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Abstract: It is well known that a low level of electrolytes in batteries produces a malfunction or even
failure and irreversible damage. There are several kinds of sensors to detect the electrolyte level.
Some of them are non-invasive, such as optical sensors of level, while some others are invasive;
but both require one sensor per battery. This paper proposes a different approach to detect the
low electrolyte level, which neither requires invasive sensors nor one sensor for each battery. The
approach is based on the estimation of the internal resistance of an equivalent electrical circuit (EEC)
model of the battery. To establish the detection criterion of the low level of electrolytes, a statistical
analysis is proposed. To demonstrate the feasibility of this approach to be considered a valid method,
multiple experiments were performed. The experiments consisted of determining how the internal
resistance is affected at eight different levels of electrolyte at different aging levels of vented lead–acid
(VLA) batteries. The results have demonstrated the feasibility of this approach. Hence, this approach
has the potential to be used for the reducing of sensors and avoiding invasive methods to determine
the low level of electrolytes.
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1. Introduction

Despite the vast research on electrochemical energy storage systems, the lead–acid battery has
remained one of the predominant secondary source of power for stationary applications [1]. There
are many different types of lead–acid batteries and diverse applications for them [1–3]. Therefore,
the chosen lead–acid battery for stationary application must meet the following basic requirements
regarding the electrolyte level [1]: it should consume low or null water, low maintenance or be
maintenance-free, and high-efficiency of charging and discharging, just to mention a few.

The valve-regulated lead–acid (VRLA) batteries are expected to be either maintenance-free and
null water consumption; however, in these types of batteries, water loss may also occur [3,4]. Lead–acid
batteries that have removable caps for adding water, like vented lead–acid (VLA) batteries, require
low maintenance to keep the correct level of electrolytes and the optimum battery performance. VLA
batteries are preferred over VRLA batteries since the former have a lifespan from 15 to 20 years,
and are often substituted due to their age instead of failure reasons. In this regard, the loss of
electrolytes below the minimum level leads to a gradual reduction of performance and, consequently,
the battery’s end of life (EOL) [4–9]. Other aging mechanisms are: irreversible formation of lead sulfate,
electrolyte stratification, positive plate corrosion, shedding, sludging, and internal short-circuits,
among others [10–13]. These phenomena contribute to decrease the available capacity and to modify
the battery’s internal resistance (also known as ohmic resistance). Also, the state of charge (SOC)
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produces ohmic resistance variation [2]. Therefore, the ohmic resistance is strongly related to the aging
mechanisms, and those mechanisms can be identified through the ohmic resistance [5–7,11,12].

The electrolyte level supervision is an essential task that it is even included in standards for
supervising battery banks for stationary applications. Some standards recommend periodic and
continuous supervision [14–18], and for stationary applications, continuous supervision is preferred.

If the electrolyte level falls below the minimal level that the battery manufacturers specify, the
battery performance will be deteriorated, and serious problems can occur to the battery, such as
reducing the battery capacity, the drying out of electrodes, loss of active material, and damaging
the battery irreversibly. For example, if the electrodes are exposed to air, they will oxidize, and the
battery becomes irreversibly damaged. To fix this problem, diverse solutions have been proposed
to monitor the electrolyte level and alarm when the minimum electrolyte level is detected. The
solutions to monitor the electrolyte level can be placed into one of two groups: those based on invasive
devices (known as invasive methods) and those based on non-invasive devices (known as non-invasive
methods) [19].

The invasive methods to monitor the electrolyte level consist of submersible level sensors, which
are commonly used in periodical supervision. The drawbacks of these kinds of methods are: (1)
The submersible sensor must be installed into the jar and invade the battery, (2) the battery must be
perforated and it can modify the battery performance, (3) the submersible sensor can contaminate
the electrolytes, (4) the incorrect installation of the submersible sensor can provoke false detection,
internal short circuits, and battery damage, (5) a polluted sensor can provoke false detection and,
consequently, battery damage. Some methods use submersible sensors with a different design to avoid
those common problems [19,20]. Also, these sensors can be configured to monitor the electrolyte level
of a battery pack instead of using an extra sensor for each battery [21].

