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Abstract: The forecasting literature on intraday electricity markets is scarce and restricted to the
analysis of volume-weighted average prices. These only admit a highly aggregated representation
of the market. Instead, we propose to forecast the entire volume-weighted price distribution.
We approximate this distribution in a non-parametric way using a dense grid of quantiles. We conduct
a forecasting study on data from the German intraday market and aim to forecast the quantiles for
the last three hours before delivery. We compare the performance of several linear regression models
and an ensemble of neural networks to several well designed naive benchmarks. The forecasts only
improve marginally over the naive benchmarks for the central quantiles of the distribution which
is in line with the latest empirical results in the literature. However, we are able to significantly
outperform all benchmarks for the tails of the price distribution.

Keywords: electricity price forecasting; intraday markets; lasso regression; neural networks

1. Introduction

Continuous intraday electricity trading offers market participants the possibility to balance
short-term deviations from their planned generation and load schedules. This is especially valuable
for agents with a high share of generation from non-dispatchable renewable energy sources like
wind and solar. Conventionally, deviations from the day-ahead schedules are compensated through
balancing energy which is contracted and centrally dispatched by the transmission system operator.
The possibility to trade electricity on short notice can partly explain the counter intuitive situation
that the demand for balancing energy in Germany in the last years substantially declined, while at the
same time the share of generation from renewable sources increased [1,2]. Thus, intraday markets can
be an effective tool to support the transition to a flexible and renewable energy system and have seen
steadily growing volumes in recent years [3].

In this work we will focus on the German continuous intraday market. On this market it is
possible to trade hourly and quarter-hourly contracts for the delivery of electricity till 30 min before
delivery. Inside of the four control zones it is possible to trade until five minutes before the delivery
starts. Contrary to the day-ahead auction, the intraday market is operated as a continuous pay-as-bid
market, i.e., market participants can submit bids and asks for price-volume combinations which are
immediately executed if two offers in the order book can be matched. This results in a potentially large
set of prices for the same product. Therefore, price indexes that reflect the volume-weighted average
price are a main indicator of market outcomes. The most important one is the ID3 price index which is
the volume-weighted average price of all trades in the time interval from three hours before delivery
till 30 min before delivery [4]. For a detailed description of the German power markets see [5].

In contrast to the well researched day-ahead markets [6], the literature regarding intraday
electricity price forecasting is scarce. Andrade et al. [7] and Monteiro et al. [8] conducted a forecasting
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study for the Iberian intraday electricity market. However, this market does not resemble the design of
the German market. Most importantly, the Iberian intraday market is operated as six separate intraday
auctions under a uniform pricing regime. More recently, Maciejowska et al. [9] presented a model that
is able to predict the price spread between the German day-ahead auction prices and the corresponding
volume-weighted average intraday prices. Finally, Uniejewski et al. [10] and Narajewski & Ziel [11] are
to our best knowledge the only two papers that aim to directly forecast ID3 prices. The authors of [11]
present evidence that the information available to the market at forecasting time, i.e., three hours
before delivery, is already efficiently incorporated by the market participants and therefore the best
forecast for the ID3 price is the volume-weighted average price of the most recent 15 min of trading.

Since the intraday market is operated under a pay-as-bid regime, it is possible for market
participants to sell or buy contracts at prices that substantially differ from the ID3 price. Furthermore,
very different sets of trades can result in the same weighted average price. Therefore, we aim to
forecast the entire volume-weighted price distribution instead of only volume-weighted average prices.
Note that this distribution is not equivalent to a predictive distribution of the ID3 price, but will often
be much wider. Such a forecast is important to enable bidding strategies that use prices away from the
ID3 price, e.g., to benefit from especially high or low price offers. To approach our task, we construct
empirical cumulative distributions for each trading product in discrete time intervals and describe
these distributions using a dense grid of quantiles. This results in a set of multivariate time series of
quantile values which non-parametrically approximate the targeted price distributions.

We conduct a forecasting study for the German intraday market in which we aim to forecast the
quantiles of the price distribution in the time from three hours to 30 min before delivery. We test several
linear regression models as well as a neural network model that accounts for the unique structure of
the data. We compare the forecasts from these models to several carefully designed naive benchmark
models. Our empirical findings support the evidence in [11], as we are only able to outperform the
naive benchmarks by a small margin for the central quantiles. However, the performance of our
forecasts for the tails of the distributions improves significantly over the benchmark models.

