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Abstract: This paper deals with an ultracapacitor (UC) model and its identification procedure. To take
UC’s fractional characteristic into account, two constant phase elements (CPEs) are used to construct
a model structure according to impedance spectrum analysis. The different behaviors of UC such
as capacitance, resistance, and charge distribution dynamics are simulated by the corresponding
part in the model. The resistance under different voltages is calculated through the voltage rebound
method to explore its non-linear characteristics and create a look-up table. A nonlinear fractional
model around an operation voltage is then deduced by applying the resistance table. This time
identification is carried by a proposed hybrid optimization algorithm: Nelder-Mead seeker algorithm
(NMSA), which embeds the Nelder–Mead Simplex (NMS) method into the seeker optimization
algorithm (SOA). Its time behavior has been compared with the linear fractional model for charging
and discharging current profiles at different levels.

Keywords: hybrid optimization; ultracapacitor; fractional-order model; time-domain analysis

1. Introduction

Ultracapacitors (UCs) are currently gaining attention rapidly as a new type of energy-storage
component with a higher density than ordinary capacitance and longer cycle life than batteries [1,2].
However, its energy storage principle determines its capacity cannot temporarily surpass the battery [3].
Thence, it is always associated with batteries in the energy storage unit when it supplies energy to
electric vehicles (EV) or hybrid electric vehicles (HEV). UC can meet vehicle startup and acceleration
requirements due to its high power rate. Thanks to the short charging time of UC, the braking
energy can be absorbed efficiently during decelerating. With a reasonable power distribution strategy
in-vehicle, the application of UC is a good way to reduce battery load and further to improve the
battery’s cycle life.

In the early stage of UC modeling, the internal properties of UC are analyzed in many
electrochemical models. In their model, Gouy and Chapman adopted the principle that ion distribution
of the double-layer’s outer element conformed to the laws of Bolzmann [4]. The mathematical model
proposed in [5] described the effect of pore size on UC performance. On the contrary, the machine
learning model describes the relationships between inputs and outputs without considering the
internal structure. The subject [6–8] utilized ANN technology to predict the performance of carbon
materials in supercapacitors. Among all the modeling approaches, the equivalent circuit model is the
most commonly used. Through studying the slow charging behavior of UC, R.L. Spyker and R.M.
Nelms used a classical equivalent circuit composed of capacitance in parallel with resistance and an
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equivalent series resistance [9]. To take into account the fast dynamics, a model consisting of three RC
branches is proposed that reflected the internal charge distribution process within a specific voltage
range [10]. Because of the widespread use of activated carbon with high surface area, some groups
adopted the transmission line model (TLM) to simulate the frequency response of UC and discussed
the contribution of the parameters to the impedance spectrum [11]. The complex determination of
different elements and large numbers of parameters leads to inconvenience.

To simplify the complexity of the model, the fractional-order model has been employed. A simple
UC model composed of a series resistor and a CPE is used to model the impedance in the frequency
range in [12]. The capacitance-voltage dependence is taken into account in [13] by implanting a
voltage-dependent capacitance in one of the three branches and a fitting formula with an undetermined
coefficient is used. N. Bertrand et al. [14] used a set of linear systems to deduce a global nonlinear model.

In a process of model identification, there are traditional methods such as the least square methods,
the gradient-based methods, and the maximum likelihood methods. They can be suitable for nonlinear
systems after some efforts made by [15]. However, the recognition process of all the above methods
needs to derive the objective function, which is difficult to implement in fractional-order systems. The
derivative-free algorithms, such as the simplex search method [16] and Nelder–Mead simplex (NMS)
algorithm, [17] are successfully applied to the parameter tuning. The limitations of these techniques
are the natural local concern and the sensitivity to the initial solution of the algorithm. Fractional
order system identification problems have been carried out using global heuristic techniques such as
particle swarm optimization (PSO) [18], genetic algorithm (GA) [19], and artificial bee colony algorithm
(ABC) [20]. Compared to the local search algorithm, they have a global performance nature and a
greater possibility to converge to the global optimal point. Nevertheless, they often oscillate in the
vicinity of the optimal point or miss the optimal area due to strong randomness.

