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Abstract: This paper presents a novel adaptive fault-tolerant neural-based control design for
wind turbines with an unknown dynamic and unknown wind speed. By utilizing the barrier
Lyapunov function in the analysis of the Lyapunov direct method, the constrained behavior of
the system is provided in which the rotor speed, its variation, and generated power remain in
the desired bounds. In addition, input saturation is also considered in terms of smooth pitch
actuator bounding. Furthermore, by utilizing a Nussbaum-type function in designing the control
algorithm, the unpredictable wind speed variation is captured without requiring accurate wind speed
measurement, observation, or estimation. Moreover, with the proposed adaptive analytic algorithms,
together with the use of radial basis function neural networks, a robust, adaptive, and fault-tolerant
control scheme is developed without the need for precise information about the wind turbine model
nor the pitch actuator faults. Additionally, the computational cost of the resultant control law is
reduced by utilizing a dynamic surface control technique. The effectiveness of the developed design
is verified using theoretical analysis tools and illustrated by numerical simulations on a high-fidelity
wind turbine benchmark model with different fault scenarios. Comparison of the achieved results
to the ones that can be obtained via an available industrial controller shows the advantages of the
proposed scheme.

Keywords: adaptive constrained control; barrier Lyapunov function; fault-tolerant control;
Nussbaum-type function; pitch actuator; power regulation; robustness evaluation

1. Introduction

The key factor for the enhancement of the efficiency of a wind turbine is how to develop the
control structure. Specifically, the pitch control design is a vital step in variable pitch wind turbines
working in high wind speed, i.e., so-called full load region, to avoid hazardous operation as well as to
avoid conservative power generation, i.e., less than nominal power [1]. This objective is often known as
power regulation for nominal power generation [2]. Accordingly, the control design of wind turbines
in power regulation has gained significant importance during the last decades [3]. Several industrial
controllers for power regulation use the Proportional-Integral-Derivative (PID) type control, as the
linear controller [4,5]. However, as wind turbines are complex nonlinear dynamic processes, linear
controllers may not accurately render the expected performance [6]. Consequently, in the last decade,
modern and advanced controller schemes have been adopted to regulate power generation accurately,
e.g., linear parameter varying control [7], gain scheduling [8], adaptive nonlinear control [9], optimal
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control [10], evolutionary algorithms [11], robust control [12], and fuzzy logic systems [13]. A detailed
review of power regulation controllers designed for wind turbines can be found in [14].

Wind turbine operation in the presence of high wind speed variation may lead to pitch actuator
faults, which in turn leads to poor power regulation and catastrophic operation [4,15]. These faults
can be considered as pitch actuator bias, effectiveness loss, and dynamic change [2]. Also, the debris
build-up and blade erosion change the aerodynamic characteristics of the blades [16]. The presence
of faults can increase the need for maintenance operations and downtimes, which may lead to a
decrease of the power generation and increase of the cost, particularly for offshore wind farms, installed
in remote places that are sometimes difficult to reach [17,18]. Thus, it is desirable to integrate the
fault tolerance capability into the pitch actuator controller to attenuate the fault effects and keep the
performance at the desired level, especially for large rotor and offshore deployments [7]. Therefore,
in the development of the wind turbine control structure, the fault-tolerant pitch controller design has
been considered, and different approaches have been proposed, such as fuzzy control [19], adaptive
sliding mode control [4], and robust linear parameter varying control [16].

In reality, the wind turbine’s aerodynamic torque is a nonlinear function of wind speed [20].
On the other hand, the pitch angle variation adjusts the speed via regulating the aerodynamic torque.
However, the wind speed is a highly stochastic variable. Accordingly, it can be stated that the control
function, from the pitch angle to the aerodynamic torque, is not completely known. This leads to
the unknown control direction problem. Therefore, considering uncertain wind speed variation in
the pitch angle control design of wind turbines is a significant challenge [21]. In [22], a nonstandard
extended Kalman filter is developed to estimate the wind speed for maximum power extraction of
variable speed wind turbines. In [23], a comparative study using soft computing methodologies for
the estimation of wind speed was presented. A review of the effective wind speed estimation-based
control of wind turbines can be found in [24]. Even though numerous methodologies have addressed
wind speed estimation of wind turbines, the presented structures are still found to be very complicated
and ineffective in practice.

On the other hand, in the full load region, if the wind turbine speed increases and violates the
predefined limits, the mechanical brakes, located on the rotor, are engaged [15]. This leads to generated
power reduction considerably lower than the nominal one. Also, excessive rotor speeds in wind
turbine operation may lead to a hazardous situation. Thus, to ensure safe operation of wind turbines,
the rotor speed and its variation must be constrained within the safe-to-operate bounds. By that
means, the variation of the generated power around the nominal power can be constrained at some
predefined bounds. These bounds are designed within which the engagement of the mechanical
brake is avoided. However, there are very limited works available in the literature that consider the
constrained power generation. To fill this gap in the past literature, the authors recently developed a
new strategy for constrained power generation [5], which can be viewed as an extension of the direct
Lyapunov method to constrained systems. The core of this method consists of developing a barrier
Lyapunov function (BLF) to constrain the generator speed and the generated power. An essential
advantage of the BLF is that it guarantees that the corresponding arguments are constrained [25].
The algorithm proposed by the authors in [5] uses the logarithm-type BLF for nonlinear wind turbines
to constrain the generator speed and thus to generate the constrained power. However, in the authors’
study, constrained performance was not guaranteed in the presence of faults. Also, the uncertain wind
speed variation was not considered in designing the previous constrained control scheme.

