
energies

Article

Assessment and Day-Ahead Forecasting of Hourly
Solar Radiation in Medellín, Colombia

Julián Urrego-Ortiz 1,* , J. Alejandro Martínez 1 , Paola A. Arias 1

and Álvaro Jaramillo-Duque 2

1 Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería,
Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia;
john.martinez@udea.edu.co (J.A.M.); paola.arias@udea.edu.co (P.A.A.)

2 Research Group in Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica,
Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No. 53–108, Medellín 050010, Colombia;
alvaro.jaramillod@udea.edu.co

* Correspondence: julian.urrego@udea.edu.co

Received: 29 July 2019; Accepted: 11 November 2019; Published: 19 November 2019
����������
�������

Abstract: The description and forecasting of hourly solar resource is fundamental for the operation
of solar energy systems in the electric grid. In this work, we provide insights regarding the hourly
variation of the global horizontal irradiance in Medellín, Colombia, a large urban area within the
tropical Andes. We propose a model based on Markov chains for forecasting the hourly solar
irradiance for one day ahead. The Markov model was compared against estimates produced by
different configurations of the weather research forecasting model (WRF). Our assessment showed that
for the period considered, the average availability of the solar resource was of 5 PSH (peak sun hours),
corresponding to an average daily radiation of ~5 kWh/m2. This shows that Medellín, Colombia,
has a substantial availability of the solar resource that can be a complementary source of energy
during the dry season periods. In the case of the Markov model, the estimates exhibited typical root
mean squared errors between ~80 W/m2 and ~170 W/m2 (~50%–~110%) under overcast conditions,
and ~57 W/m2 to ~171 W/m2 (~16%–~38%) for clear sky conditions. In general, the proposed model
had a performance comparable with the WRF model, while presenting a computationally inexpensive
alternative to forecast hourly solar radiation one day in advance. The Markov model is presented as
an alternative to estimate time series that can be used in energy markets by agents and power-system
operators to deal with the uncertainty of solar power plants.

Keywords: global horizontal irradiance (GHI); forecasting; clearness coefficient; Markov chains;
weather research and forecasting model; solar resource

1. Introduction

The performance of solar power plants depends essentially on an adequate characterization of the
variations of the incoming solar radiation over land surface [1]. This variation is mainly associated
with the interaction between clouds and the incoming solar radiation, which leads to attenuation
values that, in some cases, can reach 80% or higher [2]. Solar resource variations cause subsequent
changes of the output at solar power plants that could not only affect the electric infrastructure but
also the revenue models that govern energy supply [3].

In the case of the day-ahead energy market in Colombia, plants bid to offer energy blocks to the
energy market national operator, XM (www.xm.com.co), one day before obtaining the market clearing
results [4]. The biddings for a certain day must be offered before 8 a.m. of that day. Based on these
biddings, the energy-market operator determines which plants will supply the demand at each hour of
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the next day. This shows that the short-term operation of solar power plants depends on the correct
forecasting of the incoming solar radiation and respective electricity generation. According to the
UMPE (the Colombia governmental entity in charge of designing energy expansion plans in Colombia),
in the 2021–2029 planning horizon, there are scenarios where it is expected to have 329 MW of new
solar plants distributed, that is about 2% of the actual power capacity in Colombia [5].

In addition, due to setbacks during the start up of the Hidroituango hydraulic plant [6], in the
short-term it is expected to have new solar plants and distributed generation based on solar photovoltaic
energy in Colombia.

Information about the hourly evolution of global horizontal irradiance (GHI) can be obtained
through the characterization of solar radiation in the site of study [4,5,7]. Such characterization is
also useful to provide benchmarking information that can be used to assess the performance of the
GHI estimates obtained with different models (e.g., dynamical models [1,8] statistical models [9]).
When using these models, characterization of solar resource is also necessary for model calibration as
well as the quantification of their related uncertainties.

In general, the GHI can be estimated using two types of models: dynamical models and statistical
models (including machine-learning techniques). The dynamical models are physically driven models
that estimate the GHI from the physical relationships that exist between solar radiation and other
atmospheric variables. Dynamical models like the weather research and forecasting (WRF) model [10]
estimate the state of the atmosphere by numerically solving the atmosphere Equations for large
horizontal domains (i.e., synoptic- and meso-scales) that are discretized in elements that usually
comprehend several kilometers, even with convection-permitting resolution. However, the use of
dynamical models is still a challenge, not only in terms of the hardware, computational time and
knowledge required; but also because, in spite of producing physically-consistent results, their estimates
may exhibit large biases [11,12].

As a counterpart, there exist the statistical models for forecasting GHI. These models include
elements from time-series analysis and assume that the future series are statistically similar to the past
series. This means that the estimates of a statistical model will mostly reflect the common features
of the measured series used to train it. Therefore, statistical models depend on the size and quality
of the available measurements to produce realistic estimates of the GHI. Different statistical and
machine-learning models can be used to estimate GHI and the decision of which model should be used
greatly depends on the features of the estimates (i.e., the temporal resolution of the estimates and the
lead times at which they are needed). Among the simplest statistical models are the regression-based
models. These models show an adequate performance for forecasts that require estimates with very
coarse temporal resolutions, ranging from weeks to months. It is also a common practice to use these
models not as forecasting models but rather diagnostic models that predict the daily or monthly
solar radiation based on other available atmospheric variables, like daily or monthly temperature,
which could have been previously measured or forecasted with a different model [13–15].

Currently, the use of machine-learning models like artificial neural networks (ANN) have gained
a greater importance in the forecasting of solar radiation. For instance, reference [16] uses a multi-layer
perceptron for estimating the global daily radiation for one day ahead. Reference [17] used a combination of
an Auto Regressive Moving Average model (ARMA) and a time-delay neural network (TDNN) to forecast
GHI for a lead time of 1 h, with a time resolution of 10 min. Reference [18] used an ARMA-based model
and an ANN model to forecast GHI, using two types of forecasts: a first forecast with a temporal resolution
of 10 min and different lead times, starting from 10 min to 60 min, and a second forecast with a temporal
resolution of 1 h and lead times from 1 h to 6 h. As noted by [19] and the previously mentioned studies,
the majority of these approaches exhibit their highest performance at estimating the GHI when the temporal
resolutions of the estimates are of the same order than the lead time of the forecast.

Other types of models that have been used previously for estimating the GHI are the Markov
based models, which mainly focus on estimating the clearness coefficient and from it, calculate the
corresponding GHI values. These models have been widely used for generating synthetic GHI series
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that exhibit the same statistical characteristics as the GHI records in the site of study at different
time resolutions [9,20–22]. Therefore, this type of model has become very useful for modeling solar
energy systems in addition to being computationally inexpensive, which allows them to produce
several realizations in a very short time. One example of this is the work of [9], where minutely
radiation series were used to train a Markov chains models to produce synthetic series of GHI at
high temporal resolution. In that work, even when the error values were high, the intention was to
produce series that would behave, statistically, in the same way as the measured series, which poses as
an advantage for photovoltaic (PV) system simulations considering the high temporal resolution of
the realizations. In more recent works, Markov based approaches for modeling GHI are now being
used to forecast the GHI values and not to only generate synthetic GHI series. One example is the case
of [23], who proposed a hybrid model based on Markov chains and the Myecielski approach to forecast
1-h ahead GHI and found a satisfactory performance, in some cases even exceeding ANN models.
Reference [24] proposes a Markov switching model that can be used to produce day-ahead forecasting
of GHI. The model proves to have an adequate behavior at estimating the hourly data. However,
it is based on a persistence approach for estimating the initial state of the next day to be estimated,
which is an approach that does not work satisfactorily for sites with large variability in cloudiness.
Reference [25] proposed a combined model based on k-means and Markov chains to statistically model
the transition of the daily solar irradiance and characterize the transition probabilities among different
states. In [26], a Markov-chain mixture model was proposed. The model was formulated to perform
very high temporal resolution forecast of the clear-sky index (minutely resolutions).

In general, Markov-chain based approaches are not frequently used in the mid-term forecast
(day-ahead forecasting) of the hourly series of GHI, which is a type of forecasting that is fundamental
in the operation of generation systems based on solar radiation. They are rather used for generating
synthetic GHI series for solar system simulations, or to perform forecasts with time horizons near
the time resolution of the model (i.e., few time steps into the future). However, through correct
implementation, a simple Markov based model could be used to perform mid-term forecasts of
GHI hourly data with satisfactory performance and still represent a simple and computational
inexpensive solution.