The seeker optimization algorithm (SOA) is also a heuristic algorithm, which was invented by
Dai [21]. It explores the experience of human search behavior through the analysis of the human
random search process. By exchanging experience, seekers determine their direction and step size,
then update their location, and, finally, find the optimal point. Since it is proposed, it has been used
by researchers in different engineering applications like system modeling and optimal control [22,23].
To overcome the individual limits of SOA, a hybridization of SOA and NM algorithm is used in this
paper, which simultaneously retains the benefits of both techniques while discarding their drawbacks.

The proposed modeling approach leads to a model that has the following characteristics:

• The model structure is connected to UC dynamic characteristics;
• The using of fractional order reduces the number of parameters;
• The resistance voltage dependence has been taken into account;
• The hybrid optimization algorithm improves recognition accuracy.

2. Fractional-Order Calculus

Fractional-order calculus (FOC) generalizes the integrals and derivatives from integer-order
to arbitrary real order. This theory goes back to a note written by Leibniz, in which the meaning
of the half-derivative of the function x was discussed. Some approaches to generalizations of the
notion of calculus can be found in [24]. A great deal of work has been done to propose the models
of linear time-invariant system and nonlinear system for analyzing the stability, time, frequency
domain response, and other properties of the fractional-order model [25,26]. FOC provides an excellent
instrument for the description of stochastic memory phenomena such as electrochemical phenomena,
chaos, and viscoelasticity. Consider a function y = f (t), which is integrable and has at least m(mεN)

continuous derivatives. The universal expression of integer-order derivatives and integrals is as follows:

aDp
t f (t) = lim

h→0
h−p

n∑
r=0

(−1)r
(

p
r

)
f (t− rh), (1)
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(
p
r

)
=

p(p− 1)(p− 2) · · · (p− r + 1)
r!

(2)

(
p
r

)
is the usual notation for the binomial coefficient, n = [(t− a)/h]. For p = m(m > 0),

aDp
t = dmt

dtm represents the derivative of order m. On the contrary, aDp
t denotes m fold integral if

p = −m(m > 0). The unification of integer-order derivatives and integrals is the basis for allowing p in
(1) to be an arbitrary real number or even a complex number. In this section, three main definitions of
fractional order integrals and derivatives are briefly introduced.

• Grünwald–Letnikov Definition:

aDα
t f (t) = lim

h→0
h−α

n∑
r=0

(−1)r
(
α
r

)
f (t− rh), (m− 1 < α < m) (3)

(
α
r

)
=

1
(α+ 1)B(α− r + 1, r + 1)

(4)

• Riemann–Liouville Definition:

aDα
t f (t) =

1
Γ(m− α)

dm

dt

∫ t

a
(t− τ)m−α−1 f (τ)dτ, (m− 1 < α < m) (5)

• Caputo definition:

aDα
t f (t) =

1
Γ(m− α)

∫ t

a
(t− τ)m−α−1 f (m)(τ)dτ, (m− 1 < α < m) (6)

Grünwald–Letnikov generalizes integer-order calculus directly and requires that f (t) can be
differentiated m = [α] + 1 times (α ∈ R). However, a limit operation is not convenient. Rieman–Liouville
provides an excellent opportunity to weaken the requirement for the differentiability of f (t) through
m-α-1 times integral before m-order derivative. Another definition was proposed by M.Caputo that
exchanges the sequence of derivative and integral. The main advantage of the Caputo approach is
permitting the initial conditions for fractional differential equations to take on the same form as for
integer-order differential equations, which makes them easy to interpret. Another difference between
Caputo’s definition and the other two definitions can be shown in the derivative of a constant C. The
Caputo derivative of a constant is 0, whereas the other two bring a nonzero value as Equation (7), so
the Caputo definition is used in this paper.

aDα
t C =

Ct−α

Γ(1− α)
(7)

3. A New Hybrid Algorithm: NMSA

3.1. Seeker Optimization Algorithm (SOA)

SOA is a new swarm intelligence optimization algorithm, which has better optimization quality
and robustness than GA and PSO [21]. It resolves optimization problems by means of map search. n
seekers search for the lowest position on the D-dimension map if there are D optimized variables. The
lowest position stands for the set of optimal parameters and the height of a point is calculated by the
objective function. Their journey lasts for g days, to begin with, they are sent to the initial position
randomly on the first day. On each of the following days, they need to record the lowest place they
have ever been and the corresponding altitude. Meanwhile, they share their locations and altitudes
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with the information network, which can be read by everyone and the best location of the past few
days can be selected. Afterward, according to several reference locations, each seeker determines the
direction and distance to go tomorrow, following a certain rule, and start their search the next day.
They move, communicate, and make plans at the end of the day journey until their whole journey is
finished and a position closest to the bottom is found.