The remainder of the paper is structured as follows. In Section 2 we describe the data set and
preliminary data transformation we apply to obtain the quantiles of the price distributions. We present
the linear regression and neural network models as well as a set of naive benchmark models in
Section 3 and describe our forecasting strategy along with the employed error measures in Section 4.
The empirical findings are discussed in Section 5. We conclude in Section 6.

2. Data Set & Data Transformation

The German intraday market has undergone two relevant regulatory changes in the last several
years. First, since July 2017 it is possible to trade until 5 min before delivery inside of the control zones.
Second, in October 2018 the Austrian control zone was split from the former German-Austrian market.
For our analysis we consider data on the intraday transactions from 1 July 2017 to 31 March 2019 for
the German-Austrian market and German market respectively, i.e., we start our analysis after the
introduction of the 5 min delivery horizon while the market split occurred during the time frame of
our analysis. We assume that the control zone split did not have a substantial impact on prices and
liquidity since the German control zones are large compared to the Austrian control zone and cross
border trading is still possible. The continuous intraday trading data we use is commercially available
from Epex Spot [12]. We will only consider hourly products in our analysis as their traded volume is
more than five times larger than the volume of the quarter hour products. We additionally consider
corresponding exogenous hourly data regarding day-ahead auction prices as well as forecasted
renewable generation and load which is available from ENTSO-E [13].

2.1. Constructing Price Distributions from Intraday Trading Data

The trading data contains all executed trades for hour products to be delivered between 1 July
2017 and 31 March 2019. For this period we define a corresponding set of dates D. Each entry
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in the raw data set corresponds to a single trade i and is comprised of the identifier for the hour
hi ∈ {0, ..., 23} and the day di ∈ D of delivery, a timestamp of the trading time that indicates the
time left until delivery ti ∈ R

+, the trade volume vi ∈ {0.1, 0.2, 0.3, ...} in MWh, and the price
pi ∈ {−9999.90,−9999.89, ..., 9999.90} in EUR/MWh [14].

Forecasting the data on the level of single trades is likely to be difficult and not necessarily needed
for decision making. Hence, one has to aggregate the trading data into a more suitable form that is
still able to represent the market’s development in sufficient detail. To this end, the literature has so
far focused on analyzing and forecasting volume-weighted average prices [9–11] which only provide
a highly aggregated representation of the market.

We instead propose to work with the entire volume-weighted price distribution of the trades.
Therefore, we compute the volume-weighted empirical cumulative distribution function (VWECDF)
over the price p,

Ft1→t2
d,h (p) =

1

Vt1→t2
d,h

∑
i

vi1di=d,hi=h,t2<ti≤t1,pi≤p. (1)

Ft1→t2
d,h (p) denotes the VWECDF for the hour product h on day d between the time t1 and t2 before

delivery with t2 < t1. The total volume traded for the product in the given interval

Vt1→t2
d,h = ∑

i
vi1di=d,hi=h,t2<ti≤t1 (2)

is used to normalize the sum in the VWECDF. The VWECDF in Equation (1) for a given product is
computationally represented by an ordered set {(qj, rj)}J

j=1 of the J trades observed in the time interval
t1 → t2, where rj is the empirical quantile and qj is the corresponding quantile value which is given
by the price of trade j. This allows us to estimate quantile values for a specific quantile τ using linear
interpolation if necessary

qτ =

qj i f τ = rj

qj +
qj+1−qj
rj+1−rj

(τ − rj) i f rj < τ < rj+1.
(3)

Using a dense grid of quantiles τ ∈ {0, 0.01, ..., 0.99, 1} we then obtain a vector of quantile values

qt1→t2
d,h = [qt1→t2

d,h,0 , qt1→t2
d,h,0.01, ..., qt1→t2

d,h,1 ]T (4)

which non-parametrically describes the price distribution of the given product d, h in the time interval
defined by t1 and t2. For this empirical distribution, the values for qt1→t2

d,h,0 and qt1→t2
d,h,1 correspond to the

cheapest and most expensive trades observed.
Figure 1a shows the result of the applied transformation in a fan chart for a single product in

15 min time intervals from 5 h before delivery till the time of delivery. We can observe that the
variance increases with the time of delivery approaching. This is characteristic for the intraday market.
Figure 1b shows the inverse of the VWECDF and quantile values for selected quantiles for the entire
time horizon of 5 h.