Motivated by the aforementioned considerations, the primary objective of this paper was to design
the pitch actuator control of wind turbines under uncertain wind speed variation to constrain the rotor
speed and the generated power within the safe-to-operate bounds. These bounds were defined in
order to avoid the engagement of the mechanical brake. In this manner, the overspeeding as well as
the conservative power generation problems are resolved. The main idea consists of developing the
BLF-based control to provide constrained behavior and further utilizing a Nussbaum-type function
to cope with the unknown wind speed variation. The former is utilized to keep the generated
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power within the given desirable constraints, provided by the designer, and the latter is exploited to
regulate the power without requiring accurate wind speed measurement, observation, or estimation.
The controller is further developed to tolerate the pitch actuator faults for nonlinear wind turbine
models. This considerably increases the reliability and efficiency as well. Thanks to the dynamic
surface control (DSC) technique, the computational complexity of the control scheme is reduced by
avoiding the repetitive differentiation of virtual control in the controller structure. In addition, the
pitch actuator effort is smoothly bounded to avoid pitch actuator saturation. The second objective
of the paper was to design a fault identification scheme to investigate the estimated fault signal, and
then accurately generate fault information, which consists of fault detection, isolation, and type/size
estimation. The fault identification task may be employed, for example, for planning effective and
timely maintenance of offshore deployments, thus reducing the downtime of plants and the cost.
Also, the availability is enhanced. In addition, to estimate the uncertain aerodynamic torque, a
radial basis function (RBF) neural network is used, whose weights are automatically tuned without
requiring any early training scheme. Finally, the numerical simulation is conducted to evaluate
the proposed controller performance. Also, a comparison between the proposed controller and the
available industrial PID controller is made considering the numerical control criteria, which are used
to quantify the performance of both controllers. Accordingly, the contribution of this paper can be
summarized as follows.

1. With the adoption of BLF-based constrained control, the rotor speed and its variation are
constrained, and consequently, the variation of generated power around the nominal power will
not violate the predefined constraint. This guarantees safe desirable nominal power generation,
and less mechanical brake engagement.

2. The Nussbaum-type function is adopted to handle the unknown control direction problem, which
stems from an uncertain wind speed and consequent uncertain aerodynamic torque variation.
Accordingly, the need for accurate wind speed measurement is avoided.

3. The pitch actuator fault effects, including effectiveness loss, pitch angle bias, hydraulic leak,
high air content in the oil, and pump wear, are compensated for automatically via an adaptive
fault-tolerant controller design. Also, the effect of blade aerodynamic characteristic changes, due
to debris build-up and erosion, is considered and mitigated. The fault information, including
fault type, size, and time, is estimated, which can be used for maintenance operations.

4. Smooth pitch actuator saturation is designed to avoid the harsh and fast pitch actuator saturation
phenomenon, which may increase the structural load on the wind turbine and result in performance
degradation. Also, a neural network estimator is adaptively augmented in the proposed controller
to obtain the uncertain aerodynamic torque.

5. The control design is fulfilled in the backstepping framework, utilizing the virtual control concept.
In this regard, the repeated differentiation of virtual control is required, which increases the
complexity of the designed controller order. The DSC technique is used to eliminate this problem
by introducing a first-order filter [25].

The rest of this paper is organized as follows. In Section 2, the wind turbine model is summarized.
In Section 3, pitch actuator saturation and faults are introduced. In Section 4, the desired operational
mode and objectives are introduced. Accordingly, the proposed controller is designed in Section 5, and
the fault identification scheme is described in Section 6. The numerical evaluation of the proposed
controller is addressed in Section 7 and the results are discussed. Finally, concluding remarks and
open problems are given in Section 8.
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2. Nominal Wind Turbine Model

The wind kinetic energy is captured by the blades and transferred into the rotor, rotating atωr.
The effective wind speed, Vr, causes an induced aerodynamic torque, Ta, and thrust, Ft, modelled
as [2]:

Ta =
1
2
ρaπR3V2

r Cq(β, λ), Ft =
1
2
ρaπR2V2

r Ct(β, λ), (1)

where ρa is the air density and R is the blade length. Also, Cq and Ct are the torque and thrust
coefficients. These coefficients are functions of the blade pitch angle, β, and tip speed ratio, λ, defined
as λ = Rωr/Vr [2]. Considering the long elastic tower, Ta causes a fore-aft oscillation of the nacelle,
i.e., a bending oscillation of the tower. This motion is modelled as [7]:

Mt
..
xt = Ft − Bt

.
xt −Ktxt, (2)

where Bt, Kt, and Mt represent the damping ratio, and the elasticity coefficient of the tower and nacelle
mass, respectively. Also, the nacelle displacement from its equilibrium position is represented by xt.
The effective wind speed at the rotor plane is then obtained as Vr = Vw −

.
xt, where Vw is the free wind

speed, which itself is the wind speed before encountering the blades [9]. The captured aerodynamic
power by the wind turbine is then written as:

Pa =
1
2
ρaπR2V3

r Cp(β, λ), (3)

where, Cp represents the power coefficient. Also, considering Pa = Taωr, the relation between the
power and torque coefficients is Cp = Cqλ. The empirical equation of Cp is stated as [26]:

Cp(β, λ) = C1(C2/λi −C3β−C4)e(−C5/λi) + C6λ, (4)

where 1/λi = 1/(λ+ 0.08β) − 0.035/
(
β3 + 1

)
, C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, and

C6 = 0.0068. Also, Ct can be approximated as [27]:

CT(β, λ) = 0.5C̃T
(
1 + sign(C̃T)

)
,

C̃T = A1 + A2(λ−A3β)e−A4β + A5λ
2e−A6β + A7λ

3e−A8β,
(5)

where A1 = 0.006, A2 = 0.095, A3 = −4.15, A4 = 2.75, A5 = 0.001, A6 = 7.8, A7 = −0.00016, and
A8 = −8.88. The drive train is used to increase the rotor speed,ωr, and transfer the kinetic energy into
the generator shaft, rotating atωg. The drive train is modelled as a two-mass system. The rotor and
generator shafts have an inertia of Jr and Jg, respectively. The elastic gear meshing is considered, with
the inclusion of the torsion stiffness, Kdt, and the torsion damping, Bdt. This elastic gear meshing leads
to a torsional angle of twist, θ∆, defined as:

θ∆ = θr −
θg

Ng
, (6)

where θr and θg are the rotation angle of the rotor and generator shafts, respectively. Also, the viscous
friction at the bearings of the rotor and generator shafts are modelled with coefficients Br and Bg,
respectively. The drive train efficiency is ηdt. So, the drive train is modelled as [15]:

Jr
.
ωr = Ta −Kdtθ∆ − (Br + Bdt)ωr +

Bdt
Ng
ωg,

Jg
.
ωg =

ηdtKdt
Ng

θ∆ +
ηdtBdt

Ng
ωr − (Bg +

ηdtBdt
Ng

2 )ωg − Tg,
.
θ∆ = ωr −

1
Ng
ωg.

(7)
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The generator speed, rotor speed, and their time derivative sensors are modelled as, ωg,s =

ωg + νωg ,ωr,s = ωr + νωr , and
.
ωr,s =

.
ωr + ν .