The non-invasive methods to monitor the electrolyte level consist of non-invasive level sensors,
which avoid altering the battery. Two examples of these solutions are: (1) methods based on ultrasonic
sensors [22], and (2) methods based on pressure sensors [23]. Some drawbacks of these methods are:
(i) The battery container must have unique characteristics to allow the proper operation of sensors,
(ii) the incorrect calibration of the sensors can provoke false alarms, and subsequently cause battery
damage, (iii) a device must be used per battery which increases the final cost of the supervisory
system [24].

On the other hand, it is well known that some variables can be identified indirectly. The
aforementioned is common when the variable of interest either presents difficulties or is impossible
to be measured. In those cases, indirect methods to identify the variable of interest are suitable to be
applied. For example, temperature, magnetic flux, oxygen consumption, and so forth, can be estimated
using equivalent models, linear observers, artificial intelligence, and experimental curves.

Considering the limitations of physical sensors to identify the electrolyte level and knowing that
its identification can be solved by using other variables, this paper focuses on developing a statistical
method to detect the low electrolyte level in VLA batteries for stationary applications by using only
battery voltage and current measurements. The proposed method is based on an equivalent electrical
circuit (EEC) battery model and the influence of the electrolyte level on the EEC parameters.

Table 1 shows a comparison of the attributes given by the proposed method and those commonly
used in supervisory systems (for continuous supervision) that monitor the electrolyte level. From
Table 1, we show that the proposed method does not need any level sensor, but it fulfills the standards
related to monitoring and alarming the electrolyte level.

The rest of this paper is organized as follows. Section 2 describes the used EEC battery model
and the relationship that the internal resistance keeps with the water loss. Section 3 deals with the
test bench, experimental setup, and procedures needed to characterize the ohmic resistance versus the
electrolyte level. Section 4 describes the proposed statistical criterion to detect the low electrolyte level.
Section 5 presents the experimental validation results of the proposed and implemented scheme to
detect the low electrolyte level. Finally, conclusions are given in Section 6.



Energies 2019, 12, 4435 3 of 14

Table 1. Comparison between the proposed method and those commonly used in supervisory systems
(for continuous supervision) that monitor the electrolyte level.

Attribute Other Systems Proposed System

Level sensors Invasive ! Not required

Non-invasive ! Not required

Voltage ! !

Other sensors Current ! !

Temperature ! !

Periodic monitoring (human supervision) ! Not required

Continuous monitoring (online) ! !

Standards PRC-005-2 and IEEE-450 PRC-005-2 and IEEE-450

2. Equivalent Electrical Circuit (EEC) Model of the Battery and its Correlation with Water Loss

The EEC battery model is shown in Figure 1, and according to references [1,25–27], this
representation describes the internal electrochemical phenomena of the battery, which is based
on its construction. In this equivalent model, vOC represents the battery open-circuit voltage, R0

represents the bulk electrolyte resistance, also known as the internal resistance or ohmic resistance.
The constant-phase element is given by the capacitor C1 and resistor R1, which are used to model
the distribution of reactivity representing the electrode properties. Charge transfer resistance R2 and
double-layer capacitor C2 represent the interfacial impedance of the cell. id and vBatt are the battery
current and voltage, respectively.

+

-

C1 C2

R1 R2R0

-

+

vOC vBatt.

id

Figure 1. Equivalent electrical circuit (EEC) battery model.

The internal resistance (R0) of the EEC battery model is the only parameter that can be estimated
without disconnecting the battery; instead, only the float voltage mode is needed. In addition to this,
this resistance is strongly related to the electrolyte level since the water loss increases the electrolyte
concentration, which in turn increases the internal resistance value [4–6,9–13,28–30]. Consequently,
R0 is the selected indicator in this contribution to detect the low electrolyte level.