Therefore, as an alternative to obtain mid-term forecasts of the hourly GHI, we implemented
a two-part model based on discrete Markov processes to estimate GHI in Medellín, Colombia, a highly
populated city in the tropical Andes. This model is a modified version of the formulations found in
the works of [9,21,22,27] and is capable of forecasting diurnal series of hourly GHI for one day-ahead,
by taking into consideration the current seasonal effects over the behavior of the variable. Although
the Markov transition matrices (MTM) calculated in this work reflect the particular features of the
clearness coefficients in the region of study, the criteria followed for its construction and training can
be applied to other locations. In order to provide a point of reference regarding the performance of
the proposed Markov model, we used two additional models as benchmarking for the GHI estimates.
One is the numerical weather prediction (NWP) model called the weather research forecasting model
(WRF), and the second one is a modified Markov model based on persistence.

This work also provides insights on the intra-day behavior of the solar resource in Medellín,
Colombia, which is not currently available for this region, using GHI measurements from a pyranometer
operated by the Early Alert System of the Aburrá Valley (SIATA; https://siata.gov.co) during the period
March 2016 to February 2017. This information is helpful since tropical regions exhibit a relative
uniform income of radiation throughout the year compared to higher latitudes but can exhibit relatively
high variability throughout the day. Also, knowledge about the intra-daily variability of the GHI
is fundamental when formulating and calibrating models to characterize and forecast the incoming
solar radiation.

Additionally, even when only one year of data was initially available and no inferences regarding
annual and inter-annual variations of the GHI can be made, a single year of hourly records contains
enough samples of hourly GHI series under different sky conditions, thus providing an important

https://siata.gov.co
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source for studying the intra-day behavior of the GHI in the region of interest. This variability can
be related to the presence of mountains since they are related to localized formation of clouds due to
orographic lifting and elevated heat sources, which adds complexity to the simulation and forecast of
GHI [28].

Thus, we developed a benchmarking study for the further assessment of the accuracy of solar
radiation estimates obtained from different types of models in Medellín, Colombia, as well as for
providing information about the behavior of the intra-day GHI. The key contributions of our work are
the following:

• We performed an initial assessment of the intra-day and daily variability of the solar resource in
Medellín, Colombia, which is a piece of information that was not available in the site of study and
that is necessary for determining the intra-day generation potentials.

• We proposed a statistical model based on Markov chains for forecasting the hourly GHI series for
one day-ahead lead time, with low computational costs. We also used an NWP model (WRF) and
a persistence-based Markov model as a benchmarking for the proposed Markov model.

• We evaluated the performance of the Markov model at estimating the hourly GHI and daily
clearness coefficient considering different cloud covers in a tropical climate region.

• The performance of the Markov model was also evaluated under local atypical and synoptic
atypical cloudy conditions.

• The method used for the formulation and training of the Markov model can be extended to other
locations with different climatological conditions.

• The magnitude of the errors obtained with the Markov model are comparable to the errors
obtained with other models identified in the literature.

2. Data and Methods

2.1. Pyranometer Data

We used in situ measurements provided by SIATA (https://siata.gov.co). The instruments used
to retrieve these measurements correspond to Kipp and Zonen SMP11 pyranometers, which record
GHI values with a precision of 1 W/m2. The pyranometer considered (hereafter SIATA station) is
located in Medellín, Colombia, at 6.2593◦ latitude and −75.5887◦ longitude (Figure 1). The SIATA
pyranometers are inspected monthly and are calibrated according to the ISO 9847:1992. For the hourly
values, the expected uncertainty is of 3% of the true value of radiation. Measurements are provided at
a one-minute time resolution.
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We performed a statistical analysis of the data provided by the SIATA station. The period of analysis
ranges from 1 March 2016, to 28 February 2017. Although a single year is not enough for characterizing
the seasonal variability of GHI in Medellín, it contains enough samples of hourly GHI series useful for
studying the intra-day variability of GHI under different sky conditions. Consequently, the statistical
analysis of GHI developed in this work is focused on the intra-day variations of the hourly GHI and not
on the monthly or annual variations of the solar radiation. However, given the seasonal changes of solar
radiation in the region, we discriminated our statistical analysis for each month of the year. In central
Colombia, where our region of study is located, precipitation shows two wet seasons, one during
March–April–May and a second one during September–October–November. By contrast, two dry
seasons are observed during June–July–August and during December–January–February. This behavior
is mainly associated with the latitudinal migration of the Intertropical Convergence Zone [29–32].

Since the characterization presented here is focused on the hourly values of GHI, the 1-min records
provided by the SIATA pyranometer are averaged around each of the day-time hours. In this case,
if 10% or more of the 1-min records within an hour were missing values, the corresponding hourly
average value was set as a missing value. Less than 8% of the total hourly data corresponds to missing
values, which was considered a small fraction. However, when a missing value was identified, usually
the remaining values of the corresponding diurnal cycle were also missing values. This means that if
data imputation is attempted, records corresponding to entire days would have to be produced. This is
undesired since it could result in introducing high biases in the statistical analysis and, therefore, in the
performance of the stochastic model.

2.2. Clearness Coefficient Estimation

The clearness index or clearness coefficient, kt, is a dimensionless index that can be used to
indirectly describe the behavior of solar radiation and is calculated as shown in Equation (1):

kt =
GHI
Iext

(1)

where Iext is the extraterrestrial radiation calculated as,

Iext = Isc

(
1 + 0.033× cos

(
360× day o f the year

365

))
× cosθz (2)

In Equation (2), θz is the zenith angle, which depends on the declination angle δ, the latitude ϕ
and the hour angle ω. Isc is the solar constant and is equal to 1367 W/m2. The zenith angle can be
estimated at the same resolution of the GHI measurements.

The clearness coefficient represents the fraction of the extraterrestrial radiation that reaches the
land surface after traversing the atmosphere. According to [33], the GHI can be assumed to consist of
two components: a deterministic component, which is represented by the extraterrestrial radiation and
the effects of the air mass coefficient (A.M) on the GHI, and a stochastic component which is primarily
associated to the effects of clouds over the GHI. The effects of the A.M (a deterministic component)
and the stochastic component are both inherited by the clearness coefficient when calculated as shown
in Equation (1).

The deterministic component of kt is, in general, better understood than the stochastic component
and is mostly associated to changes in the path length that solar radiation must traverse before reaching
the land’s surface. This length changes during the day and is a function of the zenith angle, θz.
The corresponding geometrical change in the solar radiation path is what is represented by A.M,
which according to [34,35], is calculated as shown in Equation (3).

A.M =


1

cosθz
For 0◦ ≤ θz < 70◦

exp(−0.000118×Altitude(sea level))

cosθz+0.5057(96.080−θz)
−1.634 For 70◦ ≤ θz < 90◦

(3)
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On the other hand, the stochastic component is still not represented by simple Equations. Different
studies have identified that the stochastic contribution over the GHI is mainly associated to the
interactions between clouds and radiation [33,36–38]. An estimate of the stochastic component of kt

can be obtained through the normalization expression proposed by [39], who outlined the dependency
between the hourly kt and the A.M. According to [39], the ks is obtained by removing the dependency
of the ks to the A.M as:

ks =
kt

1.031 exp
(
−1.4

0.9+ 9.4
A.M

)
+ 0.1

(4)

The normalized clearness coefficient, ks, represents solely the effect of clouds over the GHI and
behaves as a stochastic variable. In this work, we used a Markov model to simulate hourly values of kS.

In addition to the calculation of kS, another clearness coefficient is obtained at daily temporal
resolutions and is referred to as the daily clearness coefficient, kd. This value is also calculated from
Equation (1) using the daily values of GHI and Iext, and is then used to represent the average sky
conditions of a given day.

2.3. Discrete Markov Chain Model

Markov chains describe the transition process of a random variable, where the probability
distribution of the following state of the variable depends on its previous states. The degree of
the process indicates the number of previous observations on which the next state of the variable
statistically depends. Given that the random variable, X, has a set S with a finite number of possible
states m, so that S = {s1, s2, s3, . . . , sm}, the random variable has a state i at a time step t when Xt = i.
The transition probabilities between all possible states are stored in a MTM, P. In a first-degree Markov
process, the next state of the variable X depends only on its current state and so the transition probability
of the variable from state si to state s j, Pi j in a single time-step can be written as:

Pi j = P(Xt = j
∣∣∣Xt−1 = i, Xt−2 = it−2, . . . , X0 = i0)= P(Xt = j

∣∣∣Xt−1 = i) (5)

The MTM of such a process, P, is a squared matrix with dimensions m ×m, where the row
values indicate the current state of the variable and the column values correspond to the next possible
states of the variable. Therefore, there are m elements in each row of P e.g., the first row should be
p11, p12, p13, p14, . . . , p1m as shown in (6).