ωr
, where νωg , νωr , and ν .

ωr
are noise contents [2].

The generator shaft kinetic energy is converted into electrical energy in the generator. Also,
a converter is located between the generator and the electrical grid to adjust the generated power
frequency [7]. The generator internal electronic controller is much faster than the mechanical dynamic
behavior of wind turbines. So, it is assumed that the generator torque, Tg, is adjusted at the generator
reference torque fast enough to ignore the generator dynamic response. Also, the generated electrical
power, Pg, is approximated as a static function given by [7]:

Pg = ηgωgTg, (8)

where ηg is the generator efficiency.
The hydraulic pitch actuator rotates the blades to regulate β at the desired one, βu, tuned by the

pitch controller. The pitch actuator is modelled as [4]:

..
β = −ωn

2β− 2ωnξ
.
β+ωn

2βu, (9)

whereωn and ξ are the natural frequency and the damping ratio of the pitch actuator, respectively. The
pitch actuator operational ranges are limited as

.
βmin ≤

.
β ≤

.
βmax, βmin ≤ β ≤ βmax. Note that in this

paper, (•)max and (•)min stand for the maximum and minimum allowable value of the variable (•),
respectively. The pitch angle and its time derivative sensors are modelled as βs = β+ νβ,

.
βs =

.
β+ ν .

β

and
..
βs =

..
β+ ν ..

β
, where νβ, ν .

β
, and ν ..

β
are the noise contents [15]. The numeric values of the wind

turbine benchmark model parameters are given in Table 1 [7,15].

Table 1. Wind turbine benchmark model parameters.

ρa R Jg Jr Kdt
1.225 kg/m3 57.5 m 390 kgm2 55 Mkgm2 2.7 GNm/rad

Bdt Bg Br Ng ηdt
945 kNm/(rad/s) 3.034 Nm/(rad/s) 27.8 kNm/(rad/s) 95 0.97

Mt Bt Kt ηg ωn
484 ton 66.7 N/(m/s) 2.55 MN/m 0.92 11.11 rad/s
ξ

.
βmin

.
βmax βmin βmax

0.6 −10◦/s 10◦/s −2◦ 30◦

Pg,N Tg,N ωg,N ωr,N Full load region
4.8 MW 32.107 kNm 162.5 rad/s 1.71 rad/s 12.3 m/s–25 m/s
νωr νωg νβ

0.025 rad/s 0.0158 rad/s 0.2
◦

3. Pitch Actuator Saturation, Faults, and Blade Aerodynamic Characteristics Change

In reality, the achievable pitch angle range is bounded. Hence, the practical operational range of
the pitch actuator is limited. So, the high wind speed variation and the consequent high pitch angle
variation may lead to pitch actuator saturation, which consequently causes violation of the constrained
power regulation. So, the pitch angle saturation phenomenon should be considered in the pitch angle
controller design to avoid any abrupt and long-lasting saturation, and smoothly pass any possible
saturation period of the pitch actuator. For the given wind turbine model, the pitch actuator saturation,
H(βu), can be considered as:

H(βu) =


βmax,βu > βmax

βu,βmin ≤ βu ≤ βmax
βmin,βu < βmin

, (10)
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where βmax = 30◦ and βmin = −2◦, as in Table 1. H(βu) is illustrated in Figure 1. So, this actuation
saturation function is integrated into the pitch actuator mechanism (9) as:

..
β = −ωn

2β− 2ωnξ
.
β+ωn

2H(βu). (11)
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Figure 1. Pitch actuator saturation, H(βu) (blue line), and its smooth estimation, S(βu) (red line).

Obviously, this saturation function of the pitch angle is non-smooth with sharp saturation behavior,
which may cause pitch actuator failure [28]. So, it is desirable to approximate this saturation behavior
by a smooth function and to pass from each saturation period fluently. In this regard, the following
smooth saturation function is proposed as:

S(βu) =
ρP− ρP−1

P + P−1
, (12)

where ρ = 2, ρ = 30, P = exp(ε+ ηβu), ε = 0.5 ln
(
ρ/ρ

)
, and η is a positive constant to be selected.

S(βu) is always in
(
−ρ, ρ

)
for all βu ∈ R. S(βu) is illustrated in Figure 1, for η = 0.1. Then, H(βu) can

be expressed as:
H(βu) = S(βu) + D(βu), (13)

where D(βu) is the difference between S(βu) and H(βu). The bounded property of the function, S(βu),
and saturation function, H(βu), yields the function, D(βu), to be bounded as,

∣∣∣D(βu)
∣∣∣ ≤ D1, where

D1 is a positive and unknown constant. For ease of pitch actuator controller design, the mean value
theorem is employed on function S(βu) to get:

S(βu) = S(β0) +
∂S
∂βu

∣∣∣∣∣
βm

(βu −β0), (14)

where βm = mβu + (1−m)β0 and m ∈ (0, 1). By choosing β0 = 0 and using the fact that S(0) = 0,
Equation (14) becomes:

S(βu) =
∂S
∂βu

∣∣∣∣∣
βm

βu = Sβuβu, (15)

where Sβu = 2η(ρ+ ρ)/(P + P−1)
2
∣∣∣∣
βm

. Sβu ∈ (0.2, 1.65) for βm ∈ (−ρ, ρ). Then, Sβu is a positive

variable. Now, considering Equations (11), (13), and (15), the pitch actuator dynamic behavior with the
smooth saturation function can be written as:

..
β = −ωn

2β− 2ωnξ
.
β+ωn

2
(
Sβuβu + D(βu)

)
. (16)



Energies 2019, 12, 4712 7 of 33

Wind turbine operation in harsh offshore sites may lead to pitch actuator dynamic change, bias,
and effectiveness loss. The dynamic change is because of the pressure drop due to hydraulic oil leakage,
high air content in the oil, and pump wear. These dynamic change cases cause a slow pitch actuator
response [7]. Consequently, power regulation in full load operation is not satisfactorily achieved. The
dynamic change is considered as the change of the natural frequency and damping ratio in the pitch
actuator in Equation (16). The characteristics of these changes are summarized in Table 2 [4,7], where
N, HL, PW, and HAC represent normal, hydraulic leaks, pump wear, and high air content situations,
respectively. Also, ωn,X and ξX are the natural frequency and damping ratio, respectively, in the
situation X. Also, αf1 and αf2 are fault indicators.