3. Experimental Setup for Battery Characterization

The aim of this section is to describe the procedure to estimate parameter R0 at eight different
electrolyte levels, for 44 VLA batteries. First, Section 3.1 describes in detail the test bench. Then,
Section 3.2 provides the specifications for selecting electrolyte test levels. After that, Section 3.3 presents
the estimation method used to obtain parameter R0 for a given electrolyte level, and specifies the pulses
of current applied to the battery bank to estimate R0. Finally, battery model parameter characterization
results are presented in Section 3.4.

3.1. Stationary Battery Bank and Monitoring System

The experimental setup emulates the conditions of an electrical substation to characterize the R0

parameter versus the electrolyte level and to validate the proposed low-level detection method. It used
a series-connected battery bank with 44 VLA batteries, model STT2V150 (2 V, 165 Ah [31]).
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Figure 2 shows the test bench, where a real-time automation controller (RTAC) is used [32].
The RTAC has voltage and temperature sensors to monitor battery voltages and temperatures. The
battery temperature was measured on the negative terminal. The current transducer was adapted on
the RTAC to monitor the string current. An 8514 programmable DC electronic load and an AT10.1
charger were used. Two relays to switch the charger and the testing load were adapted to the digital
outputs of the RTAC. A laptop was used to configure the RTAC and processing data.

Signal processing station

Real-time automation controller Resistive load

Battery 

charger

Battery 

bank

Figure 2. Test bench implemented to emulate the conditions of an electrical substation.

3.2. Electrolyte Level Calibration for Battery Characterization

The independent variable was the electrolyte level x given in liters. Figure 3 shows the selected
eight setting levels of electrolyte for the battery model used in this research. The n-th electrolyte level
will be represented by xn, where n = 1, 2, 3, ..., N. For this battery bank, N = 8.

  x8 = 4.164 L
  x7 = 4.110 L
  x6 = 4.057 L
  x5 = 4.003 L

  x4 = 3.950 L

  x3 = 3.896 L

  x2 = 3.843 L
  3.810 L
  3.730 L

Electrolyte levels: 

x1={

Figure 3. The eight electrolyte setting levels used to characterize R0.

According to the battery manufacturer, the levels x2 and x8 correspond to the minimum and
maximum allowed levels, respectively. The electrolyte level x1 is a level below the minimum level and,
in this level, the optimal performance of the battery is lost.

In this research, 44 VLA batteries were used and each with eight setting levels to characterize their
internal resistance R0 versus the electrolyte level. The level x1 was set up in each battery by keeping
the battery bank in flotation voltage mode until a loss of battery water led to an electrolyte level below
x2. Level x1 was different for each battery, since, in the conducted calibration test, they lost water at
different rates. Levels x1 for each battery varied between the 3.81 L to 3.73 L (see Appendix A). x1 is the
first setting level used to characterize the internal resistance. After that, the batteries are refilled to reach
the upper levels and characterize their corresponding internal resistances. Once the batteries were
refilled and before characterizing the new electrolyte level, the batteries were kept floating for twelve



Energies 2019, 12, 4435 5 of 14

hours to properly integrate the refilled liquid into the acid and thus avoid the electrolyte stratification,
which modifies the internal resistance. Additionally, the batteries must stand in open circuit for seven
hours before applying the five characterization pulses described in the following subsection. It is
worth mentioning that the electrodes never were exposed to air to avoid oxidation. All tests were
conducted with the state of charge at 100% and the temperature at 23 ± 2 ◦C in each battery.

3.3. Method to Estimate R0

Parameter R0 is estimated as follows [8,25–27,33,34]: firstly, a discharge pulse of constant current
amplitude (Id) is applied from t0 to t1 during 10 s (τPulse = 10 s), as shown in Figure 4. Battery voltages,
and string current measurements from t0 to t1 are recorded and, R0 of each battery is estimated
by Equation (1). We should mention that ∆vBatt. and ∆id are obtained in the linear segment of the
transients to avoid capturing the charge transfer phenomenon and inaccurate estimation.

R0 =
∆vBatt.

