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Abstract: Battery state of health (SOH) is related to the reduction of total capacity due to complicated
aging mechanisms known as calendar aging and cycle aging. In this study, a combined multiple
factor degradation model was established to predict total capacity fade considering both calendar
aging and cycle aging. Multiple factors including temperature, state of charge (SOC), and depth
of discharge (DOD) were introduced into the general empirical model to predict capacity fade for
electric vehicle batteries. Experiments were carried out under different aging conditions. By fitting
the data between multiple factors and model parameters, battery degradation equations related to
temperature, SOC, and DOD could be formulated. The combined multiple factor model could be
formed based on the battery degradation equations. An online state of health estimation based on the
multiple factor model was proposed to verify the correctness of the model. Predictions were in good
agreement with experimental data for over 270 days, as the margin of error between the prediction
data and the experimental data never exceeded 1%.

Keywords: combined multiple factor degradation model; calendar aging; cycle aging; online
state-of-health prediction

1. Introduction

As the global population grows and the Earth’s natural resources diminish, electric vehicles have
been rapidly developed in recent years. When used in electric vehicles, lithium-ion batteries possess
advantages, such as high energy density, long lifespans, no memory effect, environmental benignity,
good stability, and affordability, when compared to other battery types, such as lead-acid batteries.
As such, they are quickly becoming the first choice of battery type for electric vehicles.

The state of health (SOH) of batteries can be estimated, which provides useful information for
battery management systems (BMS). Accurate capacity degradation modeling plays a significant role
in battery prognostics and health management (PHM), as state of charge (SOC) estimation is related to
battery capacity. Capacity prediction is very important for reliable operation and reduced maintenance
costs of the battery management system [1].

Both model-based and data-based methods can be used to predict capacity fade. The data-based
methods include fuzzy logic, artificial neural networks (ANN) [2,3], support-vector machines (SVM) [4],
particle filters (PF) [5], unscented Kalman filters (UKF) [6], data-driven methods based on the Wiener
process [7], and based on an autoregressive model [8]. The data-based methods for making SOH
predictions are more complex as they require large amounts of data. Therefore, these methods are
more suitable for making remaining useful life (RUL) predictions than online estimations.

Model-based methods capture the long-term dependencies of battery degradation based on
mathematical aging models. The aging models can be divided into three categories: empirical models [9–
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11], mechanical degradation models [12,13], and equivalent circuit models [14,15]. An empirical model
can be obtained through the historical data mining of accelerated aging experiments. It is most
commonly used in SOH predictions due to its mathematical simplicity, wide range of validity, and
good adaptability. Examples of empirical models include the NREL Model [16], the Wang Model [17],
and the MOBICUS Model [18]. Empirical models take into consideration the influence of factors
such as temperature, SOC, depth of discharge (DOD), and discharge rate [19,20], but the quantitative
analysis of these factors is still limited [21–26].

There are two different battery degradation scenarios of which to be mindful. One is calendar
aging, which concerns the deterioration of battery characteristics when the battery is at storage. It is
related to temperature and SOC. The other is cycle aging, which concerns the deterioration of battery
characteristics with continuous use. It is related to temperature, discharge rate, and DOD [9].

Grolleau et al. proposed a simple modeling approach under time-dependent storage conditions
(SOC and temperature) for making calendar aging predictions [18]. Experiments show that the
deviation of predicted capacity based on that proposed model never exceeded 3% over 400 days
and 5% over 625 days, but it is worth noting that Grolleau et al. used a calendar aging model that
did not consider cycle aging. Cui et al. developed a multi-stress factor model that accounted for
factors such as temperature, discharge rate, taper voltage, and depth of discharge for making battery
cycle life predictions [21]. The practical applicability of this multi-stress factor model was proven
by experimental data, but as the model did not consider calendar life predictions, it is therefore
only suitable for making offline batter Qcalendar = 1 −A × exp(−Ea

RT ) × t0.5 y cycle life predictions. In
practical automotive applications, calendar aging and cycle aging occur simultaneously. Therefore, it
is important that studies of battery SOH predictions account for both calendar and cycle life under
actual driving conditions.