Table 2. Pitch actuator dynamic change (Data from [4]).

Situation Fault Indicator ωn ξ

Normal Situation αf1 = αf2 = 0 ωn,N = 11.11 (rad/s) ξN = 0.6
Pump Wear αf1 = 0.6316, αf2 = 0.29688 ωn,PW = 7.27 (rad/s) ξPW = 0.75

Hydraulic Leak αf1 = 1,αf2 = 0.87853 ωn,HL = 3.42 (rad/s) ξHL = 0.9
High Air Content αf1 = 0.81083, αf2 = 1 ωn,HAC = 5.73 (rad/s) ξHAC = 0.45

The dynamic change case effects are illustrated in Figure 2, where the initial pitch angle is set to 5
◦

and βu = 0
◦

. It is obvious that the response for all dynamic change cases is slower than the normal one.
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The dynamic change is modelled as an uncertainty, which should be attenuated by the pitch angle
controller. The dynamic changes are modelled as a convex function of the normal natural frequency
and normal damping ratio [18]. So, the pitch actuator (Equation (16)) is rewritten, including the
dynamic change effect, i.e., added as an uncertainty in the model, as:

..
β = −ωn,N

2β− 2ωn,NξN
.
β+ωn,N

2
(
Sβuβu + D(βu)

)
+ ∆̃fPAD, (17)

where ∆̃fPAD = −αf1 ∆(ω̃2
n)β − 2αf2 ∆(ω̃nξ̃)

.
β+ αf1 ∆(ω̃2

n)βu, ∆(ω̃2
n) = ω̃

2
n,HL − ω̃

2
n,N, and ∆(ω̃nξ̃) =

ωn,HACξHAC −ωn,NξN.
The pitch actuator output can be corrupted by an unanticipated fault, modelled as an additive

bias and/or effectiveness loss. These faults deviate the pitch angle from the desired one [16]. These
faults are modelled as:

βu(t) = ρ(t)βref(t) + Φ(t), (18)
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where Φ(t) represents the unknown pitch actuator bias [29]. Also, ρ(t) is the unknown effectiveness
of the actuator, which is 0 < ρ(t) ≤ 1, where ρ(t) = 1 indicates full effectiveness of the pitch actuator
and ρ(t) = 0 is total actuator loss [13,29]. βref(t) is the reference pitch angle, which is designed by
the pitch controller. It is obvious that in the case of full pitch actuator effectiveness and no pitch bias,
βu(t) = βref(t). The pitch actuator dynamic behavior, Equation (17), associated with pitch actuator
bias and effectiveness loss, can be rewritten as:

..
β = −ωn,N

2β− 2ωn,NξN
.
β+ωn,N

2
(
Sβuρ(t)βref + Sβu Φ(t) + D(βu)

)
+ ∆̃fPAD. (19)

The wind turbine operation in the presence of rain, snow, and dirt leads to blade erosion or
debris build-up, which, in turn, leads to a blade aerodynamic efficiency reduction. Consequently, the
captured aerodynamic power is decreased. On the other hand, the power regulation is not satisfactorily
achieved due to the changed blade aerodynamic profile. The debris build-up effect is modelled as an
aerodynamic change, ∆Ta,∆Cp , due to a change in the power coefficient as C̃p = Cp + ∆Cp. So, it is
very important to foresee this potential change in the controller design. It is worth noting that debris
build-up is challenging to detect, as it is hard to identify if the reason for the reduced power is the
blade’s debris or simply that the wind speed has decreased. As debris build-up occurs slowly, this
change is mostly assumed to lie within the annual maintenance/inspection, in which the blades are
cleaned/replaced. So, this paper aims to design a pitch controller that is insensitive to debris build-up
that guarantees graceful degradation up to the next planned maintenance of the blades.

4. Desired Operational Mode and Control Objectives

As mentioned earlier in Section 1, in the full load region, it is desirable to keep Pg at the nominal
value, Pg,N, to avoid overspeeding and consequent brake engagement. To this aim, by taking Equation
(8) into account, (i) Tg is to be kept at the nominal value, Tg,N, and (ii) ωg is to be kept at the
nominal value, ωg,N, to have nominal power generation as, Pg = ηgTgωg = ηgTg,Nωg,N = Pg,N [7].
Considering the fast response of the electrical generator, the objective (i) is achieved via tuning the
generator reference torque at Tg,N, which leads Tg to be set to Tg,N quickly. The objective (ii) is achieved
by adjusting β of the pitch actuator. This leads to tuning the aerodynamic torque, and consequently, the
rotor speed and the generator speed [4]. The wind speed is a highly stochastic variable. So, accurate
nominal power generation is very challenging, and in the case of improper controller design, it may
lead to overspeeding and braking. So, it is very beneficial to guarantee that the generated power and
speed do not violate the given constraint, within which the mechanical brake is not engaged. It should
be noted that for the power control purpose, the generator torque controller is not active. So, the faults
in the generator are not considered in this paper and it is assumed that generator faults have already
been accommodated for using the generator controller [4].

The controller is designed to adjust the reference pitch angle, βref, and keep the rotor speed as
close as possible to the nominal one, i.e., ωr,N, never violating the given constraint, in the presence of
wind speed variation, disturbance, and pitch actuator faults and saturation. The primary objective of
this paper consists of satisfying the above-mentioned requirements.

By considering structurally safe operation of the wind turbine, it is desirable to keep the drive train
torsion angle variation,

.
θ∆, as small as possible, which in turn leads to the drive train stress reduction.