On kth day, ith seeker pi(k) has a tendency to move towards the personal best position pibest(k)
and the best position of population pzbest(k). Meanwhile, he tends to inherit the moving direction
di(k− 1) of the yesterday if f (pi(k)) < f (pi(k− 1)) and to reverse it if not. Another reference direction
might also exist, which is represented by diother(k). Those reference directions are marked in Figure 1.
Using horizontal as an example, after the number of reference directions toward the positive direction
and those toward the negative direction are counted, respectively, draw the probability distribution
semicircle. Then ith seeker determines his moving direction di(k) by generating a random angle. If the
angle is as shown in Figure 1, the ith seeker moves positively in horizontal.Energies 2019, 12, x FOR PEER REVIEW 4 of 13 
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Figure 1. Determine the search direction.

The search step length li(k) is calculated by Gaussian membership function in Equation (8). µi is
a decreasing function of ith seeker’s fitness ranking Ii. Ii means that f (pi(k)) is the Iith lowest in all
f (p(k)). σi is negatively correlated with k. µi allows the seeker near the optimal point to search for
more details and σi makes seekers search more carefully at the later stage of the search. Figure 2 is an
intuitive expression for determining the step length. ‘→’ represents the tendency to lessen step length.

µ(li) = e
−

l2i
2σ2

i (8)
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3.2. Nelder–Mead Simplex Algorithm

As a derivative-free method, the NM algorithm is used to construct a simplex to solve unconstrained
minimization problems. To minimize a mathematical function f that has n real parameters, the simplex
is designed with n + 1 vertexes and to replace the worst vertex with a better one each iteration via
reflection, expansion, contraction, or reduction.

After the initial simplex is determined, the function f is evaluated at each of the vertices, which
are later renamed according to its value and then comes the relationship in Equation (9). The basis
points and the candidate points that will be used later are listed in Table 1. And they are elected
pursuant to the rule shown in Figure 3. The NM algorithm is the first step towards finding an effective
substitute for Xw along the line segment joining Xc and Xw as seen in Figure 4. If the first step fails, NM
no longer explores that line segment but starts to draw closer to Xb by shrinking. Figure 5 shows the
evolution of simplex when NM is used to find the optimal point of a 2-dimensional objective function.

f (X1) ≤ f (X2) ≤ · · · ≤ f (Xn+1) (9)

Table 1. Basis points and the candidate points of Nelder–Mead (NM).

Basis Candidate

Best vertex Xb = X1 Reflection point Xr = Xc + α(Xc −Xw)
Second worst vertex Xsw = Xn Expansion point Xe = Xc + β(Xr −Xc)

Worst vertex Xw = Xn+1 Outer contraction point Xoc = Xc + γ(Xr −Xc)

Centroid Xc =
1
n

n∑
i=1

Xi Inner contraction point Xic = Xc + γ(Xw −Xc)

Shrinkage points Xs(i) = Xb + δ(Xi −Xb)
i = 2, 3, . . . , n + 1
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3.3. New Hybrid SOA: NMSA

The random factors in the seeker’s direction and step length bring SOA good global exploration
ability. Nevertheless, it is also the randomness that causes its poor local exploration ability. SOA’s later
search is always wasted. Besides, when dealing with a multi-extremum problem, SOA may converge
to a wrong extreme point because of insufficient exploration to the main extreme point. As a beam
search method, the NM simplex method has opposite capability compared with SOA. However, it also
produces incorrect outputs due to the quality of the initial simplex. In this paper, a synthetic algorithm
of NM and SOA is proposed to make their respective advantages complementary to each other. In
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every day’s searching, the top n + 1 seekers of SOA do the NM transformation and iterate once. After
that, they begin to share their positions and to make the next day’s plan. A diagram of the proposed
method NMSA (The hybrid algorithm based on the seeker algorithm and the Nelder–Mead simplex) is
given in Figure 6.
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To evaluate the performance of the optimization strategy, a set of artificial test functions has been
proposed and used as benchmarks. Typically, they can be classified in the term of modality. If there is
only one peak in the function landscape, the function is said to be unimodal (e.g., sphere function,
booth function, etc.), which is often used for convergence velocity comparison [27]. On the contrary,
the function is a multimodal function (e.g., Rastrigin function, Ackley function, Schwefel function,
etc.). It turns out to be an extremely important performance test for global optimization because it
creates difficulties in finding a global minimum. In such a landscape, the search process can direct the
search away from the true optimal solutions and trapped in one of the local minima.