P =


p11 p12 . . . p1m
p21 p22 . . . p2m
...

pm1

...
pm2

. . .

. . .

...
pmm

 (6)

Since the Markov chain transitions between discrete states, the clearness coefficient must be
transformed from a continuous variable to a discrete variable. This is done by dividing the range of
the clearness coefficient (i.e., 0–1) into equally-spaced intervals or bins. Each interval is enumerated
in ascending order, with each number corresponding to a discrete state of the clearness coefficient.
A state of the clearness coefficient refers to the interval in which its continuous value is contained.

The number of states is seen to greatly improve the performance of the model up to a certain
number of states. Initially, ref [40] demonstrated that a set of discrete states m = 20, corresponded to
the smallest interval subdivision that would still result in a regular behavior of the MTM. Furthermore,
in a more recent study, ref [41] found through a cross-validation process, that the performance of
a Markov based model did not improve the performance of the model significantly for a number
of states larger than 20. In other words, it was evidenced that the model did not improve when
the bin width of the discretization process went below 0.05. These findings are consistent with the
discretization widths used in previous works, regarding the modeling of the clearness coefficient
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using Markov based models [9,20,22,36,42,43]. For these reasons, we discretized both the normalized
clearness coefficient (ks) and the daily clearness coefficient (kd), into 20 discrete states of width 0.05.
The resulting discrete states are shown in Table 1.

Table 1. Discretization of the daily and hourly clearness coefficients.

Discrete
State

Continuous
Interval

Discrete
State

Continuous
Interval

Discrete
State

Continuous
Interval

Discrete
State

Continuous
Interval

State 1 0–0.05 State 6 0.25–0.3 State 11 0.5–0.55 State 16 0.75–0.8
State 2 0.05–0.1 State 7 0.3–0.35 State 12 0.55–0.6 State 17 0.8–0.85
State 3 0.1–0.15 State 8 0.35–0.4 State 13 0.6–0.65 State 18 0.85–0.9
State 4 0.15–0.2 State 9 0.4–0.45 State 14 0.65–0.7 State 19 0.9–0.95
State 5 0.2–0.25 State 10 0.45–0.5 State 15 0.7–0.75 State 20 0.95–1

Additionally, the works of [44,45] demonstrated that the statistical behavior of a set of ks depends,
predominantly, on the overall sky conditions of the day they belong to (i.e., on the state of the
corresponding kd). This indicates that the modeling of the ks must be discriminated by the states of
the kd. This procedure has been used before in other studies using discrete states to estimate GHI.
Initially, reference [43] introduced the idea of a library of MTMs, where they calculated an MTM for
the daily clearness coefficient, for each state of the monthly clearness coefficient. This choice was made
based on the similarities of the shapes of the probability functions alone. Furthermore, reference [20]
showed that the probability density function (PDF) of sets of ks for days that have kd values grouped
in intervals of 0.05 displayed the same statistical behavior and therefore could be modeled through
the same function. Following these studies, we opted to calculate a library of MTM for modeling ks,
one for each state of the daily clearness coefficient kd.

It must be noted that a synthetic time series of hourly ks values can be obtained with this Markov
model by setting an initial state of ks and calculating the following state as a stochastic process with the
associated probabilities contained in the row of P given by the initial state of ks. This procedure will be
explained in more detail in the following sections. However, before explaining the GHI estimation
procedure, we describe the methodology to estimate the MTMs, for both the kd and ks.

2.4. Construction of the Markov Transition Matrices

2.4.1. First-Degree Markov Transition Matrix (MTM) for ks

As it was explained in Section 2.3, a first-degree Markov transition matrix contains the probability
of the variable transitioning from a state i to a state j in one time step which can be expressed as Pi j.
This probability Pi j can be approximated by counting the number of times the variables go from i to
j in one time step, fi j and then dividing this number by the total number of transitions the variable
makes from state i to any other state, Ti.

Pi j =
fi j

Ti
(7)

with,

fi j: Number of times the variable passes from i to j.
Ti: Number of times the variable departs from i.

For a given state z of the daily clearness coefficient (kd), the corresponding ks MTM is calculated
as follows:

(1) Extract all the hourly GHI values from the days of the dataset that have a kd = z. Keep the
information regarding the hour and day of the year that corresponds to each hourly datum.

(2) Calculate the corresponding ks values using Equations (1)–(4), and discretize them using Table 1.
(3) Using the discrete ks data, calculate the corresponding fi j and Ti values for all ks discrete values.

The i and j values are iterated over all the states of ks.
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(4) Calculate the Pi j probabilities with Equation (7), and position them in the MTM at the
corresponding (i, j) position.

This procedure can be iterated over all kd states to obtain a first-degree MTM for each state of the
daily clearness coefficient.

2.4.2. Second-Degree MTM for kd

Since the kd is sensitive to atmospheric variations at synoptic scales, estimates of the daily
clearness coefficient are obtained from a second-degree Markov chain calculated at daily resolutions
(i.e., the future state of the kd depends on the states of the previous two days). The construction of
a second-degree MTM is performed in the same way as the first-degree MTM with the exception that
the transition probability is calculated as:

P(i j)k =
f(i j)k

T(i j)
(8)

where (i, j) values correspond to the current and previous adjacent state of the variable respectively,
and k corresponds to its future state. In this case, each row in the second-degree MTM corresponds to
a (i, j) pair and so, a second-degree MTM has dimensions (m2

×m).
In addition, atmospheric variability can be different for wet and dry seasons in the region of study.

Therefore, two second-degree MTMs for kd, one for wet season months (MTMwet) and a second for
dry season months (MTMdry), are obtained and used to generate the estimates of the daily clearness
coefficient state. Consequently, we used a two-part model based on Markov chains to estimate the
hourly series of GHI in the site of study.

2.5. Simulations of Global Horizontal Irradiance (GHI) Using a Markov Chains Model

As previously mentioned, the statistical behavior of the ks of a particular day depends on the
state of the kd of that day. This means that for each state of the kd illustrated in Table 1, there is
a corresponding MTM for ks, as it was also explained in the previous section. Therefore, the state of the
kd should be forecasted before the diurnal series of ks can be estimated. Consequently, the proposed
Markov model has two parts: the first part estimates the state of the daily clearness coefficient (kd) using
a second-degree Markov chain and the second part uses this estimate as a decision-maker variable to
choose the appropriate first-degree MTM for estimating ks. This procedure results in an estimated
hourly series of ks for one day-ahead. This process is illustrated in Figure 2.Energies 2019, 12, x FOR PEER REVIEW 9 of 30 
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The procedure depicted in Figure 2 results in a series of hourly ks states, one for each hour of the
following day like

{
ks,6, ks,7, . . . , ks,18

}
, which vary from 1 to 20 (see Table 1). These values are then used

to calculate the corresponding hourly GHI values. This is done as follows:

(1) Transform the estimates
{
ks,6, ks,7, . . . , ks,18

}
from states (1 to 20) to extinction percentages (0.0–1.0).

This is done by first assuming that for a state i of ks, the continuous values inside the corresponding
interval (see Table 1), follow a uniform distribution such that ks ∼ U((i− 1) × 0.05, i× 0.05). Then,
using a pseudo-random process a continuous value of ks is picked from the given distribution.

(2) Once a continuous value of ks is obtained and knowing the hour and the day for which it was
estimated, the total hourly clearness coefficient, kt must be calculated again in order to include
the deterministic effects. This is done by using Equation (4) as:

kt,est = ks,est × 1.031 exp

 −1.4

0.9 + 9.4
A.M

+ 0.1

(3) Now, given that the extraterrestrial radiation can be modeled as a deterministic variable,
the Equation for the total clearness coefficient, kt, can be used now to estimate the corresponding
GHI value as:

GHIest = kt × Iext

This procedure is performed for each of the ks hourly estimates to obtain the corresponding series
of hourly GHI estimates.

The period March 2016 to February 2017 is used to calculate the MTMs for the model while
the period May 2017 to May 2018 is used to evaluate the model performance. Since the stochastic
model is computationally inexpensive, each day of the period between May 2017 and May 2018 was
estimated 1000 times. With this information, it is possible to obtain the error distributions of the
different realizations produced by the model, which allows a more general assessment of the skill of
the model at estimating the GHI in Medellín to be performed.