Accordingly,
.
θ∆ = 0 leads to Ngωr = ωg [17]. So, it is beneficial to keep the ratio between the rotor

and generator speeds at the drive train ratio [14]. As the generator speed has to follow the signal,ωg,N,

then the rotor speed is kept atωr,N = ωg,N/Ng [6]. Moreover, the condition,
.
θ∆ = 0, with zero initial

drive train torsion angle, leads to θ∆ = 0, i.e., the reduced drive train stress trajectory [6]. Accordingly,
considering Equation (7), the desirable operational mode of the wind turbine with reduced drive train
stress is given by [6,14]:

.
ωr = a1ωr + a2ωg + a3Ta,

.
ωg = b1ωr + b2ωg + b3Tg, (20)
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where, a1 = −(Bdt + Br)/Jr, a2 = Bdt/NgJr, a3 = 1/Jr, b1 = ηdtBdt/NgJg, b2 =
(
−ηdtBdt/Ng

2
− Bg

)
/Jg,

b3 = −1/Jg. Consequently, (20) can be rewritten as,

..
ωr = c1ωr + c2ωg + c3Ta + c4Tg + a3

.
Ta, (21)

where c1 = a1
2 + a2b1, c2 = a1a2 + a2b2, and c3 = a1a3, c4 = a2b3. Considering Equations (1) and

(21), it is obvious that the rotor speed is controlled by regulating the pitch angle and the consequent
aerodynamic torque. In this paper, it is assumed that at any operational point of the wind turbine, Ta

is not a singular function. Also, for any pair of (Vr, ωr), there is a given pitch angle, i.e., β∗, leading
to the nominal power generation [9]. So, in the presence of wind speed variations, β∗ will be set to
the value that satisfies the control objective. For the considered benchmark model, the β∗ diagram is
illustrated in Figure 3 [7]. Note that as the wind speed is considered an uncertain disturbance, then β∗
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It is obvious that the rotor dynamic behavior (Equation (21)) is a non-affine function of the pitch
angle [9]. Linearization is one obvious solution. However, it would lead to high inaccuracy. So, the
paper solved this problem by using the mean value theorem in this paper. As stated earlier, Ta is
not a singular function for any triple pair (Vr, ωr, β) in the operational range of the wind turbine.
So, according to the mean value theorem, for any given pair of (Vr, ωr), there exists Ξ ∈ (0, 1), such
that [9]:

Ta(Vr, ωr, β) = Ta(Vr, ωr, β∗) + (β−β∗)
∂Ta

∂β

∣∣∣∣∣
(Vr, ωr, βk)

, (22)

where βk = Ξβ+ (1− Ξ)β∗. Using Ta in Equation (1) and Cp in Equation (4), for the considered wind
turbine model, whose parameter values are given in Table 1, the diagram of ∂Ta/∂β in the full load
region is shown in Figure 4.

Remark 1. In Figure 4, it is evident that −L ≤ ∂Ta/∂β ≤ −U < 0, with 0 < U < L. This means that as the
wind speed increases, by increasing the pitch angle, the aerodynamic torque decreases.

Taking the time derivative of Equation (22) yields:

.
Ta(Vw, ωr, β) = ∆Ta,∆Cp +

.
β
∂Ta

∂β
= ∆Ta,∆Cp +

.
βTa,β, (23)

where ∆Ta,∆Cp = dTa(Vr, ωr, β∗)/dt+ (β−β∗)d(∂Ta/∂β)/dt
∣∣∣(Vr, ωr, βk)

− (dβ∗/dt)(∂Ta/∂β)
∣∣∣
(Vr, ωr, βk)

and ∂Ta/∂β = Ta,β. ∆Ta,∆Cp is due to ∆Cp, which is the result of the changes in the blade aerodynamic
characteristics. The debris build-up and erosion occur slower than the mean time to the maintenance of the
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blades. So, all terms that are contributing to ∆Ta,∆Cp are assumed to be bounded, then ∆Ta,∆Cp is bounded

as
∣∣∣∆Ta,∆Cp

∣∣∣ ≤ k1, where k1 is an unknown positive constant. Also, it should be noted that as the wind
speed is not accurately measurable, Ta,β in Equation (23) is an unknown variable. Substituting Equation
(23) into Equation (21) leads to:

..
ωr = c1ωr + c2ωg + c3Ta + c4Tg + a3

(
∆Ta,∆Cp +

.
βTa,β

)
. (24)

Now, by considering Equation (19), the rotor dynamic behavior (Equation (24)) can be rewritten as:

..
ωr = c1ωr + c2ωg + c3Ta + c4Tg −

a3ωn,NβTa,β
2ξN

−
a3

..
βTa,β

2ωn,NξN
+

a3Sβuωn,NρTa,β
2ξN

βref+
a3ωn,NDTa,β

2ξN
+ a3∆Ta,∆Cp +

a3Ta,β
2ξN

(
∆̃fPAD
ωn,N

+ Sβuωn,NΦ
)
.

(25)

This expression describes the wind turbine rotor dynamic behavior in the desired operational
mode, which takes into account possible pitch actuator dynamic changes. Also, smooth pitch angle
saturation is included.
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5. Constrained Fault-Tolerant Controller Design and Stability Analysis

In this section, the constrained fault-tolerant pitch controller is designed to guarantee that the
generated power is kept within given constraints, in the presence of wind speed variation, disturbance,
faults, and saturation. The robust stability of the wind turbine closed-loop system with the proposed
controller is proved. First, some technical preliminaries are provided, which will be used for the
controller design.

5.1. Technical Preliminaries

The wind speed is uncertain as the wind speed is measured with an anemometer, usually placed
at the back of the nacelle. Therefore, its measurement is affected by the turbulence generated by the
rotor. So, the wind speed is considered as an uncertain disturbance. Accordingly, the aerodynamic
torque, Ta, is not accurately available. On the other hand, Ta is contributing to the rotor dynamic
response (Equation (25)). So, Ta should be estimated to be used in the proposed controller structure.
In this paper, an RBF neural network is designed to estimate the aerodynamic torque [30]. To this end,
Ta is approximated as [9,31]:

Ta(Z) = θ∗Th(Z) + ε, (26)
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where θ∗ is the optimal weight vector, h(Z) = [h1(Z), h2(Z), . . . , hs(Z)]
T
∈ Rs is the known basis

function vector, s > 1 is the number of neural network nodes, Z =
[
Tg, ωg, β

]T
∈ ΩZ, ε ∈ R is the

approximation error, and hi(Z) is selected as a Gaussian function given by [9,21]:

hi(Z) = exp

−(Z− ϑi)
T(Z− ϑi)

2ϕ2
i

, (27)

where ϑi =
[
ϑi,Tg , ϑi,ωg , ϑi,β

]T
is the ith centre vector of the inputs, as i = 1, . . . , s. ϕc = [ϕ1, . . . , ϕs]

T

is the width vector of the Gaussian functions [32]. Ta,NN is the approximation of Ta provided by the
RBF, described as:

Ta,NN(Z) = θTh(Z). (28)

The optimal weight vector, i.e., θ∗, is defined as θ∗ = argmin
θ∈Rs

 sup
Z∈ΩZ

∣∣∣Ta(Z) − Ta,NN(Z)
∣∣∣. It should

be noted that ε is bounded as |ε| ≤ ε, with an unknown bound,ε > 0.
Now, the following definitions and lemmas are given, which will be used in the proposed

controller design.
As Ta,β is an unknown variable, contributing to the gain of βref in Equation (25), this leads to the

unknown control direction problem. To tackle this issue in the controller design, the Nussbaum-type
function is utilized, which is defined as follows.