For our proposed offline global optimization algorithm NMSA, its reliability and precision should
be tested. Rastrigin function, one of the multimodel functions, is based on De Jong’s function with the
addition of cosine modulation to produce many local minima. In addition, the small fitness differences
in the topology increase the complexity of the problem [28]. Therefore, consider the Rastrigin function
as the test function of NMSA. The function is given by the following formula and visualized by Figure 7.

f (x, y) = x2 + y2
− 10 cos(2πx) − 10 cos(2πy) + 20 (10)
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Rastrigin function has several minima. The global one is at (0, 0). This minimum gives a function
value f = 0. The nearest other minima are, respectively, at (0, 1), (0, −1), (1, 0), and (−1, 0), and
they all give a value f = 1. As shown in Figure 8, based on the respective function value obtained
by NMSA and SOA after 10 runs, it can be noted that the NMSA algorithm leads successfully to
the global minimum compared with the original SOA. With SOA, nearly half of the optimization
processes converge to secondary minima and the remainder need at least 90 iterations to converge
to the global minimum. NMSA needs less than 60 iterations to get the correct minimum with no
wrong judgments in 10 runs. That is because NM offsets the SOA’s weakness in local exploration and
improves the directionality in NMSA. In general, NMSA has the following characteristics: (1) Its global
and local exploration abilities are well balanced for finding the global minimum; (2) It has combined
the ergodicity and directionality effectively for a faster rate of convergence. In Table 2, the search results
after 100 iterations are presented in two numerical forms: the coordinates of the searched approximate
optimal solution and the corresponding fitness value. The former shows that NMSA has advantages
over SOA in finding global optimization. As for the latter, the fitness value is numerically equal to the
fitness error because the true optimal fitness value in this example is 0. After comparing this value, we
can see that the search accuracy of NMSA is about two orders of magnitude higher than that of SOA.
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Figure 8. The Fitness curve of the seeker optimization algorithm (SOA) and NMSA; (a) is the fitness
curve of SOA; (b) is the fitness curve of NMSA.

Table 2. Results of SOA and NMSA.

(x,y)searched by SOA f(x,y) (x,y)searched by NMSA f(x,y)

(+8.8432E−3, −1.1794E−2) +4.3093E−2 (+1.1729E−3, +6.7883E−3) +9.4136E−3
(−2.0045E−3, −2.9132E−3) +2.4808E−3 (−4.1521E−3, +3.3201E−5) +3.4204E−3
(−1.0142E00, −6.2758E−3) +1.0763E00 (−4.3177E−4, −1.2294E−3) +3.3684E−4
(+6.6242E−2, −5.0537E−3) +8.6317E−1 (+2.7027E−3, −7.0799E−3) +1.1392E−2
(+1.0154E00, −6.6096E−3) +1.0867E00 (−9.5493E−3, +3.2802E−3) +2.0220E−2
(+2.1976E−2, −1.4773E−2) +1.3893E−1 (+2.2814E−3, +6.8896E−4) +1.1267E−3
(−1.7572E−2, +8.4259E−3) +7.5280E−2 (−2.1941E−3, −2.5050E−2) +4.4583E−3
(−9.7707E−1, −2.2125E−2) +1.1553E00 (−3.0697E−4, +2.6148E−3) +1.3751E−3
(−2.0418E−2, −5.1174E−2) +5.9771E−1 (−5.7813E−4, −1.8963E−3) +7.7976E−4
(+2.3927E−2, +2.9333E−3) +1.1507E−1 (−9.8208E−4, +1.1038E−4) +1.9376E−4