2.6. The Weather Research and Forecasting (WRF) Model

We used the WRF model, a flexible, mesoscale model designed for atmospheric modeling, weather
forecasting and climate simulations [10], as a benchmarking model for the proposed Markov model.
WRF is a state-of-the-art, community-supported model that is subject of constant development and
support by the National Center for Atmospheric Research (NCAR), as well as multiple contributions
from the users’ community. Thus, this model is under constant scrutiny and improvement [46].
Additionally, the WRF model has been used by meteorological and environmental agencies in Colombia,
such as SIATA [47] and the Colombian Institute of Hydrology, Meteorology and Environmental Studies
(IDEAM), as their choice for operational forecasting exercises for different regions of Colombia.

WRF has been used to estimate the incoming solar radiation for different regions of the world [8,
48–51]. It has also been modified to provide better estimates of the incoming solar radiation, like the
case of the WRF-solar project [52] which introduced new parametrizations and modifications to the
conventional WRF. These features were first included in version 3.6 of the WRF model and have been
an integral part of this model since [53–56].

In order to compare the Markov model to the results obtained from WRF, we analyzed the
simulations of 5 particular days corresponding to different cloud cover conditions in the site of study,
as shown in Table 2. It must be noted that 5 simulated days do not represent a comprehensive
validation period for comparing the WRF model against the proposed Markov model (May 2017 to
May 2018). We limited the present analysis to a few days given the computational costs of the WRF
simulations. These simulations are run at a relatively high resolution (including convective-permitting
domains) and include different configurations for each case. In our case, convective-permitting
simulations are important not only to better simulate the cloud field at smaller scales, but also to
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account for the orographic effects of the Tropical Andes, where Medellín is located. On the other hand,
the use of different configurations of the model was needed for this study because, to the best of our
knowledge, there is no peer-reviewed report of the skill of different microphysics schemes on the
simulation of GHI for our region of interest. Thus, despite the limited number of simulated days with
WRF, the comparison between our WRF simulations and the Markov model can still be useful for
benchmarking the performance of the Markov model, and for gaining insights on the aspects of the
model that should be improved.

Each 24-h WRF simulation started at 00:00:00 UTC (19:00:00 Local Time (LT)) of the day before and
ended at 00:00:00 UTC (19:00:00 LT) of the day of interest. The first 6 h were considered as a spin-up
period for each simulation. The integration time-step was set to 45 s and the shortwave radiation
scheme was called every 15 min. The WRF outputs were also saved each 15 min. The resulting
solar radiation series were averaged around each hour of the diurnal cycle; thus, an hourly temporal
resolution was achieved.

Table 2. Particular days considered to analyze the performance of the clearness coefficient simulations
obtained with the Markov chains-based model and the weather research and forecasting (WRF) model.

Date Daily Clearness Coefficient (kd) Category

1 September 2017 0.72 Clear sky
23 December 2017 0.54 Broken clouds

5 June 2017 0.48 Cloudy
24 November 2017 0.39 Very cloudy (local conditions)

19 August 2017 0.18 Very cloudy (Synoptic conditions)

WRF was run using two nested domains. The outer domain includes Colombia, part of the Pacific
Ocean and the Caribbean Sea and has a spatial resolution of 12 km (Figure 1a). The inner domain
includes the region containing the city of Medellín and the municipalities of the Aburrá Valley and
has a spatial resolution of 4 km. Because WRF numerically solves the Equations of the atmosphere,
it requires initial and boundary conditions. These conditions were obtained from the Global Forecast
System (GFS) final analysis (FNL), which provides information about the state of the atmosphere
every 6 h.

We used five WRF configurations for each simulated day, each with different combinations of
microphysics and cumulus schemes. The remaining parameterizations are common to all simulations.
For the planetary boundary layer, we used the Mellor–Yamada–Janjic [57] whereas for shortwave
and longwave radiation we used the rapid radiative transfer model for general circulation models
(RRTMG). We selected RRTMG as the radiation scheme based on its reported performance for estimating
GHI, as well as the fact that is currently the only radiation scheme capable of coupling with the
microphysics schemes of [58,59], which tackles the microphysics-radiative inconsistency present in
WRF [37]. These configurations are variations of the WRF-solar configuration [52].

In this work, a set of six experiments using different options of the cumulus and microphysics
schemes were undertaken. Table 3 shows the different configurations used in this work. The Kain-Fritsch/

Thompson-Eidhammer (KF-TE) experiment was considered here as the control experiment, being
a slight variation of the default WRF-solar configuration. In order to explore the role of the cumulus
parameterization at the edge of what is commonly considered the convective-resolving resolution (4 km),
we included an additional configuration (Experiment KF-TE-02), in which the cumulus scheme is active
in the inner domain.

The Thompson & Eidhammer scheme was one of the selected microphysics schemes because:
(i) it provides the radiative effective radii of the hydrometeors to be used in the RRTMG scheme;
and (ii) it takes into account the effects of aerosols over clouds, which subsequently affects incoming
radiation [52]. The Morrison microphysics scheme [60] calculates the size distribution for more
hydrometeors than the Thompson and Eidhammer scheme and has had positive performance in
the estimate of the GHI in other studies [55]. The Grell cumulus scheme can reflect the effect of
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unresolved clouds over the incoming radiation. Schemes such as the Grell-3D scheme [61] allow the
activation of the Deng mass flux scheme [62], which triggers the radiative feedback on both deep and
shallow cumulus.

Considering that the effective resolution of a grid-point NWP model is larger than one grid cell,
we averaged GHI values from WRF over a region around the location of the pyranometer corresponding
to 3 × 3 grid boxes of the larger domain, (i.e., 36 km × 36 km). Model output is available every 15 min.
The resulting series were hourly averaged, so they could be compared to the in-situ measurements via
different error metrics as discussed in next section.

Table 3. Experiments scheme configurations. The Deng scheme is also referred as
Deng’s mass-flux-scheme.

Experiments
Cumulus Shallow Convection Microphysics

d01 d02 d01 d02 d01 d02

KF-TE Kain-Fritsch [63] Off Off Off Thompson and Eidhammer Thompson and Eidhammer
KF-TE-02 Kain-Fritsch Kain-Fritsch Off Off Thompson and Eidhammer Thompson and Eidhammer
KF-MO Kain-Fritsch Off Off Off Morrison Morrison
GR-TE Grell 3D Off Off Off Thompson and Eidhammer Thompson and Eidhammer

GR-TE-DE Grell 3D Off Deng Off Thompson and Eidhammer Thompson and Eidhammer
GR-MO-DE Grell 3D Off Deng Off Morrison Morrison

2.7. Persistence-Markov Model

For further assessment of the proposed Markov model, a persistence-Markov model was also
used in this work as a benchmarking model. Unlike the two-part Markov model previously described,
this model assumes that the state of the kd of the next day is the same as the kd state of the current day.
The process for obtaining the hourly series of GHI for the next day using the persistence-Markov model
is the same as the one used for the proposed Markov model. This procedure is depicted in Figure 3.Energies 2019, 12, x FOR PEER REVIEW 12 of 30 
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Figure 3. Simulation process of the normalized clearness coefficient, ks using the persistence-Markov
model proposed in this work.

The persistence-Markov model was used to simulate the same validation period of the proposed
Markov model (i.e., May 2017–May 2018).

2.8. Error Metrics

The metrics used for evaluating the hourly estimates of the stochastic model and the WRF model
are the root mean square error (RMSE; in W/m2), the normalized root mean square error (nRMSE; in
%), the mean bias error (MBE; in W/m2), and the normalized mean bias error (nMBE; in %), as follows:

RMSE =

√√√
1
N

N∑
i=1

(GHIest,i −GHImeas,i)
2nRMSE =

RMSE

GHImeas
(9)



Energies 2019, 12, 4402 12 of 29

MBE =
1
N

n∑
I=1

(GHIest,i −GHImeas,i)nMBE =
MBE

GHImeas
(10)

• N corresponds to the number of hourly GHI values during the day.
• GHIest,i is the estimated average GHI value for the hour i.
• GHImeas,i is the measured average GHI value for the hour i.

• GHImeas is the daily mean of the hourly GHI measured values.