∆id
. (1)

ΔvBatt.

t

v B
a
tt

. (
V

)

τPulse

t0 t2

τRest

Δid

t

0

0

i d
 (

A
)

Id

ΔvBatt.

Δid

t1

Figure 4. Schematic representation of the discharge pulse and the resulting battery voltage used to
estimate R0. String current id (top) and battery voltage vBatt. (bottom) are illustrated.

On the other hand, to estimate the parameters R1, C1, R2, and C2, the battery bank must be set
in a zero current condition; however, this condition is achieved by disconnecting the battery bank,
which is a condition highly forbidden for electrical substations. Even though these parameters are not
eligible to detect the low electrolyte level, their estimation method is presented to justify the reason.
The charge transfer phenomenon depicted by the recovery voltage curve from t1 to t2 (resting period
τRest = 1 h, in Figure 4) is used to estimate parameters RC, whereas R0 is estimated using ∆id and
∆vBatt. Due to the order and characteristic response of the EEC, the transient response is fitted to
an exponential function given in Equation (2). The coefficients a, b, c, and d are calculated using the
curve fitting toolbox on MATLAB R© (R2015b). Then, parameters RC are obtained with expressions in
Equation (3).

vBatt.(t)|t2
t=t1

= aebt + cedt (2)

R1 =
−a
Id

, R2 =
−c
Id

, C1 =
−1
bR1

, and C2 =
−1
dR2

. (3)

The R0 estimation is conducted at different amplitudes of current id, around the nominal load
current, to estimate the internal resistance profile over the operating current range. However, if the
load current were quasi-stationary, this estimation process is performed only once. The characteristic
average internal resistance value, defined as θk(xn), is given by the following expression:
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θk(xn) =
∑M

m=1 R0k,m(xn)

M
(4)

where k indicates the k-th battery in the string (k = 1, 2, 3, ..., K), K is the total number of batteries
in the battery bank, m indicates m-th discharge pulse (m = 1, 2, 3, ..., M), and M is the total number
of discharge pulses for electrolyte level xn. For this particular battery bank K = 44 and M = 5.
R0k,m(xn) represents the ohmic resistance of k-th battery and m-th pulse at electrolyte level xn. Figure 5
illustrates the profile of the string current id with the five consecutive discharge pulses and their
amplitudes. All the obtained values of R0k,m(xn) and θk(xn) are listed in the following web page:
https://aroholl15.wixsite.com/experimentaldata.

i d
 (

A
) t

0
Id =-2.06 A

τPulse

τRest

1

2

3

5

τRest

Id =-4.12 A
Id =-6.18 A
Id =-8.25 A

4
Id =-10.31 A

Figure 5. Schematic representation of the string current id with the five consecutive discharge pulses to
estimate the average values of R0.

3.4. Battery Model Parameter Characterization Results

Only the values of θk(xn) are needed to detect the low level of electrolytes. The obtained values
θk(xn) of the 44 VLA batteries are listed in Table A2 (see Appendix B). Please notice that θk(x1) is
always the biggest as compared with the subset {θk(x2), ..., θk(x8)} in all cases. Also, Figure 6 shows
the variation of internal resistance according to eight electrolyte levels for the first ten batteries. Figure 6
shows the electrolyte levels xn and the scale in liters at the top and bottom axes, respectively.

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k=10

{

x2 x3 x4 x5 x6 x7 x8

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15

Electrolyte level (L)

2.2
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2.4

2.5

2.6

2.7

2.8

2.9

3

3.5

x1

A
v

e
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v
a
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e
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f 
R

0
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θ

k,
 i

n
 m

Ω
)

Figure 6. Evolution of the ohmic resistance with the eight electrolyte levels obtained for ten batteries.