Let us note again that this is not a distribution which describes the uncertainty over the
volume-weighted average price but a distribution that describes how the traded volume is distributed
over the possible prices. To illustrate this point consider the following hypothetical situation. Suppose
we would observe the trades for a certain product before issuing a forecast for the observed time frame.
Then, we could compute the volume-weighted average price and issue a perfect probabilistic forecast
for this average price, a distribution where the entire probability mass is centered at the true, known
value. However, this forecast would not inform a trader about the variety of prices that are traded
for this product. In contrast, our approach would still forecast a non-trivial distribution that would
inform an agent about the dispersion of the traded prices, e.g., we could exactly forecast the marginal
value of the cheapest and most expensive 10% of the trades. This is a much richer representation of
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the market behavior and reflects that different market participants might value electrical energy very
differently. Considering a price taker perspective, an agent could then take advantage of the estimated
dispersion of prices.

(a) (b)
Figure 1. (a) The figure shows all trades that were executed from 5 to 0 h before delivery for the hour
product h = 21 on d =10.8.2018 in gray circles. Circles are scaled according to trade volume. The shaded
red regions show values for selected quantiles in the 15 min time intervals. (b) The red function is the
inverse of the volume-weighted empirical cumulative distribution function F5→0

d,h (p) for the last 5 h of
trading. The black markers depict selected quantiles, e.g., the black square represents q5→0

d,h,0.5.

2.2. Exogenous Data

Along with the trading data we also include exogenous fundamental data. For each day and
hour we consider the load forecast Loadd,h, the forecasted in-feed from wind and solar power RESd,h,
and the day ahead auction price DAd,h which is already known before the continuous trading starts.
We combine all exogenous variables in the vector xd,h = [Loadd,h, RESd,h, DAd,h]

T . Additionally we
consider the 24-dimensional one-hot encoded column vector sd,h which contains a dummy variable for
each hour of the day.

3. Predicting the Quantiles of the Price Distribution

The most important price index for the intraday market is the ID3 price. It is the volume-weighted
average price of the trades in the time interval from three hours before delivery till 30 min before
delivery for a given product [4]. We therefore also focus on this time horizon and aim to forecast q3→0.5

d,h .
As explanatory variables we use the time series of the observed quantile values from four to three hours
before delivery in 15 min time intervals denoted by Q4→3

d,h = [q4→3.75
d,h , q3.75→3.5

d,h , q3.5→3.25
d,h , q3.25→3

d,h ],
i.e., Q4→3

d,h is a matrix of dimension Nτ × 4 where Nτ is the number of quantiles. We also consider the
corresponding time series from the two neighboring products Q3→2

d,h−1 and Q5→4
d,h+1 which are also of

dimension Nτ × 4. Furthermore, Qt1→t2
d,h,τ denotes the τth column of Qt1→t2

d,h . For ease of notation we
will write (d, h + k) to denote the product that has to be delivered k hours before/after the product
(d, h) instead of using the correct notation (d + b h+k

24 c, (h + k)mod 24). Finally, we also use the
exogenous variables for all three considered products xd,h−1, xd,h, xd,h+1 and the vector of hour dummy
variables sd,h.

3.1. Linear Regression Models

In this section we present a set of linear regression models which use different subsets of the
available regressors. This allows us to stepwise infer the contribution of each factor to the forecasting
performance. To obtain a forecast for the vector of quantile values q̂3→0.5

d,h we have to fit a separate
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model for each quantile τ. At test time we concatenate the predictions from the Nτ individual models
and sort the resulting vector to ensure monotonically increasing quantile values.

The first model, which we call AR1, uses only the time series information of the same product for
the same quantile Q4→3

d,h,τ and the vector of dummy variables sd,h. It is given by

q̂3→0.5
d,h,τ = w1Q4→3

d,h,τ + w2sd,h, (5)

where wi are row vectors of model parameters. The model ARX1 given by

q̂3→0.5
d,h,τ = w1Q4→3

d,h,τ + w2xd,h + w3sd,h (6)

additionally uses the exogenous variables for the same product. The model AR2 given by

q̂3→0.5
d,h,τ = w1Q4→3

d,h,τ + w2Q3→2
d,h−1,τ + w3Q5→4

d,h+1,τ + w4sd,h (7)

also utilizes the time series information from the neighboring products for the same quantile but
ignores the exogenous variables. The model ARX2 given by

q̂3→0.5
d,h,τ = w1Q4→3

d,h,τ + w2Q3→2
d,h−1,τ + w3Q5→4

d,h+1,τ + w4xd,h + w5xd,h−1 + w6xd,h+1 + w7sd,h (8)