The estimation errors of the daily clearness coefficient were calculated as the difference between
the estimated kd and the measured kd, as follows:

∆kd = kdestimated − kdmeasured (11)

3. Results

3.1. Characterization of the GHI

The assessment of the solar resource for the period March 2016 to February 2017 is performed with
only daytime GHI values, from 6 LT to 18 LT, since these are the limits of the interval in which finite
values of GHI (i.e., non-zero and non-missing) are measured by the pyranometers. The distribution
of hourly GHI data throughout the period considered here is shown in Figure 4. Table 4 presents
the statistical summary of the GHI for the period of March 2016–February 2017. Aside from the
main, median and standard deviation of the period considered, Table 4 also presents the interquartile
range (IQR) of the data distribution which is defined as the difference Q3–Q1. From Table 4, 50%
of the radiation values measured by the SIATA pyranometer range from 90 W/m2 to 643 W/m2.
The daytime values are skewed, with higher frequencies of the lowest radiation values, especially in
the 0–100 W/m2 range.
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Table 4. Statistical summary of the hourly GHI from the SIATA station recorded during the period 1
March 2016 to 28 February 2017.

Total Size of the Sample with Hourly Resolution = 4658 Percentiles (W/m2)

Mean
(W/m2)

Median
(W/m2)

Standard Deviation
(W/m2)

IQR
(W/m2) 0% 25% 50% 75% 100%

385 332 315 553 0 90 332 643 1217

Figure 5 presents the GHI values corresponding to each hour of the day and each month during
the period March 2016–February 2017. The highest values of GHI are observed from 11 to 13 h local
time (LT). The months with the highest radiation values occurring during longer periods are March
2016, July 2016 and August 2016, and January 2017 and February 2017, reaching GHI values higher
than 900 W/m2. April 2016, May 2016 and late November 2016 are the periods where more GHI
variability is observed, with April 2016 exhibiting several days with solar radiation below 300 W/m2 at
any time of the day.Energies 2019, 12, x FOR PEER REVIEW 14 of 30 
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Figure 5. Hourly GHI values from SIATA station for all days of the period March 2016–February
2017. The color scale represents the intensity of solar radiation in W/m2. White gaps correspond to
missing values.

Reference [64] shows a distribution of the annual cycle of hourly radiation for Sevilla, Spain,
similar to that shown in Figure 5, with an approximate mean of 383 W/m2, suggesting a similar annual
behavior of the GHI. However, measurements for both sites (Sevilla and Medellín) exhibit seasonal
changes with rather different amplitudes. The 2016–2017 annual GHI series obtained from the SIATA
pyranometer (Figure 5) shows a rather uniform pattern when compared to the larger contrasts between
summer and winter seasons at higher latitudes that would alter significantly the daylight hours and
the intensity of incoming radiation (see [64]). In spite of lacking the strong seasonal effects of middle
latitudes, the SIATA pyranometer data suggests two periods of reduced solar radiation: April to early
May 2016, and late October to November 2016. During November 2016, the time interval when solar
irradiance exceeds 200 W/m2 is reduced from ~10 h to ~7.5 h.

Figure 6 shows the violin plots of monthly GHI for 3 segments of the day-time. These time
windows correspond to “morning” (6–10 LT), “noon” (10–14 LT), and “afternoon” (14–18 LT). The violin
plots show the empirical probability distributions of the hourly GHI for each segment considered,
as colored regions, which are drawn mirrored around the middle black lines. These lines present the
same information as a boxplot, with the white dots indicating the position of the median, the horizontal
small lines indication the quartile 1 (Q1) and quartile 3 (Q3). The thinner black lines that extend beyond
these points reach the 5th percentile (p5) and the 95th percentile, respectively.



Energies 2019, 12, 4402 14 of 29

In the region of study, located in Central Colombia, precipitation shows two wet seasons,
one during March–April–May and second one in September–October–November. By contrast, two dry
seasons are observed in June–July–August and December–January–February [29,31,32,65]. For the
period of study, the distributions in Figure 6 show that the GHI exhibited larger variability during the
afternoon compared to the morning hours. February 2017 was the month with less variability at noon
hours, most probably due to the persistence of clear skies during that time of the year (which is part of
the dry season). The noon distributions for months like August 2016, January 2017, February 2017
presented skewed distributions towards high GHI values, while distributions at the same segment for
months like April 2016 or November 2017 exhibited more uniform distributions of GHI, indicating
a higher occurrence of low GHI values compared to the former mentioned months. This behavior is
found to be characteristic for both clear sky and overcast conditions.

The potential occurrence of high radiation values at the surface is related to the magnitude of the
extraterrestrial radiation, which in turn, for our region of interest (~6.25◦ N) exhibits some of its largest
values between March and May (see e.g., Fig. 2.8 in [66]). However, more frequent cloud formation is
observed over Medellín during this time of the year (first wet season), which corresponds to the early
first rainy season for this region [29,31,32,65].

Figure 6 shows that the months within the dry season (e.g., August 2016 and February 2017) exhibit
lower variability before noon, and higher variability in the afternoon hours, for the period considered.
This behavior is due to the high number of clear sky days during these months. Months within the
wet season (e.g., April 2016 and November 2016) exhibit larger variability throughout the day and
GHI distributions more symmetrical around noon, unlike the dry season distributions of the period of
study. Even though there is variability of hourly GHI during dry months, most of the hourly radiation
records shown in Figure 6 are centered on higher values during the afternoon hours compared to other
months of the year.
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Figure 6. Daytime violin plots of GHI during the period March 2016–February 2017. Three hour
segments are considered: 6–10 LT, 10–14 LT and 14–18 LT. The colored surfaces of each segment
correspond to the empirical probability density function (PDF) of the GHI data. The black lines inside
each distribution correspond to the boxplots of the GHI values and the white dots correspond to the
median values of the distributions.

Table 5 shows the hourly mean coefficient of variation (CV) for each month of the period considered,
along with the average values of daily solar energy the mean kd values. The CV can be defined as:

CV =
µ

σ
(12)
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Table 5 shows that the dry season months (i.e., June 2016, July 2016, August 2016 and February 2017)
exhibit the lowest relative variability during the day (less than 34%). Table 5 also shows the monthly mean
daily solar energy values in kWh/m2, commonly used in power systems and energy budget. August 2016
and February 2017 have the highest values of mean daily incoming energy and the lowest average of
hourly CV. On the other hand, wet season months (i.e., April, May, October, November and December
2016) show the highest variability with CV values between 43% and 50% of the hourly GHI averages.
April and November 2016 are the months with the highest hourly variability values (46% and 50%,
respectively). Consistent with the mean daily values of solar energy, the mean kd per month show that
during the months of August 2016, January 2017 and February 2017, there was an overall low level of
cloudiness, hence the high kd values.

Table 5. Monthly mean hourly coefficient of variation (CV) and monthly mean daily radiation (in
energy units of kilowatts-hour) from SIATA station during the period March 2016–February 2017.

Month Hourly Mean CV
(%)

Month Mean Daily Solar Energy
(kWh/m2) Meankd

March 2016 39.7 5.4 0.52
April 2016 46.2 4.7 0.45
May 2016 40.7 4.8 0.48
June 2016 29.9 5.6 0.56
July 2016 33.5 5.6 0.55

August 2016 31 6 0.58
September 2016 37.2 5.4 0.52

October 2016 45.7 5.0 0.50
November 2016 49.7 4.0 0.43
December 2016 43 4.6 0.51

January 2017 36.3 5.3 0.57
February 2017 32.9 5.9 0.60

3.2. Clearness Coefficient

We calculated the normalized clearness coefficient (ks) for each hour throughout the period March
2016–February 2017, according to the SIATA records. Using these values, the empirical PDFs of ks

were calculated for each month during the period considered We calculated the normalized clearness
coefficient (ks) for each hour throughout the period March 2016–February 2017, according to the SIATA
records. Using these values, the empirical probability density functions (PDFs) of ks were calculated
for each month during the period considered (Figure 7). Two main groups of PDFs are distinguished:
one group including the months of June–July–August 2016 and January–February 2017, and a second
group including the months of April, May, October, and November 2016. The first group corresponds
to dry season months whereas the second group corresponds to wet season months [29,31,32,65].

Figure 7 shows that the distributions of the wet season months have peaks around lower values
of ks (~0.4), whereas the distributions for the dry season months exhibit larger frequencies for larger
values of ks (~0.6–0.8). Transition months like September and December 2016 show more uniform
distributions of ks.

The daily clearness coefficient, kd, was calculated as the ratio of the daily mean GHI to the daily
mean of the corresponding extraterrestrial radiation. This coefficient reflects the sky condition of the
whole day in terms of how much solar radiation reaches the surface as a percentage of how much
would have reached the surface, given that there was no atmosphere. Previous studies have shown
that there is a statistical relationship between the value of the daily clearness coefficient, kd, and the
daily statistical distribution of the normalized hourly clearness coefficient, ks, [9,45,64].
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Figure 7. Empirical PDFs of ks for each month between March 2016 and February 2017, according to
SIATA records. The y-axis values can be larger than 1.0 since this is a distribution plot, thus meaningful
information can only be obtained from its integral over an interval rather than from a single point.
This integral is equal or less to 1.