Definition 1 [16]. A Nussbaum-type function, N(ξ(t)), is a smooth continuous even function, such that it
satisfies lim

r→∞
sup 1

r

∫ r
0 N(ξ)dξ = +∞ and lim

r→∞
in f 1

r

∫ r
0 N(ξ)dξ = −∞.

The BLF function is defined as follows, which is used in the constrained control construction.

Definition 2 [32]. If the scalar function, V(x), is positive definite continuous with respect to the solution of the
system,

.
x = f (x), on an open region, D, then V(x) is a BLF with continuous first-order partial derivatives

within all D. As x approaches the boundary of the region, D, then V(x) approaches infinity. Finally, V(x)
satisfies V(x) ≤ w, ∀t ≥ 0 along the solution of

.
x = f (x) for x(0) ∈ D, and some positive constant, w.

The following definition is given for the boundedness of the closed-loop system.

Definition 3 [32]. The solution of a system, x(t), is uniformly ultimately bounded (UUB) if there exists a
number, T(K, x(t0)), and a K > 0 such that for any compact set, S, and all x(t0) ∈ S, ‖x(t)‖ ≤ K, for all
t ≥ t0 + T.

Lemma 1 [33]. Let us assume that V(t) > 0 and ξ(t) are smooth functions for any t ∈
[
0 t f

)
. Also, N(ξ(t)) is

a Nussbaum-type function. Then, if V(t) < c0 + exp(−c1t)
∫ t

0 (g(τ)N(ξ(τ)) + 1)
.
ξec1τdτ holds true, where c0

and c1 are positive constants, and g(τ) takes values in unknown closed intervals, L ∈ [l+, l−] with 0 < L, then
V(t), ξ(t), and

∫ t
0 g(τ)N(ξ(τ))

.
ξexp(c1τ)dτ must be bounded on

[
0 t f

)
.

Lemma 2 [33]. If the Lyapunov function, V(t) > 0, satisfies
.

V < −b1V + b2, where b1 and b2 are positive
constants, then the solution of the closed-loop system is UUB for bounded initial conditions.

Lemma 3 [34]. For variable, ψ, in
∣∣∣ψ∣∣∣ < 1, tan

(
πψ2/2

)
< πψ2sec2

(
πψ2/2

)
holds true.

Lemma 4 [34]. For any variable, Ψ, and any positive constant, γ, 0 < |Ψ| −Ψtanh(Ψ/γ) < Kγ holds true,
where K satisfies K = exp(−(K + 1)), accordingly, K = 0.2785. Also, as Ψtanh(Ψ/γ) > 0, then for any
variable, < −1, Ψtanh(Ψ/γ) < −Ψtanh(Ψ/γ) holds.
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Lemma 5 [25]. For any positive constant, σ, and considering the definition, ã = â− a, −σãâ ≤ −σã2/2+ σa2/2

holds true for any variables, a ∈ R and â ∈ R. This relation is modified for vectors as,−σb̃
T

b̂ ≤ −σ‖̃b‖
2
/2+σ‖b‖2,

where, b̃ = b̂− b for any vectors, b ∈ Rn and b̂ ∈ Rn.

5.2. Controller Design Procedure

The main objective of the designed controller is to keep the rotor speed and acceleration within
constraints, which in turn leads to bounded power generation around the nominal one. The proposed
controller design requires the definition of the rotor speed tracking error and its time derivative
as follows:

e1 = ωr,s −ωr,d, e2 =
.
ωr,s − z2, (29)

whereωr,d is the desired rotor speed. As stated earlier,ωr,d in the full load region isωr,N. z2 is a virtual
control. Here, to avoid repetitive differentiation of z2, which increases the implementation complexity,
the DSC technique is utilized, which requires the filtering of z2 by means of a stabilizing function, α1,
to be determined. Let α1 pass through a first-order filter with a time constant, τ2, defined as:

τ2
.
z2 + z2 = α1, z2(0) = α1(0). (30)

The output error of the first-order filter is χ2 = z2 −α1 with its first-time derivative,
.
z2 = −χ2/τ2.

A Lyapunov function is chosen as:

V1 =
k2

e1

π
tan Λ1 +

1
2
χ2

2, (31)

where Λ1 = πξ2
1/2, ξ1 = e1/ke1 , whilst ke1 represents a constraint on e1. It should be noted that V1

is continuous in the set Ωe1 =
{
e1 : −ke1 < e1 < ke1

}
. V1 is positive definite and its first term captures

the BLF characteristics of the modified tracking error, ξ1, according to Definition 2. The first-time
derivative of ξ1 is obtained as:

.
ξ1 =

.
e1

ke1

=
e2 + χ2 + α1

ke1

. (32)

On the other hand, the first-time derivative of Equation (31) can be obtained as:

.
V1 = e1e2 sec2 Λ1 + e1χ2 sec2 Λ1 + e1α2 sec2 Λ1 −

χ2
2

τ2
−

.
α1χ2. (33)

The virtual control, α1, is designed as:

α1 = −γ1e1 − e1 sec2 Λ1, (34)

where, γ1 is a positive design parameter. The substitution of Equation (34) into Equation (33) yields:

.
V1 = e1e2 sec2 Λ1 + e1χ2 sec2 Λ1 − γ1e2

1 sec2 Λ1 − e2
1 sec4 Λ1 −

χ2
2

τ2
−

.
α1χ2. (35)

Considering Young’s inequality:

e1e2 sec2 Λ1 ≤
1
2

e2
1 sec4 Λ1 +

1
2

e2
2, e1χ2 sec2 Λ1 ≤

1
2

e2
1 sec4 Λ1 +

1
2
χ2

2. (36)