additionally includes the exogenous regressors for all three products. Finally the ARXfull model

q̂3→0.5
d,h,τ = ∑

τ
w1,τQ4→3

d,h,τ + ∑
τ

w2,τQ3→2
d,h−1,τ + ∑

τ
w3,τQ5→4

d,h+1,τ + w4xd,h + w5xd,h−1 + w6xd,h+1 + w7sd,h (9)

utilizes all available inputs. Hence, this model has 1245 parameters. This will likely result in overfitting
for the used training set size of 6 months. Furthermore, many regressors might not carry useful
information for the quantile value to forecast. We therefore apply Lasso regularization to automatically
select an optimal subset of regressors [15], i.e., the model parameters are estimated using an extended
loss function that penalizes the L1 norm of the model weights. Let zd,h,τ be a vector of standardized
regressors, w the model weights, and q3→0.5

d,h,τ the true quantile values, then the Lasso estimator for the
optimal weight vector w∗ is given by

w∗ = argmin
w

{
∑
d

∑
h

(
q3→0.5

d,h,τ −wzd,h,τ

)2
+ λτ ∑

j

∣∣wj
∣∣} , (10)

where λτ is the hyperparameter that controls the degree of regularization. Setting λτ = 0 leads to
standard ordinary least squares estimation.

3.2. Neural Network Model

The modeling approaches described above result in one model per quantile and can only model
linear relationships. Therefore, we also test a multi output neural network model (NN) which uses
an architecture that accounts for the structure of the inputs and limits the number of parameters in
the hidden layers, see Figure 2 for a visualization. The model outputs a prediction for the vector of
quantile values as a function of all available regressors

q̂3→0.5
d,h = f (Q3→2

d,h−1, Q4→3
d,h , Q5→4

d,h+1, xd,h−1, xd,h, xd,h+1, sd,h). (11)

The proposed neural network has two hidden layers. The first hidden layer is a locally connected
layer and operates only on the time series data Q3→2

d,h−1, Q4→3
d,h , Q5→4

d,h+1. In this locally connected layer
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a distinct vector of weights w(1)
τ = [w(1)

0,τ , w(1)
1,τ , w(1)

2,τ , w(1)
3,τ ] is learned for each quantile. Each local model

outputs a scalar value

h(1)τ = g(w(1)
0,τ + w(1)

1,τ Q3→2
d,h−1,τ + w(1)

2,τ Q4→3
d,h,τ + w(1)

3,τ Q5→4
d,h+1,τ), (12)

where Qt1→t2
d,h,τ denotes the τth column of Qt1→t2

d,h . The function

g(z) =

{
z i f z ≥ 0

(ez − 1) i f z < 0
(13)

is the ELU activation function [16]. The layer outputs a vector h(1) = [h(1)0 , h(1)0.01, ..., h(1)1.0 ]
T of dimension

Nτ × 1. The vector h(1) is then concatenated with the vectors xd,h−1, xd,h, xd,h+1, sd,h and is passed
through a fully connected layer

h(2) = g(w(2)
0 + W(2)[h(1), xd,h−1, xd,h, xd,h+1, sd,h]

T) (14)

with Nτ neurons, i.e., the weight matrix W(2) has dimension Nτ × (Nτ + 9 + 24) and w(2)
0 is a vector

of constants with dimension Nτ × 1. The last layer

q̂3→0.5
h,d = w(3)

0 + W(3)h(2) (15)

outputs the model’s prediction using the Nτ × Nτ weight matrix W(3) and the Nτ × 1 vector of
constants w(3)

0 .
We train the model by minimizing the L2 norm of the difference between the predicted and true

vector of quantile values given by

L =
1

24D ∑
d

∑
h

∣∣∣∣∣∣q3→0.5
d,h − q̂3→0.5

d,h

∣∣∣∣∣∣
2

, (16)

where D is the number of days in the training set. We train the model for 50 epochs with a batch size
of 32 using the Adam optimizer [17] at standard settings in Keras 2.2.4 [18]. At test time we sort the
predictions of the model to ensure monotonically increasing quantile values.

Figure 2. Visualization of the neural network model. The first layer is a locally connected layer that
operates only on the time series data and learns a distinct set of weights per quantile. The layer’s output
is concatenated with the vector of exogenous variables x and passed through a fully connected layer.