These experimental results reveal that the capacity of conducting current diminishes when the
electrolyte level is below the x2 level since the average internal resistance θk(xn) increases in all cases
at x1. Notice in Figure 6 that for the k-th battery, θk(xn) varies slightly for n = 2, 3, ..., 8; however,
θk(x1) is in all cases higher than θk(xn) for n = 2, 3, ..., 8. Bare in mind that θk(x1) corresponds to the
low electrolyte level, below the reserve level. Therefore, the θk(xn) estimation allows us to detect this
undesirable condition using only current and voltage measurements, without employing extra sensors.
The θk(xn) profiles across the different electrolyte levels (xn) are different for each battery. These

https://aroholl15.wixsite.com/experimentaldata
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differences are attributable to the unequal degree of aging of each battery. Table A1, in Appendix A,
shows the degree of aging represented by the available capacity QA (in Ah).

4. Statistical Criterion to Detect Low Electrolyte Level

This section describes the proposed statistical criterion to detect the low electrolyte level. Since
the θk(xn) profiles of each battery are different, the first two-step stage consists of preprocessing the
data using a proposed statistical approach:

a. Firstly, define µk(q) as the cumulative moving average of θk(xn) between the electrolyte levels
xN and xq+1, as follows:

µk(q) =
1

N − q

N

∑
n=q+1

θk(xn), for q = 1, 2, ..., N − 1. (5)

b. Then, calculate the relative error αk(xq) of θk(xq) defined by the following expression:

αk(xq) =

∣∣∣∣ θk(xq)− µk(q)
µk(q)

∣∣∣∣ , for q = 1, 2, ..., N − 1. (6)

According to Equation (6), the proposed relative error means the normalized error of θk(xq)

respect to the its cumulative moving average value (µk(q)). This is to say, if the θk(xq) is constant for all
electrolyte level, αk(xq) is zero. In regards with the study case, Figure 7 shows αk(xq) of all batteries.

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15
Electrolyte level (L)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.13
k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
k=11
k=12
k=13
k=14
k=15
k=16
k=17
k=18
k=19
k=20
k=21
k=22
k=23
k=24
k=25
k=26
k=27
k=28
k=29
k=30
k=31
k=32
k=33
k=34
k=35
k=36
k=37
k=38
k=39
k=40
k=41
k=42
k=43
k=44
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ρ 

{
x2 x3 x5 x6 x7

x1

x4x4

R
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v
e 
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r
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Figure 7. Evolution of the relative error αk(xq) for the eight electrolyte levels set up.

Notice from Figure 7 that for all batteries, despite their different characteristic average internal
resistance profiles, αk(xq) remain bounded below a maximum boundary αmax for all reserve electrolyte
levels (xn for n = 2, 3, ..., 8). In addition, αk(x1) remains above a minimum boundary αmin. Thereby,



Energies 2019, 12, 4435 8 of 14

αmax and αmin are used to establish a limit to discriminate between the reserve electrolyte levels and
the undesirable low electrolyte level condition (x1).

The limits αmin and αmax are calculated as follows:

αmin = min{α1(x1), α2(x1), ..., αK(x1)} (7)

αmax = max{α1(xq), α2(xq), ..., αK(xq)} , for q = 2, 3, ..., N − 1. (8)

The proposed relative error makes easier to detect the low electrolyte level x1. The main advantage
of using the proposed relative error is that only one criterion is needed to detect the low electrolyte
level. The discrimination limit ρ (dimensionless) is obtained by the following expression:

ρ =

(
αmax + αmin

2

)
. (9)

For this particular case αmin = 0.06022, αmax = 0.04004, and ρ = 0.05013.
To explain how the criterion works, assume that the criterion is evaluated every period τ. Thus,

we define the integer r to indicate the number of times in which the average value θk(xn) and the
criterion have been evaluated. Therefore, the criterion is described as follows:

Use current and voltage measurements to obtain the r-th average value of internal resistance,
which for the experimental valiation is defined by the following expression:

θk[rτ] = θk(x) (10)

where x is an unknown electrolyte level at the r-th evaluation. When r = 0 (at the start-up), only
the value of θk[0] is obtained. For r>0, obtain θk[rτ], its cumulative moving average ηk[rτ], and its
threshold wk[rτ], which are defined in the following expressions:

ηk[rτ] =
1
r

r−1

∑
j=0

θk[jτ] (11)

wk[rτ] = (1 + ρ) ηk[rτ]. (12)

Therefore, the criterion dictates that the low electrolyte level is detected in the k-th battery if
θk[rτ] > wk[rτ].