4. Modeling and Identification of UC

4.1. Fractional Order Modeling of UC

UC, also known as electrochemical double layer capacitor, stores the electrical energy by ion
absorption in the double-layer or pseudo-capacitive between electrode and electrolyte. A double layer
in the order of 0.3–0.8 nm gradually forms during charging or discharging, which leads to a larger
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capacitance and higher energy density than ordinary capacitors. In addition, carbon with pores is
widely used as the electrode of UC because it provides a larger surface area. Because of that energy
storage principle and the use of carbon electrodes, UC performance is affected by distributed surface
reactivity, inhomogeneity, and roughness, which can be better characterized by CPE according to
the electrochemical impedance spectroscopy (EIS). The impedance curve will deflect downward to a
squashed semi-circle if the capacitor parallel with the resistor is replaced by CPE. The CPE can also
model the imperfect capacitor behavior of a double-layer capacitor; therefore, this paper proposed a
fractional model with 2 CPEs as shown in Figure 9.Energies 2019, 12, x FOR PEER REVIEW 9 of 13 
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The impedance of CPEs can be expressed as follows:

ZCPE1( jω) =
1

C1( jω)α
(11)

ZCPE2( jω) =
1

C2( jω)β
(12)

where C1 and C2 are the capacitance coefficients, α(0 ≤ α ≤ 1) and β(0 ≤ β ≤ 1) are the fractional orders
of CPE. According to the equivalent circuit structure, the transfer function of the fractional model can
be delineated by the following:

G(s) =
U(s)
I(s)

= Rs +
Rc

1 + C1Rcsα
+

1
C2sβ

(13)

where Rs represents the series resistance and Rs is particularly small for UC. Part 2 which consists of
CPE1 and Rc serves to capture the charge diffusion caused by specifically adsorbed ions. CPE2 models
the behavior of the double layer. To simplify the solving process, the inverse Laplace transformation in
Equation (13) can be divided into three parts due to its linear nature:

U(t) = U1(t) + U2(t) + U3(t) (14)

U1(t)
Rs

= I(t) (15)

U2(t)
Rc

+ C1Dα
t U2(t) = I(t) (16)

C2Dβ
t U3(t) = I(t) (17)

With the method proposed in [29] by Zhao C.N. and Xue D.Y., the solution to the fractional-order
differential equation

a1Dγ1 y(t) + a2Dγ2 y(t) + · · ·+ anDγn y(t) = u(t) (18)
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can be written as

y(t) =
u(t) −

∑n
i=1

(
ai

hγi

∑[(t−t0)/h]
j=1 ω

(γi)
j yt− jh

)
∑n

i=1
ai

hγi

(19)

ω
(γi)
0 = 1,ω(γi)

j =

(
1−

γi + 1
j

)
ω
γi
j−1, j = 1, 2, · · · (20)

For part 1: U1(t) = Rs·I(t);
For part 2: u(t) = I(t), y(t) = U2(t), a = [ C1

1
Rc

], γ =
[
α 0

]
;

For part 3: u(t) = I(t), y(t) = U3(t), a = C2, γ = β.

4.2. Time Domain Response Analysis of UC

After the current is set to zero, the terminal voltage of UC varies with the time. This phenomenon
is called voltage rebound and can be used to calculate the effective resistance of UC with the formula
Rt = Ut/I [30]. The response of Nesscap to a single pulse is drawn in Figure 10. When current is
suddenly set to zero, t = 0 and the resistance at this point R0 = U0/I. As t increases, Rt increases. If
parameters are assigned values: Rs = 1.537 mΩ, Rc = 5.393 mΩ, C1 = 7501 F, C1 = 2918 F, α = 0.2699,
β = 0.9663, the model response fits well with the real response. Decompose the model response into
three parts, as shown in Figure 10, according to the previous section. U1 imitates the immediate
resistance rebound at t = 0 and equals to U0, so Rs = R0. It can be seen both U2 and U3 contribute to
the response for t > 0 and t < 0. U2 mainly represents the obvious inertia properties under the sudden
current change while U3 mainly represents the capacitance characteristics. The existence of α and β
provides a more flexible approach to receive a more accurate model.
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Figure 10. Single-pulse response of UC.