For both the linear regression models as well as the neural network model we chose to use one
model for all hours of the day. Fitting a separate model for each hour would result in much smaller
training sets. However, if the market behaves fundamentally different for different hour products,
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it might be insufficient to account for these differences by simply introducing dummy variables. We also
did not transform the data to stabilize the variance e.g., by applying the asinh-transformation which
has been shown to work well for electricity price forecasting tasks [19]. Studying the effectiveness of
different modeling strategies, variance stabilizing transformations, or robust loss functions like the
absolute loss or the Huber loss [20] for intraday forecasting is outside the scope of this paper but is an
interesting avenue for further research.

3.3. Naive Benchmark Models

Narajewski & Ziel [11] showed empirically that a strong benchmark for short-term forecasts of
the ID3 price is the volume-weighted average price of the last 15 min before forecasting. Based on
their findings we test five naive benchmark models of similar type. Let us note the authors of [11] use
information up to 3.25 h before delivery while we use information up to 3.0 h before delivery for both
the naive and statistical models.

The Naive1 model uses the quantile values of the full trading period till 3 h before delivery and is
given by

q̂3→0.5
d,h = q32→3

d,h . (17)

The Naive2 model uses the quantile values of the last 15 min before forecasting, i.e.,

q̂3→0.5
d,h = q3.25→3

d,h . (18)

This type of naive model performed best in [11] which suggests that the latest market results
already reflect the information available at forecasting time. Hence, we expect that this model’s
forecasts will perform best at least for the central quantiles that are closely related to the ID3.

As the dispersion of the traded prices till three hours before delivery is usually significantly lower
than in the last three hours, we consider three more models that scale the variance of the distribution
but are centered at the value for the 0.5 quantile q3.25→3

d,h,0.5 . This is motivated by the expectation that
the distribution right before we issue the forecast is a good estimator for the median but not for the
variance of the target distribution.

The Naive3 model shifts the distribution of the last finished product by centering it at q3.25→3
d,h,0.5

q̂3→0.5
d,h = q3.25→3

d,h,0.5 + (q3→0.5
d,h−3 − q3→0.5

d,h−3,0.5). (19)

The Naive4 model shifts the distribution of the same hour from the day before in similar way and
is given by

q̂3→0.5
d,h = q3.25→3

d,h,0.5 + (q3→0.5
d−1,h − q3→0.5

d−1,h,0.5). (20)

Finally, the Naive5 model shifts the average distribution of the hour product in the entire training
set and is defined as

q̂3→0.5
d,h = q3.25→3

d,h,0.5 + (q̄3→0.5
h − q̄3→0.5

h,0.5 ), (21)

where q̄3→0.5
h denotes the vector of average quantile values for the hour h in the training set.

4. Forecasting Study

4.1. Forecasting Strategy

For the empirical forecasting study we consider the entire data set from 1 July 2017 till 31 March
2019 with the initial training, validation, and test split shown in Figure 3. We use the first six months
of data from 1 July 2017 till 31 December 2017 as initial training set to forecast the quantiles for all
hours of the following day. We then shift the training set by one day, refit all models, and again
forecast the following day. We use the first three months of 2018 as a validation set to fix the values
for λτ considering values on an exponential grid given by {λi = 2i|i ∈ {−15,−14, ..., 0}}. The
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value of λτ for each τ is determined by the lowest mean absolute error. The 12 months between
April 2018 and March 2019 form the test set. In cases where there was no trading between two time
steps for a product, we reuse the quantile values from the preceding 15 min time interval. If there
was no trading in any preceding periods, we set all quantile values to the day-ahead auction price.
To account for the numerical instability of the neural network’s predictions resulting from the random
weight initialization and the non-convex loss function, we train an ensemble of 5 models and average
their predictions.

Figure 3. Selected quantiles of the intraday price distribution from 3 h to 0.5 h before delivery for the
entire data set. The initial training set contains six months of data from June 2017 to December 2017.
The first three months of 2018 are used to fix the hyperparameters for the elastic net models. The test
set contains 12 months of data from April 2018 to March 2019. We refit all models each day using
a rolling window scheme.