Figure 8 shows the empirical probability distributions of the normalized hourly clearness coefficient
grouped according to their corresponding daily clearness coefficient value. Only four ranges are shown
to illustrate this relationship. Each colored line in Figure 8 denotes the empirical PDF of the hourly ks

values of a day that a has daily clearness coefficient contained in the interval shown in the corners
of each panel, (e.g., every line in Figure 8a corresponds to the PDF of the ks values of a day with a kd
between 0.25 and 0.30). In this way, what Figure 8 indicates is that the empirical PDFs of the ks for
days with the same state of kd behave similarly.
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For days with low kd, the corresponding ks values are centered around lower values (Figure 8a).
The days with higher kd, on the other hand, present ks values that are centered around higher values
(Figure 8b). Both cases exhibit less ks variability than the cases of days with intermediate kd values
(Figure 8b,c). Due to these observed differences between the ks distribution according to the kd,
we considered a two-part Markov model.

3.3. Clearness Coefficient and GHI Estimates

3.3.1. Daily Clearness Coefficient Estimates

Figure 9 shows, for each of the considered days, the estimates of the daily clearness coefficient
(kd) obtained with each of the considered models (i.e., the first part of the proposed Markov model,
persistence model, and the WRF experiments). Figure 9 presents these estimates as bar plots, with each
bar representing a different model and its height representing the corresponding estimated value of
kd. The black horizontal lines in each of these panels indicates the corresponding kd measured values.
The blue bars in Figure 9 correspond to the mean kd values estimated by the proposed Markov model,
for each day.

For 1 September 2017 (Figure 9a), all WRF experiments overestimated the daily clearness coefficient
for the outer domain and underestimated it for the inner domain. The persistence model underestimated
the kd by ∼ 0.2 and the propose Markov model underestimated the kd by ∼ 0.05.

Figure 9b,c show the case of 23 December 2017and 5 June 2017respectively. For these cases,
the Markov model and the Persistence model overestimated the measured kd values, although the
Persistence model had smaller overestimation than the proposed Markov model. For 23 December
2017 (Figure 9b), the KF-MO experiment for the inner domain estimated the kd with an error of 0.01,
being the closest estimate to the real kd. In the case of 5th June 2017, only the KF-MO and GR-MO-DE
experiments, both for the inner domain, underestimated the daily clearness coefficient, kd. In the rest
of the cases the kd was overestimated.

Figure 9d corresponds to the case of 24th November 2017. This day presented a case where
local-scale events seem to be responsible for the high extinction values over the incoming GHI. For
this day, the Markov model shows a better performance than the Persistence model at estimating the
kd. In this case the ∆kd of the proposed Markov model is ∆kd = 0.01, while the persistence model
exhibited a ∆kd ≈ 0.52. For this day, the WRF experiments also overestimated the measured daily
clearness coefficient, kd consistently. Since the Markov model has a better performance at estimating
transitions that are frequently found in the variable records used to train it, it is possible to assume
that the events corresponding to the high levels of cloudiness for 24 November 2017, are events that
frequently occurred during the March 2016–February 2017 period.

Figure 9e shows the simulations for 19 August 2017. This day, in contrast with 24 November 2017,
was a case characterized by the presence of a synoptic scale event over the Caribbean Sea. Although
all experiments reproduce high levels of GHI extinction at the location of the event, the GHI series
reproduced over Medellín greatly vary from experiment to experiment. As can be seen from Figure 9e,
the kd estimates corresponding to GR-MO-DE-d01 and KF-MO-d01 are those closest to the measured
value, with the GR-MO-DE-d01 estimate having the lowest error of 0.05. For this day, the Markov
model reproduced an average kd of 0.58 and the persistence model an average kd of 0.53, which are
values that lie far from the observed value of 0.18. This indicates that this type of events, which are not
so commonly observed over the study region and are caused by events that occur beyond local scales,
are hardly captured by the Markov model.
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Figure 9. Bar plots of the kd estimates Distributions of the daily clearness coefficient estimated by
WRF, the Markov model and the persistence model. (a) kd estimates distributions for 1 September 2017,
measured kd = 0.72. (b) kd estimates distributions 23 December 2017. Measured kd = 0.54. (c) kd estimates
distributions 6 June 2017. Measured kd = 0.48. (d) kd estimates distributions for 24 November 2017
measured kd = 0.39. (e) kd distributions for 19 August 2017, measured kd = 0.18. The black lines
correspond to the measured kd values.

In general, the Markov model and the persistence model showed a similar performance at
estimating the kd, except for 1 September 2017 and 24 November 2017, were the propose Markov model
had a better performance. It is also noted that, in general, the WRF experiments for the inner domain
tended to produce lower kd estimates than their counterpart in the outer domain.

Additionally, although the proposed Markov kd estimates presented in Figure 9 are averaged
values and the distribution of the estimates is not shown, we must indicate that the Markov model is
only capable of producing 2 to 3 different states for each day presented in Figure 9.
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3.3.2. Hourly Estimates of GHI

We evaluated the skill of the WRF model and the proposed Markov model at simulating the GHI
at Medellín, Colombia, for 5 non-consecutive days with different cloud cover conditions (Table 2).
Although only 5 simulation days do not represent a comprehensive simulation period, the comparison
between the proposed Markov model and the WRF model at estimating the GHI for these 5 days
still represents a good indicator of the performance of the proposed Markov model. The chosen days
were selected based on their daily clearness coefficient value. For each particular day, we ran six
simulations of the WRF model with different combinations of microphysics and cumulus schemes
(Table 3). These simulations were later compared against the simulations obtained with the Markov
model for the same 5 days.

Since the Markov model produces estimates in a stochastic way, each simulation results in
a different hourly series of GHI, meaning that several realizations of a single day could be obtained
in order to observe the overall behavior of the proposed Markov model. For this reason, and noting
that the model is computationally inexpensive, each day in Table 2 is simulated 1000 times using
the proposed Markov model. The resulting series for each day are plotted as violin plots, which are
discriminated by each hour of the day, and are presented along with the estimate GHI series obtained
with the WRF experiments in Figure 10. Violin plots are useful in this case because they include the
approximate probability distribution of the estimates and also have information about the statistical
metrics of the distribution such as the interquartile range and the median of the series. As in Figure 6,
the white dots in the violin plots indicate the median value of the distributions and the height of the
boxes inside each violin plot indicates the position and magnitude of the IQR of each distribution
calculated as the difference between the Q3 and Q1 values, respectively.

Figure 10 presents the GHI hourly simulations obtained with the Markov model and the WRF
model for each of the 5 selected days. The blue distributions correspond to the violin plots of the
Markov estimates for each hour of each day and the colored lines correspond to the WRF GHI series
for each experiment and for each domain considered (i.e., outer domain, d01 and inner domain, d02).
The dashed black lines correspond to the measured hourly series of GHI for each day.

Figure 10a presents the hourly distributions of GHI for a clear sky day (1 September 2017,
kd = 0.72). For this day, the measured values of GHI are close to the IQR of the Markov estimate
distributions. In the case of the WRF estimates, it is observed that series have a similar shape to the
measured series, with the estimates of the KF-MO experiment presenting an RMSE increase of 77 W/m2

from the outer domain (d01) with respect the inner domain (d02). In the case of the inner domain, d02,
the WRF estimates consistently underestimated the measured GHI series.

Figure 10b presents the estimates for 23 December 2017. For this day, the measured series
presented higher atmospheric extinction values during the morning hours than during the evening
hours. For this day, the Markov model mostly overestimated the GHI during the morning hours,
with only some extreme estimates falling near the measured values. This behavior is similar to that
exhibited by most of the WRF experiments for this day. During the first evening hours (i.e., 12LT–15LT),
the Markov model produced GHI values that were, in general, closer to the measured GHI values than
the estimates produced by the WRF series for the inner domain (d02). In the case of the WRF estimates
for the outer domain (d01), WRF produced GHI values that were very similar to the measured values
and to the median values of the Markov distributions. During the last evening hours (i.e., 16LT–18LT),
both models consistently overestimated the measured GHI values.