We defined output bits zk[rτ] to indicate if the electrolyte levels are below the level x2 (minimum
level) in the VLA batteries or within the reserve of electrolytes. Then, the state of the output bits at
every instant rτ is defined by the following expression:

zk[rτ] =

{
0 Electrolyte level within the reserve

1 Alarm for detecting the low electrolyte level.
(13)

We list the following considerations to start-up the proposed criterion:

i. Verify that the electrolyte level in each battery is within the reserve level. If not, refill the battery
up to the maximum level.

ii. Fix the sampling period τ. For these VLA batteries (2 V, 165 Ah, model STT2V150 [31]), τ = 10
days considering that electrolyte level decreases from xN to x2 in around 2.5 months.

iii. Set zk[0] = 0 as the initial condition, to indicate that the electrolyte level is within the reserve level.

5. Experimental Validation of the Criterion to Detect the Low Electrolyte Level

Experimental validation of the criterion was conducted emulating the operation of an electrical
substation. To obtain the ohmic resistance R0, the system automatically switches the testing load to
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generate the five consecutive discharge pulses when the batteries are fully charged and the steady-state
is detected. Proper float voltage and constant temperature were set to avoid the presence of other
aging mechanisms that causes a change in the ohmic resistance. We used a battery bank in series
connection with six STT2V150 VLA batteries to conduct the experiment. These six VLA batteries
are not the same used for the characterization process. We enumerate these six batteries with the
consecutive numbers k = 45, 46, 47, 48, 49, and 50, respectively. During the characterization process and
experimental validation of the criterion, the temperature was controlled close to 23 ◦C in each battery.

Figure 8 illustrates the block diagram of the implemented system, where Tk is the measured
temperature of the k-th battery, vBatt.k is the measured voltage of the k-th battery, id is the string current,
and S1 and S2 are relays to control the battery charger and the load. The outputs are the voltage, the
current and the temperature, the average value of the internal resistance θk[rτ] of the k-th battery, and
the bits zk[rτ] used to indicate the detection of the low electrolyte level for the k-th battery.

id

Low-electrolyte-

level detection

algorithm

Memory R0 estimator

Filter Sequential control

Battery 

charger

Resistive load

zk

Tk k

S1

S2

vac

vBatt.

Battery bank

k

vBatt.k

id

Tk

θk

vBatt.k

id

Tk

θk

Real-time automation controller

Figure 8. Block diagram of the implemented system.

Figure 9 shows experimentally obtained results θk[rτ], wk[rτ], and zk[rτ]. The continuous lines
plot θk[rτ], the dashed lines represent wk[rτ], and the dots depict the output bits zk[rτ], for batteries
from k = 45 to k = 50. The experimental results validate the low electrolyte level criterion successfully
even though the full validation experiment took 70 days, and the characterization process only lasted
eight days.

The average internal resistances from θ45[rτ] to θ50[rτ] for 0≤ r ≤6, in Figure 9, correspond with
the reserve level seen between x8 and x2 in each battery. These experimental results confirm that the
θk[rτ] values vary slightly when the electrolyte level is within the reserve level, and abruptly changes
when the electrolyte level is below the defined minimum level x2 at 7τ = 70 days. Notice that the
values of the threshold from w45[rτ] to w50[rτ] also vary slightly while the electrolyte level is within the
reserve level and, in the instance of 7τ = 70 days, θk[7τ] > wk[7τ] for the six batteries. Therefore, the bit
values from z45[rτ] to z50[rτ] remain zero until the values of θk[7τ] exceed wk[7τ], and zk[7τ] becomes
1, and a low electrolyte level is detected in each battery. Finally, despite the fact that the batteries loss
water at different rates, that electrolyte levels were different in each battery at each instance rτ, and
batteries had different degrees of aging, the low electrolyte level is only detected when the level is
below the reserve of electrolyte in each battery. This fact demonstrates that if batteries are operated
appropriately, and the temperature is regulated in each battery, the low electrolyte level can be detected
by estimating the ohmic resistance through electrical measurements due to the fact that the capacity
of the conducting current diminishes if the electrolyte level is low. Therefore, in this research and for
a specific application, we dismissed the usage of level sensors to detect the low electrolyte level in
VLA batteries.
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Figure 9. Experimental evaluation of the ohmic resistance where low electrolyte level is detected at
day 70 when the eighth sample was obtained.