The resistance of different voltages at 200 A is calculated by using the same method and its
variation with voltage is shown in Figure 11. Charging Rs keeps steady in the charging process. In
discharging experiment, Rs increases sharply. In the later parameter identification, Rs is determined by
the look-up table method.
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4.3. Parameter Estimation in Time Domain

A Nesscap UC with the nominal capacitance of 3000 F, steady-state resistance of 0.4 mΩ, power
density of 512 W/kg, and energy density of 4.4 Wh/kg is used to carry on charge and discharge
experiments at different currents. The rectangular current with an amplitude value of 200 A is the input
during charging. When Rs can be determined using the look-up table, the remaining five parameters
are identified by NMSA. Its objective function is defined as Equation (21), which can well evaluate the
ability of the model to describe the real capacitance behavior. U(t) is the measured voltage and Û(t) is
the derived result from identified model. Sampling time t = 0.1 s. The key parameters of NMSA are as
follows: population size S = 20, number of searching days g = 100, dimension of map is 5, reflection
factor α = 1, expansion factor β = 2, contraction factor γ = 0.5, shrinkage factor δ = 0.5.

f itness =

√√√∑[(tend−t0)/h]
j=1

(
U( j) − Û( j)

)
[(tend − t0)/h]

(21)

5. Results and Discussion

After performing the optimization procedure, the result is Rc = 14.31 mΩ, C1 = 7021 F,
C2 = 3799 F, α = 0.7944, β = 0.9994 for charging. The validation test has been done with charging and
discharging currents at levels of 300 A and 400 A. The UC voltage is constrained to vary in the voltage
range [1.35 V, 2.7 V]. The results are presented in Figure 12. Compared to the fitness results obtained by
NMSA without considering the voltage dependence of Rs, great improvement was achieved under a
discharge condition. The error between Nesscap and the nonlinear model is within 0.02 V for charging
and 0.05 V for discharging. The result shows that the model gives an accurate voltage response for
300 A and 400 A current level. Though there is a slight difference between the charging and discharging,
which may be caused by changes in other parameters, it can be neglected. The proposed model
simulates UC behavior with good accuracy in the time domain.



Energies 2019, 12, 4251 12 of 14

Energies 2019, 12, x FOR PEER REVIEW 11 of 13 

 

4.3. Parameter Estimation in Time Domain 264 

A Nesscap UC with the nominal capacitance of 3000 F, steady-state resistance of 0.4 mΩ, power 265 
density of 512 W/kg, and energy density of 4.4 Wh/kg is used to carry on charge and discharge 266 
experiments at different currents. The rectangular current with an amplitude value of 200 A is the 267 
input during charging. When 𝑅  can be determined using the look-up table, the remaining five 268 
parameters are identified by NMSA. Its objective function is defined as Equation (21), which can well 269 
evaluate the ability of the model to describe the real capacitance behavior. U(t) is the measured 270 
voltage and 𝑈(𝑡)  is the derived result from identified model. Sampling time 𝑡 = 0.1 s. The key 271 
parameters of NMSA are as follows: population size S = 20, number of searching days g = 100, 272 
dimension of map is 5, reflection factor α = 1, expansion factor β = 2, contraction factor γ = 0.5, 273 
shrinkage factor δ = 0.5. 274 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
∑ 𝑈(𝑗) − 𝑈(𝑗)

[( )/ ]

[(𝑡 − 𝑡 )/ℎ]
 (21)

5. Results and Discussion 275 

After performing the optimization procedure, the result is 𝑅 = 14.31 mΩ, 𝐶 = 7021 F, 𝐶 =276 
3799 F, 𝛼 = 0.7944, 𝛽 = 0.9994 for charging. The validation test has been done with charging and 277 
discharging currents at levels of 300 A and 400 A. The UC voltage is constrained to vary in the voltage 278 
range [1.35 V, 2.7 V]. The results are presented in Figure 12. Compared to the fitness results obtained 279 
by NMSA without considering the voltage dependence of 𝑅 , great improvement was achieved 280 
under a discharge condition. The error between Nesscap and the nonlinear model is within 0.02 V for 281 
charging and 0.05 V for discharging. The result shows that the model gives an accurate voltage 282 
response for 300 A and 400 A current level. Though there is a slight difference between the charging 283 
and discharging, which may be caused by changes in other parameters, it can be neglected. The 284 
proposed model simulates UC behavior with good accuracy in the time domain. 285 

(a) 

(b) 

(c) 
Energies 2019, 12, x FOR PEER REVIEW 12 of 13 

 

(d) 

Figure 12. Comparison between model voltage response and UC voltage (The left side is the response 286 
curve and the right side it the response error compared with UC voltage) (a) Validation test with 300A 287 
charging profile; (b) Validation test with 400A charging profile; (c) Validation test with 300A 288 
discharging profile; (d) Validation test with 400A discharging profile. 289 

