.021306 0.009909
8 9 295 1 0.272102 0.126543
8 29 295 1 0.056474 0.026264
9 10 295 1 0.02567 0.011938
9 11 295 1 0.213061 0.099086
11 12 295 1 0.115515 0.053721

101 102 295 1 0.141185 0.065659
101 103 295 1 0.02567 0.011938
104 105 295 1 0.02567 0.011938
104 106 295 1 0.361947 0.168327
106 107 295 1 0.02567 0.011938
106 108 295 1 0.2567 0.119381
108 109 295 1 0.05134 0.023876
108 110 295 1 0.467194 0.217273
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

110 111 295 1 0.115515 0.053721
110 113 295 1 0.12835 0.05969
12 13 295 1 0.07701 0.035814
12 14 295 1 0.019253 0.008954

111 112 295 1 0.041072 0.019101
113 114 295 1 0.2567 0.119381
113 125 295 1 0.07701 0.035814
114 115 295 1 0.173273 0.080582
114 116 295 1 0.035938 0.016713
116 117 295 1 0.369648 0.171908
116 119 295 1 0.07701 0.035814
117 118 295 1 0.202793 0.094311
119 120 295 1 0.562173 0.261443
120 121 295 1 0.15402 0.071628
120 122 295 1 0.110381 0.051334
122 123 295 1 0.187391 0.087148
123 124 295 1 0.187391 0.087148
125 126 295 1 0.038505 0.017907
125 127 295 1 0.169422 0.078791
127 128 295 1 0.02567 0.011938
127 129 295 1 0.064175 0.029845
129 130 295 1 0.20536 0.095504
129 131 295 1 0.361947 0.168327
14 15 295 1 0.097546 0.045365
14 22 295 1 0.035938 0.016713

131 132 295 1 0.120649 0.056109
131 133 295 1 0.17969 0.083566
131 134 295 1 0.2567 0.119381
134 135 295 1 0.033371 0.015519
15 16 295 1 0.15402 0.071628
16 17 295 1 0.15402 0.071628
16 18 295 1 0.019253 0.008954
18 19 295 1 0.17969 0.083566
18 20 295 1 0.019253 0.008954
20 21 295 1 0.02567 0.011938
22 23 295 1 0.351679 0.163551
22 24 295 1 0.248999 0.115799
24 25 295 1 0.23103 0.107442
25 26 295 1 0.071876 0.033427
25 27 295 1 0.392751 0.182652
27 28 295 1 0.10268 0.047752
29 30 295 1 0.038505 0.017907
30 31 295 1 0.071876 0.033427
30 37 295 1 0.056474 0.026264
31 32 295 1 0.123216 0.057303
32 33 295 1 0.087278 0.040589
33 34 295 1 0.192525 0.089535
33 35 295 1 0.071876 0.033427
35 36 295 1 0.351679 0.163551
37 38 295 1 0.10268 0.047752
37 40 295 1 0.318308 0.148032
39 38 309 1 0.46244 0.268858
40 41 295 1 0.41072 0.191009
40 43 295 1 0.403019 0.187427
42 41 295 1 0.12835 0.05969
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

43 44 295 1 0.084711 0.039396
44 45 295 1 0.33371 0.155195
44 47 295 1 0.189958 0.088342
45 46 295 1 0.02567 0.011938
47 48 295 1 0.238731 0.111024
47 56 295 1 0.338844 0.157582
48 49 295 1 0.17969 0.083566
48 50 295 1 0.238731 0.111024
50 51 295 1 0.288788 0.134303
50 52 295 1 0.040045 0.018623
52 53 295 1 0.07701 0.035814
52 54 295 1 0.10268 0.047752
54 55 295 1 0.23103 0.107442
56 57 295 1 0.05134 0.023876
56 59 295 1 0.659719 0.306808
57 58 295 1 0.10268 0.047752
59 60 295 1 0.043639 0.020295
59 66 295 1 0.084711 0.039396
60 61 295 1 0.02567 0.011938
60 62 295 1 0.074443 0.03462
62 63 295 1 0.441524 0.205335
62 64 295 1 0.028237 0.013132
64 65 295 1 0.17969 0.083566
66 67 295 1 0.17969 0.083566
66 73 295 1 0.467194 0.217273
67 68 295 1 0.10268 0.047752
67 69 295 1 0.120649 0.056109
69 70 295 1 0.02567 0.011938
69 71 295 1 0.210494 0.097892
71 72 295 1 0.02567 0.011938
73 74 295 1 0.02567 0.011938
73 75 295 1 0.467194 0.217273
75 76 295 1 0.64175 0.298451
75 78 295 1 0.021306 0.009909
76 77 295 1 0.30804 0.143257
78 79 295 1 0.15402 0.071628
78 80 295 1 0.084711 0.039396
80 81 295 1 0.02567 0.011938
80 82 295 1 0.12835 0.05969
82 83 295 1 0.10268 0.047752
82 84 295 1 0.189958 0.088342
84 85 295 1 0.23103 0.107442
84 86 295 1 0.2567 0.119381
86 87 295 1 0.05134 0.023876
86 88 295 1 0.5134 0.238761
88 89 295 1 0.07701 0.035814
88 92 295 1 0.084711 0.039396
89 90 295 1 0.02567 0.011938
89 91 295 1 0.02567 0.011938
92 93 295 1 0.5134 0.238761
93 94 295 1 0.02567 0.011938
93 95 295 1 0.084711 0.039396
95 96 295 1 0.07701 0.035814
95 98 295 1 0.12835 0.05969
96 97 295 1 0.053907 0.02507
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