In the case of 5 June 2017 (Figure 10c), the Markov model had a satisfactory performance at
estimating the GHI values between 9 LT–12 LT. However, it mostly overestimated the GHI during
the afternoon hours as the measured values are near the lower tails of the estimate distributions.
This matches the behavior of most of the WRF experiments, which also overestimated the GHI during
the evening hours. However, the WRF experiments that used the Thompson and Eidhammer scheme,
for the inner domain (i.e., KF-TE-d02, GR-TE-d02 and GR-TE-DE-d02), underestimated the clearness
coefficient during the morning hours, unlike the rest of the experiments.
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For the case of 24 November 2017 (Figure 10d), the Markov model consistently forecasted kd
states that were closer to the measured kd, which caused the hourly GHI estimates of the Markov
model to be closer to the hourly measured GHI values than the estimates obtained with the WRF
experiments. This can be corroborated in Figure 9d. Although the Markov model had a better
performance at estimating the hourly GHI than the WRF experiments for this day, both models
consistently overestimated the measured GHI values for most of the evening hours (i.e., 14LT–18LT).
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Figure 10. Hourly distributions of the GHI estimates produced by the Markov model and the WRF
model for five particular days (Table 2). (a) Corresponds to 1 September 2017, with a kd = 0.72.
(b) Corresponds to 23 December 2017, with a measured kd = 0.54. (c) Corresponds to 6 June 2017,
with a measured kd = 0.48. (d) Corresponds to 24th November 2017, with a measured kd = 0.39.
(e) Corresponds to 19 August 2017, with a measured kd = 0.18. (f) Also corresponds to 19 August 2017,
but in this case the estimated kd was forced to be equal to the measured kd = 0.18. The black dashed
lines correspond to the measured hourly GHI values for each day.
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The 19 August 2017 (Figure 10e) exhibits the lowest daily clearness coefficient value among the
simulated days (kd = 0.18). As it was previously mentioned, the high levels of cloudiness observed on
this day are mainly associated to a tropical depression crossing the Caribbean and that would later
transform into Hurricane Harvey [67]. For this day, the Markov model consistently overestimated
the kd for each of 1000 simulations performed (Figure 9e). These overestimations lead to an incorrect
selection of the hourly MTM, which in turn, causes the consistent overestimations of the hourly
values of GHI. This case is an example of how the estimates of the first part of the model largely
affect the performance of the second part of the model. For this day, some of the WRF experiments
exhibited a better performance at estimating the GHI than the Markov model. This was the case of
the experiments that considered Morrison as the microphysics scheme. It was also observed that the
outer domain (d01) estimates showed a better agreement with the measured GHI values than the
nested domain (d02) estimates. Given that for 19 August 2017, the first part of the Markov model is
not able to correctly simulate the measured state of the kd in any of the 1000 simulations, an extra set
of 1000 simulations were performed to observe the behavior of the second part of the model alone
(i.e., the simulation of the hourly GHI). In order to do this, for these extra set of simulations, the state of
kd used as input for the second part of the Markov model was forced to be equal to the measured value
(i.e., kd = 0.18). The simulations obtained in this way for the Markov model are presented in Figure 10f.
Most of the measured values of the GHI now fall inside the IQR of the Markov estimate distributions.
In this case, when the base state of the series, which can be represented by the kd, is correctly estimated,
the model frequently reproduces GHI values that are closer to the measurements than in the opposite
case (Figure 10e).

In order to assess the general performance of the Markov model at estimating the hourly GHI for
the 5 selected days, Table 6 presents the summary of the RMSE errors of the hourly estimates of GHI
obtained with the Markov model for each of the simulated days. The last row of Table 6 corresponds
to the case where the estimated kd was set equal to the measured kd. The RMSE values presented for
the Markov model correspond to the median values of the RMSE distributions. Table 6 also shows the
summary of the RMSE errors of the hourly estimates of GHI obtained with the GR-MO-DE experiment
since it has one of the highest performances at estimating the hourly GHI. The RMSE values presented
for this experiment correspond to the mean value between the RMSE error for the outer domain, d01
and the inner domain, d02. Additionally, the RMSE median value of the persistence-Markov model is
also presented in order to provide further benchmarking for the proposed Markov model.

Table 6. Summary of hourly GHI estimates produced by the Markov model and by the WRF
experiment, GR-MO-DE.

Simulated day Markov Persistence-Markov WRF: GR-MO-DE

RMSE (Median) RMSE (Median) RMSE

01/09/2017
144 W/m2 (26%) 190 W/m2 (33%) 116 W/m2 (21%)kd = 0.72

23/12/2017
177 W/m2 (47%) 171 W/m2 (45%) 174 W/m2 (46%)kd = 0.54

05/06/2017
165.1 W/m2 (44%) 158 W/m2 (43%) 204 W/m2 (55%)kd = 0.48

24/11/2017
209 W/m2 (76%) 233 W/m2 (85%) 288 W/m2 (104%)kd = 0.39

19/08/2017 415.2 W/m2

(288.4%)
372 W/m2 (258%) 133 W/m2 (92%)kd = 0.18

19/08/2017
97.5 W/m2 (68%) 372 W/m2 (258%) 133 W/m2 (92%)kd = 0.18

(kd corrected)
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According to Table 6, for 1st September 2017, the Markov model exhibits an RMSE error of
144 W/m2, which is lower than the RMSE value for the Persistence-Markov model but higher than
the mean RMSE produced by the WRF experiment. This indicates a lower performance at estimating
the hourly GHI for this day compared to the WRF experiment but an improvement with respect
the persistence-based model. For 23 December 2017, the Markov model, the persistence-Markov
model and the WRF experiments presented a similar performance at estimating the hourly GHI,
all of them exhibiting nRMSE values of 47%, 45% and 46%, respectively. For the case of 6 June
2017, the performance of the Markov model increases with respect to the performance of the WRF
experiments at estimating the GHI, however, the persistence-Markov model presents an improvement
with respect the proposed Markov model. For the case of 24 November 2017, it can be seen that the
proposed Markov model has a better performance than the persistence-Markov mode and the WRF
model, presenting a lower RMSE than the other two models. This shows that for this particular day,
neither the persistence-based model nor the WRF model were capable of simulating the correct state
of the kd, while the proposed Markov model did. Finally, for the case of 19 August 2017, the WRF
presents a better performance at reproducing the effects of the larger scale event over the region of
study, while the proposed Markov model and the persistence-Markov model fail to reproduce these
effects over the GHI and thus, result in estimations with high RMSE values.

In general, the Markov model exhibits a lower RMSE values at estimating the hourly GHI in
Medellín than the WRF experiment except for 1 September 2017 and 19 August 2017. For the latter
simulation day, the Markov model is not able to reproduce the effects of the large-scale event over the
region of study, while the WRF experiment GR-MO-DE is capable of producing large atmospheric
extinction levels over the hourly GHI estimates.

As an additional assessment of the performance of these models for the 5 days selected, Table 7 shows
the median of the RMSE values corresponding to each model. It can be observed that the proposed Markov
model had a better performance at estimating the GHI than the persistence-Markov model. Also, it can
be seen that the WRF model had a similar performance to the proposed Markov model with a small
improvement of 3 W/m2.

Table 7. Overall performance of the Markov model for the 5 chosen simulation days.

Error Metric Markov Persistence-Markov WRF:GR-MO-DE

Median RMSE (W/m2) 177 190 174

3.4. Daily Forecasts of GHI for the Validation Period of May 2017–May 2018

Figure 11 shows the histogram of frequencies of the ∆kd errors obtained for the period of
May 2017–May 2018. Most of the ∆kd errors are between 0.0 and 0.15, being the values between 0.05
and 0.15 the most frequent ones. This shows that the first part of the model mostly overestimates the
kd, producing kd values that usually are 1 state or 3 states above the measured values (see Table 1).
On the other hand, the values corresponding to the correct estimations of the kd (∆kd = 0) are also
highly frequent.

Since the Markov-based model formulated here is computationally inexpensive, it was possible to
perform 1000 simulations of each day during the period May 2017–May 2018. From this procedure it is
possible to analyze the distribution of the errors of the different realizations produced by the model.
Figure 12 show the distributions of the RMSE (Equation (9)) vs the estimation error ∆kd (Equation (11)),
but this time presented as boxplots. In these plots, the lower whisker of the boxplots corresponds to
Q1 − 1.5 × IQR, while the upper whisker corresponds to Q3 + 1.5 × IQR. The colored boxes enclose the
IQR with the lines drawn within the boxes representing the median value. The colors of the boxes
indicate the period in which the estimations were made.
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Figure 11. Frequency histogram of the ∆kd of the estimates performed during the period May
2017–May 2018.