6. Conclusions

This paper presents a complete theoretical development based on the battery internal resistance
estimation to detect low electrolyte levels, and its experimental validation, with the premise of avoiding
level sensors for achieving the continuous supervision scheme required by standard PRC-005-2. The
disadvantages related to the use of extra sensors are consequently ruled out with the proposed
continuous battery supervision scheme. The experimental results support the hypothesis of using the
battery’s internal resistance for detecting the undesirable low electrolyte level condition.

The proposed criterion was tested in a bank of 50 batteries with a capacity of 165 Ah, and 2000
experiments were conducted to validate the feasibility of the method, obtaining in all cases, results
that confirm the reliability and robustness of the proposed and implemented criterion.
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Appendix A. Water Loss, Volume at Level x1, and Available Capacity of the 44 VLA
Characterized Batteries

The water loss, the volume of electrolyte at level x1, and the available capacity (QA) of each
battery are listed in Table A1. Water loss is measured from level x8 to level x1. With the data in
Table A1, we can show that the 44 VLA batteries (2V, 165 Ah, model STT2V150) that we used for the
characterization process have different aging (different available capacity QA).

Table A1. Available capacity QA, level x1, and water loss per battery.

Batt. QA
(Ah)

x1
(L)

Water
Batt. QA

(Ah)
x1
(L)

Water
Loss Loss
(mL) (mL)

1 101.9 3.783 380.6 23 142.0 3.802 361.0
2 112.1 3.770 393.7 24 158.9 3.765 398.9
3 90.3 3.750 413.3 25 153.9 3.762 401.6
4 97.3 3.759 404.2 26 132.4 3.782 381.9
5 154.8 3.758 405.5 27 164.5 3.782 381.9
6 136.5 3.763 400.2 28 154.5 3.772 391.1
7 132.7 3.772 391.1 29 164.4 3.771 392.4
8 142.1 3.754 409.4 30 161.4 3.761 402.9
9 107.5 3.804 359.7 31 150.6 3.753 410.7

10 97.6 3.792 371.5 32 152.4 3.738 425.1
11 95.1 3.792 371.5 33 148.0 3.780 383.2
12 96.5 3.789 374.1 34 144.0 3.782 381.9
13 131.6 3.805 358.4 35 171.3 3.778 385.9
14 153.6 3.758 405.5 36 152.1 3.776 387.2
15 145.9 3.746 417.3 37 141.8 3.759 404.2
16 153.0 3.762 401.6 38 148.4 3.746 417.3
17 144.2 3.762 401.6 39 144.9 3.757 406.8
18 150.7 3.791 372.8 40 147.4 3.787 376.7
19 135.6 3.796 367.5 41 147.9 3.761 402.9
20 110.3 3.791 372.8 42 164.8 3.761 402.9
21 155.8 3.797 366.2 43 149.4 3.780 383.2
22 98.0 3.788 375.4 44 155.6 3.775 388.5

Appendix B. Values of the Average Internal Resistances Obtained in the Characterization Process

The values θk(xn) in mΩ of the 44 VLA batteries are listed in Table A2. We can see that θk(x1) is
always bigger than θk(x2), ..., θk(x8) for any battery.