4.2. Evaluation

We use two measures to evaluate the accuracy of the predictions for the entire distribution,
the Wasserstein distance (WD) and integrated quadratic distance (QD). These distances provide
an intuitive way to measure the difference between two empirical distributions in a non-parametric
way. For two univariate distributions P and S with cumulative density functions (CDF) F and
G the WD is defined as WD(P, S) =

∫ +∞
−∞ |F(x)− G(x)| dx and the QD is defined as QD(P, S) =∫ +∞

−∞ (F(x)− G(x))2 dx. Hence, we compute the errors by

wd,h =
∫ +∞

−∞

∣∣∣F3→0.5
d,h (p)− F̂3→0.5

d,h (p)
∣∣∣ dp (22)

and
ed,h =

∫ +∞

−∞

(
F3→0.5

d,h (p)− F̂3→0.5
d,h (p)

)2
dp, (23)

respectively, where F̂3→0.5
d,h (p) is described by the predicted vector of quantile values q̂3→0.5

d,h and
F3→0.5

d,h (p) is the true VWECDF.
To measure the overall the forecast accuracy we compute the mean Wasserstein distance (MWD)

MWD =
1

24D ∑
d

∑
h

wd,h (24)

and mean integrated quadratic distance (MQD)

MQD =
1

24D ∑
d

∑
h

ed,h, (25)
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where D is the number of days in the test set.
To investigate the difference in forecasting accuracy for different quantiles we compute the mean

absolute error (MAE) and root mean squared error (RMSE) values for each quantile separately

MAEτ =
1

24D ∑
d

∑
h

∣∣∣q3→0.5
d,h,τ − q̂3→0.5

d,h,τ

∣∣∣ , (26)

RMSEτ =

√
1

24D ∑
d

∑
h

∣∣∣q3→0.5
d,h,τ − q̂3→0.5

d,h,τ

∣∣∣2. (27)

Since the values of the error measures alone do not allow for a statistically sound conclusion on
the outperformance of forecast A by forecast B, we employ the Diebold-Mariano (DM) test [21] in
the modified version proposed by Harvey et al. [22] as implemented in the R forecast package [23].
The DM test examines the statistical significance of the difference of the residual time series of two
models. We compute the multivariate version of the test as proposed in [24], i.e., we obtain one error
for each day by computing a norm for the vector of residuals for the day d.

We consider two variants of the test as we expect a difference in forecasting ability for different
quantiles. In the first variant we compute the L1 norm of the WDs and the L2 norm of the QDs over
one day

||ωd||1 = ∑
h

∣∣wd,h
∣∣ , (28)

||εd||2 =

(
∑
h

ed,h

)1/2

. (29)

Then the loss differential for two forecasts A and B is given by ∆(A,B)
d =

∣∣∣∣∣∣ω(A)
d

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣ω(B)

d

∣∣∣∣∣∣
1

and

∆(A,B)
d =

∣∣∣∣∣∣ε(A)
d

∣∣∣∣∣∣
2
−
∣∣∣∣∣∣ε(B)

d

∣∣∣∣∣∣
2
, respectively. For both error measures and all model combinations we

conduct a pair of two one-sided DM tests and report the p-values for the hypothesis H1 : E(∆(A,B)
d ) ≤ 0

and H1 : E(∆(A,B)
d ) ≥ 0, respectively.

In the second variant we compare the L1 and L2 norms of the errors for only a single quantile τ,
i.e., we compute ∣∣∣∣γd,τ

∣∣∣∣
i =

(
∑
h

∣∣∣q3→0.5
d,h,τ − q̂3→0.5

d,h,τ

∣∣∣i)1/i

(30)

with i ∈ {1, 2} and obtain one loss differential per quantile ∆(A,B)
d,τ =

∣∣∣∣∣∣γ(A)
d,τ

∣∣∣∣∣∣
i
−
∣∣∣∣∣∣γ(B)

d,τ

∣∣∣∣∣∣
i
. We again

conduct a pair of two one-sided DM tests for both measures for the loss differential of the quantile
forecasts, i.e., we report the p-values for the hypothesis H1 : E(∆(A,B)

d,τ ) ≤ 0 and H1 : E(∆(A,B)
d,τ ) ≥ 0 for

all models and all quantiles.

5. Results

We present the MWD and MQD values in Table 1 and the corresponding DM test p-values in
Figure 4a,b. All statistical models except AR1 show lower MWD and MQD values than the best
benchmark model Naive5. The differences in accuracy between the forecasts of AR1, ARX1, and
Naive5 are not significant. The forecasts of the ARXfull model give the best results in terms of both
measures. The improvements of the ARXfull forecasts in terms of MWD and MQD compared to the best
benchmark model Naive5 are only about 2% and 3.5%. In terms of MWD, the improvement in accuracy
of the ARXfull forecasts is significant compared to all models. Considering MQD, the improvement
in accuracy of the ARXfull forecasts is significant compared to all models except the NN. There is no
statistical significant difference in the accuracy of the forecasts from the AR2, ARX2, and NN models.
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Furthermore, we can not report a significant difference in accuracy between the forecasts from AR1
and ARX1 as well as between the forecasts from AR2 and ARX2.