Figure 12 illustrates how the estimation error of kd (∆kd) affects the RMSE distributions of the GHI
estimates. Figure 12 also shows the RMSE distributions for wet and dry seasons.
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Figure 12. (a) Distributions of the root mean square error (RMSE) vs ∆kd for the period May 2017–May
2018. (b) As in (a) but for nRMSE. Orange boxes correspond to the wet season estimates. Blue boxes
correspond to the dry season estimates.

Figure 12a,b shows the impact that the estimation of the kd (first part of the Markov model) has on
the hourly estimates of GHI (second part of the Markov model). However, Figure 12a,b do not allow
evaluating the hourly estimates without being affected by the errors of the kd. From this analysis is
neither possible to observe the performance of the second part of the model alone at estimating the
hourly GHI during days with different sky conditions (kd). One way to do this is by simulating the
period of May 2017 to May 2018 using the observed kd values of each day as input for the second part
of the Markov model. If this procedure is repeated a large number of times, it would be possible to
obtain the error distributions of the GHI estimates for different sky conditions, which are given by the
values of the observed kd.

Finally, the proposed Markov model is compared against the Persistence-Markov model for the
validation period of May 2017–May 2018. Table 8 shows that the proposed Markov model has a small
improvement with respect the persistence-Markov model when evaluated during the period May
2017–May 2018. However, it is observed that during this period, the proposed Markov model exhibited
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as larger MBE than the persistence-Markov model. This is consistent with the overestimations in the kd
produced by the first part of the proposed Markov model, as can be observe in Figure 11.

Table 8. Overall error for the validation period of May 2017–May 2018.

Error Metric Markov Persistence-Markov

Median RMSE (W/m2) 214 217
Median MBE (W/m2) 33.9 7.21

∆kd 0.076 0.003

The bias exhibited by the proposed Markov model at estimating the kd reflects the fact that more
than one year of data for training the model is necessary to train the model in order to produce
a satisfactory estimator of the kd. It is also worth noting that the persistence-Markov model displays
a very low value of MBE, and not just when compared against the proposed Markov model.

4. Concluding Remarks

4.1. Solar Assessment

In this work, we analyzed global horizontal irradiance data from a pyranometer station located in
Medellín, Colombia, with records during the period March 2016 to February 2017. Because of the low
percentage of missing values, hourly and daily averages were computed without special interpolation
algorithms. Although Medellín corresponds to a mountainous tropical city with months exhibiting
a large number of cloudy days during the period considered in this work, most of the days during
this period exhibited around 4 to 5 h with radiation values above 650 W/m2, typically surpassing the
800 W/m2 between 11 and 13LT. Additionally, the measured data showed that the average daily solar
energy that reached the surface in the region during March 2016 to February 2017 was of ~5 kWh/m2,
which corresponds to 5 h of equivalent peak sun hours (PSH). The hourly measurements showed
that this value would increase to an average of 5.5 PSH during the dry season months. This resource
availability is important since it is comparable or even larger than what has been observed in regions
that are referents regarding the use of solar radiation for energy production, like California, USA, with
average values ranging from 3.8 to 6.3 PSH [68], or cities in Germany, with average PSH values that
can range from 2.9 PSH to 3.6 PSH [69].

Additionally, during the dry season months, when the GHI values tend to be higher, solar
variability decreases, which makes the use of the solar resource even more significant considering that
during these months, especially when El Niño events occur, the main energy generation resource in
Colombia (i.e., hydro energy) is heavily affected [30,70].

This is particularly important for Colombia since the country depends energetically on
hydroelectric plants, which account for the 68.31% of the 17.35 GW of total installed capacity [71].
For this reason, it is essential to have complementary energy sources during dry periods that can
reduce the risk of energy supply cuts.

4.2. Two-Part Markov Chain Model

In this work, a two-part model based on Markov chains was proposed. Additionally, a Numerical
Weather Prediction model (WRF) was used as a benchmark for the estimates obtained with the Markov
model. In general, the Markov model exhibited typical ∆kd ranging from 0.0 to 0.15. Also, regarding the
kd estimates, the estimation errors for all the WRF experiments ranged from −0.03 to 0.43. These results
show that, in general, the first part of the Markov model (i.e., the part that estimated the kd), has
a comparable performance to the WRF model at estimating the daily clearness coefficient. Both models
showed a consistent positive bias at estimating the kd, even the WRF experiment of GR-MO-DE,
which presented an average ∆kd = 0.13, which is also comparable to the typical ∆kd values from
the Markov model. On the other hand, the persistence-Markov model exhibited a lower ∆kd for the
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validation period of May 2017–May 2018, but with a similar performance to the proposed Markov
model in terms of the RMSE.

Although further inspection would be required to determine the origin of this positive bias in the
Markov model it is clear that more than one year of data is necessary to produce more generalizable
estimates of the kd, and therefore, of the hourly GHI. This issue was also observed for the case of the 5
selected days (Figure 9), where the Markov model was only capable of estimating 2 to 3 different states
for each day considered in this work.

In addition, the positive bias in our Markov model could be partially due to anomalous climate
conditions during the training period.

During 2015/2016 a particularly strong El Niño event took place [72], which greatly affected the
presence of clouds during the beginning of 2016, potentially producing larger values of kd than in
a normal year. Again, this shows how peculiarities of one year may cause biased estimates of the
clearness coefficient, and therefore, longer periods for training the model are required.

The performance at estimating the hourly GHI of the Markov model and the WRF experiment,
GR-MO-DE is presented in Table 7. For the five specific days considered in this study, the Markov
model had a performance comparable to the performance of the GR-MO-DE WRF experiment, except
for the case of the synoptic event, where the WRF experiment exceeded the skill of the Markov model
at estimating the GHI. However, it is worth noting, as well, that for the overcast day associated to
a more frequently measured type of event (i.e., 24 November 2017), the Markov model had a better
performance at reproducing the hourly GHI than the WRF experiment.

When a more general assessment of the Markov is performed during the period May 2017–May
2018, RMSE errors inside the IQR of the hourly estimates produced by the Markov model for clear sky
days ranged from ~57 W/m2 to ~171 W/m2 (~16%–~38%). For broken cloud sky conditions, the RMSE
values ranged from ~149 W/m2 to ~250 W/m2 (~32%–~81%) while for overcast sky conditions,
RMSE values ranged from ~80 W/m2 to ~170 W/m2 (~50%–~110%). In general, these results are in
agreement with the errors found in similar studies regarding the hourly GHI forecasting for one
day-ahead [56,73,74]. Although not frequently, the Markov model managed to produce GHI hourly
estimates with very low RMSEs, even for highly overcast conditions. These values ranged from
~30 W/m2 to ~80 W/m2 (~20%–~50%). Even though these values are not typical among the estimates
obtained in this work, they indicate that the model has the potential to produce series that are closer to
the measured series for overcast condition than what is typically found in other works [8,50,51,73,75–77].
This improvement can be achieved by a further characterization of the hourly GHI series that could
return typical intervals in which the hourly GHI usually lies for each hour of the day. Based on these
intervals, the simulated series can be evaluated after they are produced and discarded if necessary.
Additionally, because of how the Markov model was trained in this study, the hourly simulations of
GHI did not take into account the dependency on the time of the day and the atmospheric mechanisms
that could affect cloudiness. As a way of correcting this, the transition probabilities stored inside the
Markov transition matrices could be obtained considering the time of the day.

We found that the estimates of the daily clearness coefficient, kd, are fundamental for achieving
the lowest RMSE values of the hourly series of GHI using the Markov model. Overestimations and
underestimations of the kd lead to error distributions that increase in magnitude with the bias of the kd
estimates. We also found that combining a persistence model for estimating the kd with the second
part of the proposed Markov model (i.e., the part that produces the hourly GHI estimates), results in
a low bias model that could serve as an initial alternative for modeling the hourly GHI in the site of
Medellín, Colombia.

In general, we believe further studies could start by improving the kd prediction, which depends
on meteorological process at synoptic scale, and so models like the weather prediction models could
be a plausible alternative to simulate the kd of the next day and which can later be used as an input for
the second part of the Markov model proposed in this work. We are currently assessing the possibility
of coupling the WRF model with the proposed Markov model.
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The present work, despite the short time period of study, represents a novel contribution in terms
of a detailed diagnostic of the solar resource and the performance of a variety of modeling tools for
its day-ahead estimation for our region of interest. As such, this study is a first needed step for the
assessment and modeling of solar energy for the city of Medellín, located within the tropical Andes.
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