This paper focuses on the impact of stress factors on battery calendar and cycle life. The effects
of four factors—temperature, discharge rate, SOC, and DOD—were analyzed. Battery degradation
equations related to temperature, SOC, and DOD were formulated. A combined multiple factor model
was also formed based on these battery degradation equations, considering both calendar aging and
cycle aging. An online SOH prediction method on the basis of the proposed model was conducted
under test conditions. The practical applicability of the model was validated by experimental data.

2. Degradation Model

An empirical calendar degradation model was set up as Equation (1) and is shown referring to
the Arrhenius equation [16].

Qcalendar = 1−A× exp(
−Ea

RT
) × t0.5 (1)

where Qcalendar is the relative capacity after calendar degradation (Ah), A is the pre-exponential factor,
T is temperature of cell (K), Ea is activation energy (Jmol−1), R is gas constant (8.314 J/mol/K), 0.5 of t0.5

is most widely accepted as a time trend enhancement factor due to the Solid Electrolyte Interface (SEI)
layer growth [13], and t is storage time.

The cycle degradation model is built similarly to the calendar one according to battery degradation
mechanisms [9,16,17].

Qcycle = 1− B× exp(
−Ea

RT
) ×N0.5 (2)

where Qcycle is the relative capacity of cycle degradation (Ah), B is the pre-exponential factor, and N is
the cycle number.

The parameters of the calendar and cycle degradation model were obtained by recursive least
squares (RLS).
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3. Experiment and Discussion

The batteries used were INR18650-33G batteries made by Samsung. Battery parameters were
as shown in Table 1. The experimental data were collected via the battery test platform. The main
test instruments, as shown in Figure 1, were a charge and discharge test system for lithium batteries
(Arbin BT2000) and a thermal chamber for environmental control (HL T402P made by Haoyuan
Environmental Testing Equipment Co., Ltd in Qongqing).

Table 1. Battery parameters of INR18650-33G.

INR18650-33G

Item Value

Capacity 2.8 Ah

Charging C-rate 0.15 C, 0.33 C, 0.5 C, 0.7 C, 1.0 C

Discharging C-rate 0.33 C, 0.5 C, 1.0 C, 1.5 C, 2.0 C, 3.0 C, 4.0 C

T range for storage −40◦–60◦

T range for charge −10◦–45◦

T range for discharge −20◦–60◦

Upper cutoff voltage 4.1 V

Lower cutoff voltage 2.5 V
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Figure 1. Battery test platform.

Before the experiments, the static capacity test was conducted at 25◦. It provided a reference for
measuring the nominal capacity of a fresh cell. During the test, two cells were charged at 0.5 C in a
constant-current constant-voltage mode to the upper cutoff voltage of – 4.1 V. The test would stop
when the current was at 0.03 C (0.06 A). The cells were left to rest for one hour without load, in order
for them to stabilize. They were then discharged at 0.5 C to the lower cutoff voltage of – 2.5 V. The cells
were again left to rest for an hour without load to stabilize. This cycle was repeated twice, and the
average capacity of the battery was taken as a reference.

The calendar and cycle aging experiments were conducted respectively under different conditions
according to national standards of automotive applications (GBT 31484-2015).

3.1. Calendar Aging Experiments

Two parameters have been investigated in calendar aging experiments: temperature and SOC.
Three groups of six 18,650 cells with a 2780 mAh nominal capacity were stored in thermal chambers at
three temperatures (25◦, 45◦, 60◦). Six cells were charged at six nominal states of charge: 20%, 40%,
50%, 60%, 80%, and 100%, respectively. The cells were stored for 270 days.
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The calendar aging experiments were performed as follows:

1. The static capacity test was conducted as described in Section 3;
2. The cells were charged with 0.5 C in a constant-current mode at 25◦ to reach six nominal states of

charge: 20%, 40%, 50%, 60%, 80%, and 100%;
3. The cells were stored at 25◦, 45◦, and 60◦ for 30 days;
4. The battery cells were calibrated after step 3;
5. Steps 2–4 were repeated to test multiple cells.