Since α1 is a function ofωr,ωr,d, and
.
ωr,d, it can be shown that:

.
α1 =

∂α1

∂ωr

.
ωr +

∂α1

∂ωr,d

.
ωr,d +

∂α1

∂
.
ωr,d

..
ωr,d. (37)
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Considering Equation (37),
.
α1 is a continuous function. Then, given δωr,d and any positive

number, δ1, the set, Ωωr,d := {ωr,d ∈ R : ω2
r,d +

.
ω

2
r,d +

..
ω

2
r,d < δωr,d }, for all initial conditions satisfying

Ω1 := {[e1,χ2]
T :

(
k2

e1
tan Λ1

)
/π+ χ2

2/2 < δ1} is compact [25]. Thus,
.
α1 has a maximum constant value,

M1, in the compact set, Ωωr,d ×Ω1, for given initial conditions [28]. So, based on Young’s inequality:

∣∣∣ .
α1χ2

∣∣∣ ≤ 1
2
χ2

2 +
1
2

M2
1. (38)

According to Equations (36) and (38), Equation (35) can be rewritten as:

.
V1 < −γ1e2

1 sec2 Λ1 −
1
2
χ2

2(2/τ2 − 2) +
1
2

M2
1 +

1
2

e2
2. (39)

The parameter, τ2, is selected as τ2 < 1 to satisfy (2/τ2 − 2) > 0. Also, considering Lemma 3,
−γ1e2

1 sec2 Λ1 < −(γ1k2
e1

tan Λ1)/π holds true. Consequently, Equation (39) is rewritten as:

.
V1 < −σ1,1V1 + σ1,2 +

1
2

e2
2, (40)

where σ1,1 = min
{
γ1, (2/τ2 − 2)

}
and σ1,2 = M2

1/2.
Considering the measurement noise and the RBF neural network estimation of aerodynamic

torque (Equation (26)), the rotor dynamic response (Equation (25)) can be rewritten as:

..
ωr = g1 + c3θ

∗Th−
a3ωn,NβTa,β

2ξN
−

a3
..
βTa,β

2ωn,NξN
+ Gβref +

a3Ta,β

2ξN
f + d, (41)

where g1 = c1ωr + c2ωg + c4Tg, d = c1νωr + c2νωg + c3ε + a3ωn,NTa,βνβ/2ξN +

a3Ta,βν ..
β

/2ωn,NξN + a3ωn,NDTa,β/2ξN + a3∆Ta,∆Cp , G = a3Sβuωn,NρTa,β/2ξN, and f =

∆̃fPAD/ωn,N + Sβuωn,NΦ. Considering the bounded achievable, β,
.
β, and βu, the boundedness

of ∆̃fPAD, Sβu , and Φ are concluded. This, in turn, leads to the bondedness of the fault signal, f, in
Equation (41), i.e., |f| ≤ f, where f is an unknown positive constant. Also, the first time derivative of

f is assumed to be bounded, i.e.,
∣∣∣∣ .f∣∣∣∣ ≤ ρ .

f
, where ρ .

f
is an unknown positive constant [4]. Indeed, it is

assumed that the applied fault is a slowly varying function of time. Besides, the sensor noise contents
are bounded, which is a reasonable assumption [2,17]. Accordingly, by considering Figure 4 and |ε| ≤ ε,
the disturbance, d, is bounded as |d| ≤ D, where D is a positive unknown constant [5]. Finally, it is
easily seen that G is unknown but bounded, due to the presence of Ta,β.

Now, the proposed pitch angle controller is designed as:

βref = N(ζ1)υ1, (42)

with: .
ζ1 = e2 sec2 Λ2υ1,

υ1 = g1
χ1
τ2

c1θ̂
Th +

a3ωn,NβL
2ξN

tan h
(

e2β sec2 Λ2
η1

)
+ a3

..
βL

2ωn,NξN
tan h

(
e2

..
β sec2 Λ2
η2

)
+

d̂ tan h
(

e2 sec2 Λ2
η3

)
+ a3L

..
f

2ξN
tan h

(
e2 sec2 Λ2
η4

)
+ γ2e2,

(43)

associated with the adaptive laws:

.
f̂ = e2a3L

2ξN
sec2 Λ2 tan h

(
e2 sec2 Λ2
η4

)
− σf f̂,

.
θ̂ = Γ(e2c3 sec2 Λ2h− σcθ̂),.

d̂ = e2 sec2 Λ2 tan h
(

e2 sec2 Λ2
η3

)
− σdd̂,

(44)
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to estimate the fault, the RBF neural network weights and disturbance, respectively, where, η1, η2,
η3, η4, γ2, σf, σc, and σd are positive design parameters. Also, Γ ∈ Rs is a design matrix such that
Γ = ΓT > 0. Accordingly, the estimation errors are defined as:

f̃ = f̂− f, d̃ = d̂−D, θ̃ = θ̂θ∗. (45)

Considering the bounded applicable fault, it is practically reasonable to assume the estimation
error is bounded as |̃f | ≤ ρ̃f, where ρ̃f is an unknown positive constant [4]. It should be noted that this
bound is only used to analyze the stability of the closed-loop system. Nevertheless, this will not be
used in the designed control structure, as it is assumed to be unknown. So, the actual estimation will
not be required in setting up and implementing the control scheme.

Now, a Lyapunov function is selected as:

V2 =
k2

e2

π
tan Λ2 +

1
2

f̃
2
+

1
2

d̃
2
+

1
2
θ̃

T
Γ−1θ̃, (46)

where Λ2 = πξ2
2/2, ξ2 = e2/ke2 and ke2 is a considered constraint on e2. It is worth noting that V2 is

continuous in Ωe2 =
{
e2 : −ke2 < e2 < ke2

}
. V2 is positive definite and its first term captures the BLF

characteristics of the modified tracking error, ξ2, according to Definition 2. The time derivative of ξ2 is
obtained as:

.
ξ2 =

..
ωr +

χ2
τ2

ke2

. (47)

The first-time derivative of Equation (46) can be obtained as:

.
V2 = e1 +

(
g1 + c1θ

∗Th−
a3ωn,NβTa,β

2ξN
−

a3
..
βTa,β

2ωn,NξN
+ Gβref +

a3Ta,β
2ξN

f + d +
χ2
τ2

)
sec2 Λ2+

f̃(
.
f̂−

.
f) + d̃

.
d̂ + θ̃

T
Γ−1

.
θ̂.