Table A2. Average values of the ohmic resistance (in mΩ) of 44 vented lead–acid (VLA) batteries for
the eight electrolyte levels.

k θk(x1) θk(x2) θk(x3) θk(x4) θk(x5) θk(x6) θk(x7) θk(x8)

1 2.621 2.297 2.357 2.370 2.291 2.382 2.352 2.459
2 2.686 2.374 2.405 2.436 2.336 2.433 2.454 2.419
3 3.048 2.780 2.789 2.799 2.750 2.851 2.836 2.890
4 2.542 2.286 2.270 2.323 2.248 2.307 2.321 2.330
5 2.560 2.296 2.349 2.341 2.297 2.300 2.284 2.315
6 2.501 2.272 2.245 2.285 2.228 2.261 2.212 2.277
7 2.571 2.313 2.291 2.326 2.317 2.286 2.284 2.328
8 2.613 2.388 2.428 2.430 2.372 2.401 2.368 2.365
9 2.619 2.295 2.333 2.362 2.338 2.335 2.340 2.337
10 2.858 2.549 2.645 2.689 2.651 2.680 2.641 2.666
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Table A2. Cont.

k θk(x1) θk(x2) θk(x3) θk(x4) θk(x5) θk(x6) θk(x7) θk(x8)

11 2.771 2.423 2.467 2.517 2.459 2.471 2.481 2.502
12 2.805 2.527 2.541 2.541 2.555 2.586 2.536 2.545
13 2.753 2.457 2.444 2.455 2.447 2.474 2.426 2.430
14 2.487 2.276 2.244 2.234 2.270 2.239 2.220 2.230
15 2.495 2.274 2.293 2.306 2.244 2.273 2.277 2.285
16 2.481 2.266 2.275 2.292 2.326 2.280 2.260 2.258
17 2.656 2.435 2.466 2.466 2.519 2.438 2.430 2.437
18 2.542 2.339 2.378 2.389 2.389 2.327 2.317 2.365
19 2.636 2.439 2.453 2.467 2.508 2.413 2.430 2.451
20 2.613 2.368 2.405 2.416 2.428 2.397 2.412 2.435
21 2.599 2.409 2.439 2.461 2.496 2.399 2.387 2.430
22 2.724 2.470 2.545 2.578 2.570 2.518 2.522 2.594
23 2.434 2.225 2.256 2.285 2.277 2.255 2.197 2.271
24 2.534 2.337 2.373 2.394 2.408 2.360 2.308 2.344
25 2.473 2.280 2.269 2.277 2.269 2.220 2.235 2.266
26 2.631 2.346 2.384 2.389 2.414 2.383 2.325 2.397
27 2.623 2.346 2.372 2.366 2.388 2.327 2.308 2.324
28 2.538 2.370 2.373 2.382 2.389 2.355 2.300 2.366
29 2.329 2.144 2.172 2.157 2.170 2.140 2.092 2.150
30 2.465 2.289 2.349 2.316 2.342 2.286 2.267 2.307
31 2.394 2.217 2.218 2.230 2.238 2.206 2.147 2.172
32 2.769 2.518 2.606 2.557 2.646 2.561 2.512 2.573
33 2.724 2.525 2.572 2.557 2.623 2.567 2.516 2.565
34 2.726 2.510 2.558 2.547 2.588 2.537 2.485 2.543
35 2.505 2.351 2.404 2.358 2.371 2.341 2.341 2.375
36 2.535 2.346 2.373 2.358 2.404 2.309 2.307 2.357
37 2.568 2.370 2.408 2.413 2.461 2.391 2.399 2.389
38 2.410 2.234 2.261 2.255 2.277 2.228 2.189 2.191
39 2.661 2.447 2.469 2.477 2.533 2.438 2.413 2.455
40 2.473 2.248 2.286 2.246 2.300 2.243 2.220 2.255
41 2.552 2.309 2.373 2.381 2.414 2.307 2.331 2.343
42 2.412 2.231 2.286 2.277 2.293 2.237 2.186 2.230
43 2.362 2.152 2.192 2.188 2.228 2.147 2.165 2.172
44 2.838 2.621 2.708 2.667 2.723 2.653 2.661 2.696
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