Table 1. MWD and MQD values for the test set in EUR/MWh

Naive1 Naive2 Naive3 Naive4 Naive5 AR1 ARX1 AR2 ARX2 ARXfull NN

MWD 4.147 3.912 4.008 4.091 3.803 3.789 3.801 3.751 3.747 3.721 3.763
MQD 1.938 2.041 1.535 1.585 1.414 1.418 1.409 1.395 1.375 1.362 1.371
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Figure 4. p-values of the multivariate DM test for (a) daily the L1 norm of the WD and (b) the daily L2
norm of the QD. p-values close to zero (dark green) indicate that the forecasts from the model on the
x-axis are significantly more accurate than the forecasts from the model on the y-axis.

These observations lead to several conclusions. Incorporating exogenous variables does not
improve the forecasting performance while considering time series information from the neighboring
products leads to a significant improvement. Furthermore, the inclusion of information from other
quantiles in combination with automated variable selection using Lasso also improves the forecasting
performance significantly.

Tables 2 and 3 present the values for MAEτ and RMSEτ for selected quantiles. This allows
a more detailed analysis regarding the forecasting accuracy for different regions of the distribution.
The forecasts from the ARXfull model show the lowest MAEτ values for all quantiles except Q90 and
Q100. For these quantiles the NN forecasts are more accurate. The NN forecasts show larger errors
for the central quantiles than the predictions of the much simpler AR2 and ARX2 models. However,
the accuracy of the NN forecasts is better for the more extreme quantiles. This could be explained by
non-linear effects that can not be modeled by the linear regression approach. The findings are similar
for the RMSE. The ARXfull model shows the best performance for the central quantiles while the NN
model shows slightly better performance for the tails. In general, errors are larger for the tails of the
distribution across all models, especially for the minimum and maximum values.
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Table 2. Test set mean MAE values for selected quantiles in EUR/MWh.

Naive1 Naive2 Naive3 Naive4 Naive5 AR1 ARX1 AR2 ARX2 ARXfull NN

Q0 7.52 8.96 8.23 8.45 7.11 6.99 6.96 6.93 6.91 6.79 6.88
Q10 4.62 4.61 4.65 4.70 4.23 4.21 4.21 4.15 4.14 4.11 4.18
Q20 4.10 3.85 3.97 4.00 3.71 3.71 3.72 3.65 3.65 3.62 3.69
Q30 3.80 3.43 3.52 3.53 3.38 3.40 3.40 3.35 3.34 3.33 3.39
Q40 3.70 3.26 3.30 3.31 3.24 3.28 3.29 3.24 3.23 3.21 3.28
Q50 3.68 3.21 3.21 3.21 3.21 3.25 3.25 3.21 3.21 3.19 3.25
Q60 3.69 3.22 3.27 3.30 3.24 3.26 3.27 3.23 3.22 3.21 3.25
Q70 3.75 3.34 3.45 3.55 3.37 3.35 3.37 3.33 3.33 3.31 3.34
Q80 3.99 3.69 3.88 4.02 3.70 3.65 3.67 3.63 3.62 3.61 3.62
Q90 4.50 4.43 4.60 4.82 4.31 4.24 4.27 4.24 4.24 4.21 4.18
Q100 7.38 8.49 8.18 8.66 7.36 7.16 7.16 7.15 7.13 7.00 6.88

Table 3. Test set mean RMSE values for selected quantiles in EUR/MWh.