98 99 295 1 0.084711 0.039396
98 100 295 1 0.064175 0.029845

100 101 295 1 0.07701 0.035814
100 104 295 1 0.12835 0.05969

2 136 1000 2 0.06 0.082
3 137 1000 2 0.011 0.037
5 138 1000 2 0.011 0.037
6 139 1000 2 0.011 0.037
7 140 1000 2 0.011 0.037
10 141 1000 2 0.019 0.036
11 142 1000 2 0.06 0.082

102 195 1000 2 0.04 0.05
103 196 1000 2 0.06 0.082
105 197 1000 2 0.011 0.037
107 198 1000 2 0.06 0.082
109 199 1000 2 0.011 0.037
111 200 1000 2 0.006 0.023
112 201 1000 2 0.011 0.037
115 202 1000 2 0.06 0.082
117 203 1000 2 0.06 0.082
118 204 1000 2 0.06 0.082
119 205 1000 2 0.06 0.082
13 143 1000 2 0.019 0.036

121 206 1000 2 0.011 0.037
122 207 1000 2 0.06 0.082
123 208 1000 2 0.06 0.082
124 209 1000 2 0.019 0.036
126 210 1000 2 0.06 0.082
128 211 1000 2 0.019 0.036
130 212 1000 2 0.019 0.036
132 213 1000 2 0.006 0.023
133 214 1000 2 0.06 0.082
135 215 1000 2 0.019 0.036
15 144 1000 2 0.06 0.082
17 145 1000 2 0.04 0.05
19 146 1000 2 0.06 0.082
21 147 1000 2 0.011 0.037
23 148 1000 2 0.06 0.082
24 149 1000 2 0.06 0.082
26 150 1000 2 0.06 0.082
28 151 1000 2 0.019 0.036
29 152 1000 2 0.06 0.082
31 153 1000 2 0.04 0.05
32 154 1000 2 0.019 0.036
34 155 1000 2 0.019 0.036
35 156 1000 2 0.011 0.037
36 157 1000 2 0.04 0.05
38 158 1000 2 0.011 0.037
39 159 1000 2 0.019 0.036
40 160 1000 2 0.019 0.036
41 161 1000 2 0.04 0.05
42 162 1000 2 0.06 0.082
43 163 1000 2 0.019 0.036
45 164 1000 2 0.006 0.023
46 165 1000 2 0.06 0.082
49 166 1000 2 0.06 0.082
51 167 1000 2 0.06 0.082
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Table A2. Cont.

Bus 1 Bus 2 Imax, A Type Resistance, Ω Reactance, Ω

53 168 1000 2 0.04 0.05
55 169 1000 2 0.04 0.05
57 170 1000 2 0.019 0.036
58 171 1000 2 0.06 0.082
61 172 1000 2 0.011 0.037
63 173 1000 2 0.06 0.082
64 174 1000 2 0.06 0.082
65 175 1000 2 0.06 0.082
68 176 1000 2 0.06 0.082
70 177 1000 2 0.04 0.05
71 178 1000 2 0.06 0.082
72 179 1000 2 0.06 0.082
74 180 1000 2 0.06 0.082
76 181 1000 2 0.06 0.082
77 182 1000 2 0.04 0.05
79 183 1000 2 0.04 0.05
81 184 1000 2 0.06 0.082
83 185 1000 2 0.04 0.05
85 186 1000 2 0.04 0.05
87 187 1000 2 0.011 0.037
90 188 1000 2 0.011 0.037
91 189 1000 2 0.011 0.037
92 190 1000 2 0.06 0.082
94 191 1000 2 0.04 0.05
96 192 1000 2 0.019 0.036
97 193 1000 2 0.04 0.05
99 194 1000 2 0.019 0.036
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30. Baysal, Y.A.; Altas, İ.H. Power quality improvement via optimal capacitor placement in electrical distribution
systems using symbiotic organisms search algorithm. Mugla J. Sci. Technol. 2017, 3, 64–68. [CrossRef]

31. Helmy, W.; Abbas, M.A.E. Optimal sizing of capacitor-bank types in the low voltage distribution networks
using JAYA optimization. In Proceedings of the 9th International Renewable Energy Congress (IREC),
Hammamet, Tunisia, 20–22 March 2018; pp. 1–5.

32. Sultana, S.; Roy, P.K. Capacitor Placement in Radial Distribution System Using Oppositional Cuckoo
Optimization Algorithm. Int. J. Swarm Intel. Res. (IJSIR) 2018, 9, 64–95. [CrossRef]

http://dx.doi.org/10.3390/en11092352
http://dx.doi.org/10.1016/j.epsr.2015.09.014
http://dx.doi.org/10.1016/j.eswa.2008.04.002
http://dx.doi.org/10.3390/en10060811
http://dx.doi.org/10.1016/j.ijepes.2014.12.010
http://dx.doi.org/10.3390/en11030571
http://dx.doi.org/10.1002/etep.2754
http://dx.doi.org/10.3390/en12091690
http://dx.doi.org/10.1016/j.aej.2014.09.012
http://dx.doi.org/10.1016/j.jestch.2018.08.009
http://dx.doi.org/10.3390/en11082134
http://dx.doi.org/10.1016/j.ijepes.2015.11.059
http://dx.doi.org/10.1016/j.aej.2018.01.004
http://dx.doi.org/10.1016/j.ijepes.2016.01.015
http://dx.doi.org/10.1016/j.ijepes.2015.03.008
http://dx.doi.org/10.3390/en11040766
http://dx.doi.org/10.1016/j.ijepes.2016.04.002
http://dx.doi.org/10.1016/j.jestch.2017.01.003
http://dx.doi.org/10.1016/j.jestch.2017.03.006
http://dx.doi.org/10.22531/muglajsci.273947
http://dx.doi.org/10.4018/IJSIR.2018070103


Energies 2019, 12, 4239 36 of 36
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