3.1.1. Capacity Fitted Curves

From the calendar aging experiments, a set of corresponding Q, T, and t can be obtained.
The experimental data are substituted into the calendar degradation model, and model parameters
obtained by the recursive least squares method are shown in Table 2.

Table 2. Calendar aging model parameters under different conditions.

Temperature State of Charge (SOC) A Ea/R

25◦

20% 73 3065

40% 153 3064

50% 162 3053

60% 147 3067

80% 129 3062

100% 95 3047

45◦

20% 76 3069

40% 156 3066

50% 158 3041

60% 142 3043

80% 135 3061

100% 101 3058

60◦

20% 69 3073

40% 148 3059

50% 150 3054

60% 141 3047

80% 125 3061

100% 98 3055

The degradation model fitted with experimental data is shown in Figure 2. The lines are fitted
curves and the triangles are the experimental data. Both the model-fitted data and experimental data
agree well. At 60◦, the error of capacity is slightly larger than other temperatures.

The battery degradation is mainly caused by the growth of the SEI film on the negative surface of
the battery in the early stage of aging (10% before capacity decay). The SEI film is essentially a side
reaction byproduct of the electrolyte and the embeddable lithium ion. Its growth rate depends on
the decomposition rate of the electrolyte on the surface of the negative electrode. The decomposition
belongs to a kind of chemical reaction. It is affected by temperature, anode potential, and concentration
of related reactants (such as lithium ions). It can be seen from the calendar experiments that the
temperature had a great influence on the battery capacity, and the storage SOC also had a certain
degree of influence on it.
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3.1.2. The Analysis of Factors

Due to the formula ln(A0) = ln(A) − Ea
RT , the fitting results of − ln(A0) and 1/T are shown

in Figure 3. On the plot,− ln(A) are the values of y-intercept and Ea
R are the slopes. Ea

R can be set to
3053, as the values under different working conditions are nearly identical, which means the values are
independent of SOC and T. The relationships between − ln(A0) and 1/T are linear, which means the
pre-exponential factor A is insensitive to T. The values of A are determined only by SOC. The factors of
temperature and storage SOC are irrelevant. A function can be introduced to describe the quantitative
relationship of A with SOC change [9].
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The relationship between SOC and A is shown in Figure 4 using a curve fitting.
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At 25◦, 45◦ and 60◦, the curves in Figure 4 change little. Taking average of the three curves, the
pre-exponential factor related to SOC can be formulated as shown in Equation (3):

A = f (SOC) = 0.0007459× SOC3
− 0.1751× SOC2 + 12.08× SOC− 103.5. (3)

The calendar capacity can be expressed as Equation (4) by substituting Equation (3) and Ea
R into

Equation (1).

Qcalendar = 1− f (SOC) × exp(
−3053

T
) × t0.5 (4)

3.2. Cycle Aging Experiments

Three groups of experiments (temperature aging experiments, DOD aging experiments, and
discharge rates aging experiments) were conducted within 900 cycles. Table 3 contains all of relevant
parameters (discharge rates, T, SoC) proposed for each experiment. The capacity data were recorded
every 30 cycles.

Table 3. All relevant parameters (discharge rates, T, SoC) for each experiment.

Name Discharge Rates T Depth of Discharge (DOD)

Temperature aging experiments 0.5 C 10◦, 25◦, and 45◦ 60%

DOD aging experiments 0.5 C 25◦ 10%, 20%, 40%, 60%, 80%, 100%

Discharge rate aging experiments 0.5 C, 1 C, 3 C 25◦ 100%

The cycle temperature aging experiments were performed as follows:

1. The static capacity test was conducted as described in Section 3;
2. The cell was charged with 0.5 C in a constant-current constant-voltage mode until it was fully

charged to cutoff voltage;
3. The test would stop when the current was at 0.03 C, then the cell would be left to rest with no

load for one hour to stabilize;
4. The cell was discharged with 0.5 C in a constant-current mode at 25◦ to reach 40% SOC;
5. The cell was then left to rest with no load for 20 minutes;
6. Steps 2 and 3 were repeated to test 900 cycles.