Naive1 Naive2 Naive3 Naive4 Naive5 AR1 ARX1 AR2 ARX2 ARXfull NN

Q0 14.19 15.64 17.01 17.10 13.07 12.95 12.93 12.92 12.90 12.81 12.80
Q10 7.10 7.20 6.88 7.05 6.22 6.23 6.20 6.14 6.10 6.04 6.04
Q20 6.30 6.05 5.95 6.03 5.54 5.57 5.56 5.48 5.46 5.42 5.44
Q30 5.88 5.36 5.36 5.41 5.17 5.17 5.17 5.11 5.10 5.08 5.11
Q40 5.77 5.10 5.09 5.12 5.03 5.06 5.06 4.99 4.99 4.97 5.00
Q50 5.79 5.04 5.04 5.04 5.04 5.06 5.06 5.00 5.00 4.98 5.02
Q60 5.88 5.15 5.19 5.21 5.13 5.15 5.15 5.09 5.08 5.07 5.10
Q70 6.19 5.60 5.82 5.88 5.51 5.50 5.50 5.46 5.45 5.43 5.44
Q80 6.88 6.56 6.91 7.09 6.27 6.23 6.23 6.20 6.18 6.16 6.15
Q90 8.53 8.60 9.21 9.58 7.98 7.93 7.92 7.91 7.87 7.84 7.79
Q100 19.73 20.41 24.68 25.38 18.81 18.72 18.65 18.71 18.61 18.56 18.41

Figure 5a,b show the relative improvement in MAEτ and RMSEτ for the statistical models
compared to the forecasts of the best performing benchmark model Naive5. In terms of MAEτ only
the ARXfull forecasts show a small relative improvement for the central quantiles of roughly 0.4%.
The relative gains in accuracy are larger for the tails for all models, e.g., the ARXfull forecasts show
a relative improvement of respectively 3% and 2.4% for Q10 and Q90.
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(b)
Figure 5. Relative difference in (a) MAE and (b) RMSE values per quantile of the statistical models
compared to Naive5. Values smaller than zero indicate smaller errors than Naive5.

Figure 6a,b show the p-values of the DM-test for the loss differential per quantile for the ARXfull
forecasts against all other models’ forecasts for the L1 and L2 norm, respectively. As can be seen
from Figure 6a, we can not conclude a significantly improved forecasting accuracy in comparison to
the forecasts of Naive2 to Naive5 in terms of MAE for the central quantiles. However, the accuracy
is significantly better for the tails of the distribution. Considering the RMSE, the improvement over
the benchmarks is significant for all quantiles. These results suggest that it is possible to forecast the
short-term volatility of the intraday market which is reflected in the tails of the volume-weighted price
distribution. At the same time, we can not report a definite improvement over the naive models for
the central quantiles considering the inconsistent results for MAE and RMSE.
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Figure 6. The figure shows the p-values for the multivariate DM tests per quantile for (a) the daily L1
norm and (b) the daily L2 norm for the forecasts of the ARXfull model compared against the forecasts
of all other models. Dark green cells indicate that the forecasts of the ARXfull model are significantly
more accurate than the forecasts from the model on the y-axis for the quantile given on the x-axis.

6. Conclusions

We analyzed the German continuous intraday electricity market and focused on hour products
and the last three hours before delivery. We proposed to non-parametrically approximate the empirical
volume-weighted price distribution by using a dense grid of discrete quantiles. This admits a much richer
representation of the market behavior than only analyzing volume-weighted average prices. In order to
forecast the quantile values of this distribution we constructed a set of simple linear regression models
that use different subsets of the available inputs. Furthermore, we used two more advanced models
that utilize all available regressors, a Lasso regularized linear regression model and an ensemble of
multi-output neural networks. We found that including exogenous variables did not improve the
accuracy while considering time series information from neighboring products and quantiles did.
We compared the forecasts of the proposed models with several simple but well designed benchmarks.
The best performing model turned out to be the Lasso regularized linear regression model. We also
studied the forecasting accuracy for different quantiles of the price distribution. Compared to the naive
benchmarks, the gains in forecasting performance were small and not significant for the central quantiles
of the target distribution. However, the gains in accuracy for the tails of the distributions were larger and
significant. Hence, we gather evidence that the German intraday market works efficiently while also
showing that it is possible to forecast the variance of short-term intraday prices.

There are several avenues for future work. It would be interesting to see if we would obtain similar
findings for quarter hour products which we excluded in this work. It is also worth investigating
if information from quarter-hour products could help to improve the forecast accuracy for the hour
products and vice versa. We chose to model the price distribution in a non-parametric way which
allows a larger degree of flexibility. However, modeling the price distribution in a parametric way is
straightforward and worth exploring. Furthermore, we solely focused on prices while an estimate of
the expected traded volume as a measure of short-term market liquidity would also be of interest in
practice. Finally, future work should explore how to exploit forecasts for the distribution of prices and
volumes for short-term trading and risk management.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF cumulative density function
DM Diebold-Mariano
MAE mean absolute error
MQD mean integrated quadratic distance
MWD mean Wasserstein distance
QD integrated quadratic distance
RMSE root mean squared error
VWECDF volume-weighted empirical cumulative density function
WD Wasserstein distance
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