6. Conclusions 290 

In this paper, a fractional model of UC is applied. The influence of two fractional parameters 291 
𝛼(0 ≤ 𝛼 ≤ 1)  and 𝛽(0 ≤ 𝛽 ≤ 1)  on the UC model’s time domain is analyzed. 𝛼  represents the 292 
inertia properties in UC, 𝛽 represents the undesirable components in UC. The voltage dependence 293 
of 𝑅  is discussed and a look-up table is set up to add nonlinear characteristics to the model using 294 
the voltage rebound method. The resistance of UC varies greatly during discharging. A new hybrid 295 
optimization algorithm NMSA is proposed in this paper and has been proven to have sufficient 296 
global search capability and accuracy. After applying 300 A and 400 A level current to the identified 297 
model, it can be proved that the current magnitude and status of charging or discharging have almost 298 
no influence or slight influence on the UCs behavior in the range [200 A, 400 A]. 299 

Author Contributions: conceptualization, W.L. and J.Z.; methodology, W.L.; software, W.L.; validation, W.L.; 300 
formal analysis, J.Z.; investigation, W.L. and J.Z.; resources, J.Z.; data curation, J.Z.; writing—original draft 301 
preparation, W.L.; writing—review and editing J.G. and J.Z.; visualization, W.L.; supervision, J.G.; project 302 
administration, J.G.; funding acquisition, L.C. 303 

Funding: The APC was funded by the Key Science and Technology Development Project: Research on the 304 
driving cycle development and the control strategy for PHEV based on the Intelligent Transportation System 305 
(Project No. 20170204085GX). 306 

Conflicts of Interest: The authors declare no conflict of interest. 307 

References 308 

1. Kurra, N.; Jiang, Q.; Alshareef, H.N. A general strategy for the fabrication of high performance 309 
microsupercapacitors. Nano Energy 2015, 16, 1–9. 310 

2. Ladrón de Guevara, A.; Boscá, A.; Pedrós, J.; Climent-Pascual, E.; de Andrés, A.; Calle, F.; Martínez, J. 311 
Reduced Graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Appl. Surf. Sci. 312 
2019, 467, 691–697. 313 

3. Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st ed.; 314 
Springer Science & Business Media: New York, NY, USA, 2013; pp. 11–31. 315 

4. Oldham, K.B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. 316 
Electroanal. Chem. 2008, 613, 131–138. 317 

5. Staser, J.A.; Weidner, J.W. Mathematical modeling of hybrid asymmetric electrochemical capacitors. J. 318 
Electrochem. Soc. 2014, 161, E3267–E3275. 319 

6. Eddahech, A.; Ayadi, M.; Briat, O.; Vinassa, J.-M. Multilevel neural-network model for supercapacitor 320 
module in automotive applications. In Proceedings of the 4th International Conference on Power 321 
Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 1460–1465. 322 

7. Zhu, S.; Li, J.; Ma, L.; He, C.; Liu, E.; He, F.; Shi, C.; Zhao, N. Artificial neural network enabled capacitance 323 
prediction for carbon-based supercapacitors. Mater. Lett. 2018, 233, 294–297. 324 

8. Ma, H.; Wang, B.; Liu, K.R. Distributed Signal Compressive Quantization and Parallel Interference 325 
Cancellation for Cloud Radio Access Network. IEEE Trans. Commun. 2018, 66, 4186–4198. 326 

0 10 20 30 40 50 60 70 80 90 100

Time/s

1

1.5

2

2.5

3

UC voltage
constant Rs model
Rs(V) model response
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discharging profile; (d) Validation test with 400 A discharging profile.

6. Conclusions

In this paper, a fractional model of UC is applied. The influence of two fractional parameters
α(0 ≤ α ≤ 1) and β(0 ≤ β ≤ 1) on the UC model’s time domain is analyzed. α represents the inertia
properties in UC, β represents the undesirable components in UC. The voltage dependence of Rs is
discussed and a look-up table is set up to add nonlinear characteristics to the model using the voltage
rebound method. The resistance of UC varies greatly during discharging. A new hybrid optimization
algorithm NMSA is proposed in this paper and has been proven to have sufficient global search
capability and accuracy. After applying 300 A and 400 A level current to the identified model, it can be
proved that the current magnitude and status of charging or discharging have almost no influence or
slight influence on the UCs behavior in the range [200 A, 400 A].
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