The procedures of the cycle degradation experiments at 10◦ and 45◦ were the same as
described above.

The DOD and discharge rate experiments were performed with similar steps to the
temperature experiments.
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3.2.1. Capacity Fitted Curves

Several sets of corresponding Q, T, and N can be obtained from cycle temperature experiments,
DOD experiments, and discharge rate experiments, respectively. By the RLS method, model parameters
at different temperatures, DOD, and discharge rate were calculated as shown in Tables 4–6.

Table 4. Cycle aging model parameters at different temperatures.

Temperature B Ea/R

10◦ 8691 4349

25◦ 8823 4352

45◦ 8785 4341

Table 5. Cycle aging model parameters at different DODs.

DOD B Ea/R

10% 8330 4356

20% 8440 4342

40% 8820 4347

60% 9860 4345

80% 12,330 4342

100% 13,990 4340

Table 6. Cycle aging model parameters at different discharge rates.

Discharge Rate B Ea/R

0.5 C 13,923 4349

1 C 10,630 4250

3 C 5285 3991

Capacity as a function of cycle number is plotted as shown in Figure 5. The lines are fitted curves,
and the triangles are the experimental data. The prediction data are in good agreement with the
experimental data, demonstrating the reliability and correctness of the cycle models.

Figure 5a displays capacity experimental data and fit at different temperatures. The results
indicate that as temperature increases, the aging accelerates. The degradation at 45◦ for 900 cycles
increased nearly 20% compared to that at 25◦. Temperature is perhaps the most influential factor on
the impact of capacity loss, as it affects the growth of SEI film.

Capacity at different DODs at 25◦ is plotted in Figure 5b. As the DOD of the battery increases, the
rate of decay of the battery capacity gradually increases. The degradation under 100% DOD for 900
cycles increased about 10% compared to that under 10% DOD, illustrating that DOD is a less important
factor in the model, especially at lower DODs (<60%).

The prediction model fitted with discharge rate experimental data is shown in Figure 5c.
The degradation discharged at 3 C for 900 cycles increased about 4% compared to that at 0.5 C,
indicating that the capacity loss is affected slightly by discharge rate. The SEI film is affected by the
diversification of the concentration of reactants in lithium-ion batteries, which is caused by different
DODs and discharge rates. The experimental results are consistent with the aging mechanism of
the battery.

3.2.2. The Analysis of Factors

Due to the formula ln(B0) = ln(B)− Ea
RT , the fitting results of− ln(B0) and 1/T are shown in Figure 6.
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On the plot, − ln(B) are the values of y-intercept and Ea
R are the slopes. The relationship between

− ln(B0) and 1/T is linear, which means that the pre-exponential factor B is independent of T. Ea
R

values can be set to 4345 as the values under different DODs are nearly identical, as shown in Table 5.
The pre-exponential factor B changes with DOD; the factor of temperature is irrelevant. A function
using third-order polynomial can be introduced to describe the quantitative relationship of B with
DOD change as shown in Equation (5) [9].

f (DOD) = −0.002315×DOD3 + 1.071×DOD2
− 27.49×DOD + 8473 (5)

The fit between DOD and B can be seen in Figure 7.
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After a closer examination of the data in Table 4, discharge rate was chosen not to be considered,
as it was found to be less important than cycle time.

The capacity can be expressed as Equation (6) by substituting Equation (5) and Ea
R into Equation (2).

Qcycle = 1− f (DOD) × exp(
−4345

T
) ×N0.5. (6)

3.3. Online SOH Estimation Based on the Combined Multiple Factor Degradation Model and Verification

The degenerative effects of calendar aging and cyclic aging are considered additive, so a combined
multiple factor degradation model can be built as Equation (7) by combining Equations (4) and (6).{

Qcalendar = 1− f (SOC) × exp(−3053
T ) × t0.5

Qcycle = 1− f (DOD) × exp(−4345
T ) ×N0.5 (7)

where t is the parking time (days) and N is the cycle number.
In electric vehicles, cycle conditions include driving and charging conditions, while calendar

conditions include parking conditions. They both occur in electric vehicle working conditions. Based
on the combined multiple factor degradation model, an online SOH estimation method can be used to
verify the correctness of the model.

Experiments were conducted in the battery test platform. The battery was charged and discharged
once per day, and the rest of the day was for parking. The test conditions of average temperature,
storage SOC, and DOD are set every two months as in Table 7. It is a simplification and simulation of
the actual working conditions of electric vehicles. The parking time can be measured in the platform
shown in Table 7.

Table 7. Test conditions in the battery test platform.

Number of Days Average Temperature Storage SOC DOD Parking Time(day)

1–60 10◦ 100% 100% 20/24

61–120 20◦ 80% 80% 20.4/24

121–180 25◦ 60% 60% 20.2/24

181–240 35◦ 40% 40% 21.2/24

241–270 40◦ 20% 20% 21.6/24

The capacity degradation can be calculated by Equation (8). Qlosscy(i) = f (DODi) × exp(−4345
Ti

) × (n)0.5

Qlossca(i) = f (SOCi) × exp(−3053
Ti

) × (ki)
0.5 (8)
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where Qlosscy is the capacity fade of cycle aging (Ah), Qlossca is the capacity fade of calendar aging (Ah),
i is the number of days, i = 1:270. SOCi, DODi, Ti are the SOC, DOD, and temperature at the time of
day i. n is the cycle number one day, and n = 1 as the battery is charged and discharged once a day. ki
is the parking time per day.

Qloss can be calculated by Equation (9).

Qloss(i) =
n∑

i=1

(Qlosscy(i) + Qlossca(i)) (9)

where Qloss is the total capacity fade of the battery (Ah).
The diagram of the online SOH estimation is shown in Figure 8.
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The actual capacity data are collected every 10 days in the platform. A comparison of predicted
and measured data is shown as Figure 9a,b. It can be seen from Figure 9a,b that prediction data are in
good agreement with the experimental results, to the point where the error never exceeded 1%.
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Figure 9. (a) Comparison between online prediction value and actual measurement value (b) capacity
prediction error.

The results verify the correctness of the proposed model. When the battery operating conditions
change, the model can reflect the degradation of the actual capacity very well. It can be used for an
actual SOH prediction during the driving of an electric car.

4. Conclusions

In this paper, a combined multiple factor degradation model consisting of temperature, SOC, and
DOD was established for calendar and cycle life predictions of electric vehicle batteries. Calendar and
cycle aging experiments were conducted. Model pre-exponential factors, which reflect degradation
reaction velocity depend only on SOC in calendar aging and on DOD in cycle aging. SOC and DOD as
membership factors were introduced to calendar and cycle aging respectively to describe their impact
on calendar and cycle degradation.

Based on the combined multiple factor degradation model, an online SOH estimation method
was proposed to verify the correctness of the proposed model. The model reflected the degradation
very well, with an error margin between prediction data and experimental data within 1%.
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Nomenclature

SOH state of health
SOC state of charge
DOD depth of discharge
BMS battery management system
PHM prognostics and health management
ANN artificial neural network
SVM support vector machine
PF particle filter
UKF unscented Kalman filter
RUL remaining useful life
A coefficient of calendar degradation
T temperature of cell
Ea activation energy
R gas constant (8.314 J/mol/K)
t storage time
Qcalendar the relative capacity of calendar degradation
SEI Solid Electrolyte Interface
Qcycle the relative capacity of cycle degradation
B coefficient of cycle degradation
N cycle number
RLS recursive least squares
Ah Amp-hour
Qlosscy the capacity fade of cycle aging
Qlossca the capacity fade of calendar aging
i the number of the day
SOCi the SOC at the time of day i
DODi the DOD at the time of day i
Ti the temperature at the time of day i
ki the parking time of the day
Qloss the total capacity fade of the battery
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