(48)

Substituting Equations (42)–(44) into Equation (48) leads to:

.
V2 = GN(ζ1)

.
ζ1 +

.
ζ1 +

6∑
i=1

Πi, (49)

where:

Π1 = −e2
a3ωn,NβTa,β

2ξN
sec2 Λ2 − e2

a3ωn,NβL
2ξN

sec2 Λ2 tan h
(
βe2 sec2 Λ2

η1

)
,

Π2 = −e2
a3

..
βTa,β

2ωn,NξN
sec2 Λ2 − e2

a3
..
βL

2ωn,NξN
sec2 Λ2 tan h

e2
..
β sec2 Λ2

η2

,

Π3 = de2 sec2 Λ2 + d̃e2 sec2 Λ2 tan h
(

e2 sec2 Λ2

η3

)
− σdd̂d̃− d̂ tan h

(
e2 sec2 Λ2

η3

)
e2 sec2 Λ2,

Π4 = e2
a3Ta,β

2ξN
f sec2 Λ2 −

e2a3L
2ξN

f sec2 Λ2 tan h
(

e2 sec2 Λ2

η4

)
− σf f̂̃f− f̃

.
f,

Π5 = −σcθ̃
T
θ̂, and Π6 = −γce2

2 sec2 Λ2.

Considering Definition 1 and the inequality 0 ≤ |e2||β| sec2 Λ2, it leads to
(∣∣∣Ta,β

∣∣∣|e2||β| sec2 Λ2
)
/L ≤

|e2||β| sec2 Λ2. Accordingly, based on Lemmas 4 and 5, the following relations can be written:

Π1 ≤
a3ωn,NL

2ξN

(
|e2||β| sec2 Λ2 − e2β sec2 Λ2 tan h

(
e2β sec2 Λ2

η1

))
≤

a3ωn,NL
2ξN

Kη1. (50)
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Similarly, considering (
∣∣∣Ta,β

∣∣∣|e2|

∣∣∣∣ ..
β
∣∣∣∣ sec2 Λ2)/L ≤ |e2|

∣∣∣∣ ..
β
∣∣∣∣ sec2 Λ2, it leads to:

Π2 ≤
a3L

2ωn,NξN

|e2|

∣∣∣∣ ..
β
∣∣∣∣ sec2 Λ2 − e2

..
β sec2 Λ2 tan h

e2
..
β sec2 Λ2

η2

 ≤ a3L
2ωn,NξN

Kη2. (51)

Also, with the aid of Lemma 4, the following inequality is obtained:

Π3 ≤ D|e2| sec2 Λ2 −De2 sec2 Λ2 tan h
(

e2 sec2 Λ2
η3

)
− σdd̂d̃ ≤ DKη3 −

σd
2 d̃

2
+ σd

2 D
2
,

Π4 ≤
a3Lf
2ξN

(
|e2| sec2 Λ2 − e2 sec2 Λ2 tan h

(
e2 sec2 Λ2
η4

))
−
σf
2 f̃

2 σf
2 f

2
+ ρ .

f
ρ̃f ≤ −

σf
2 f̃

2
+

a3Lf
2ξN

Kη4 +
σf
2 f

2
+ ρ .

f
ρ̃f,

Π5 ≤
−σc

2 ‖θ̃‖
2
+ σc

2 ‖θ
∗
‖

2
≤

−σc
2λmax(Γ−1)

θ̃
T

Γ−1θ̃+ σc
2 ‖θ

∗
‖

2,

(52)

where λmax
(
Γ−1

)
is the maximum eigenvalue of Γ−1. Finally, considering Lemma 3, it leads to:

Π6 < −γ2
k2

e2

π
tan Λ2. (53)

Using Equations (50)–(53) in Equation (49), the following inequality is obtained:

.
V2 < GN(ζ1)

.
ζ1 +

.
ζ1 − σ2,1V2 + σ2,2, (54)

where σ2,1 = min
{
γ2,σf,σd,σc/λmax

(
Γ−1

)}
and σ2,2 = a3ωn,NLKη1/2ξN + a3LKη2/2ωn,NξN +

DKη3 + σdD
2
/2+ a3LfKη4/2ξN + σff

2
/2+ ρ .

f
ρ̃f + σc‖θ

∗
‖

2/2. Now, the main property of the designed
pitch controller is proven by Theorem 1.

Theorem 1. Consider the wind turbine rotor dynamic model (Equation (25)), with non-smooth input saturation
(Equation (10)) approximated with Equation (13), including pitch actuator bias, effectiveness loss, dynamic
changes, and blade aerodynamic change. If the initial conditions ei(0) ∈

{
ei :

∣∣∣ei(0)
∣∣∣ < kei

}
for i = 1, 2, by using

the control inputs (Equations (42) and (43)), with the filter (Equation (30)), the virtual control (Equation (34)),
the adaption laws (Equation (44)), then the following objectives are obtained: (i) All states of the closed-loop
system are bounded; (ii) the constraint sets, Ωei =

{
ei : |ei| < kei

}
, are not violated for i = 1, 2; and (iii) the

tracking error, e1, can be made small by the proper choice of the design parameters.

Proof. The multiplication of Equation (54) by exp(σ2,1t) yields:

d(V2(t)eσ2,1t)/dt < (GN(ζ1)
.
ζ1 +

.
ζ1 + σ2,2)eσ2,1t. (55)

Thus, the integration of Equation (55) over [0, t], becomes:

V2(t) < σ2,2/σ2,1 + (V2(0) − σ2,2/σ2,1)e−σ2,1t + e−σ2,1t
∫ t

0
(GN(ζ1) + 1)

.
ζ1eσ2,1τdτ. (56)

Furthermore, considering σ2,2/σ2,1 > 0 and lim
t→∞

exp(−σ2,1t) = 0, Equation (56) is rewritten as:

V2(t) < c1,1 + e−σ2,1t
∫ t

0
(GN(ζ1) + 1)

.
ζ1eσ2,1τdτ, (57)

where c1,1 = σ2,2/σ2,1 + V2(0). Also, G satisfies the conditions in Lemma 1. Accordingly, considering
Equation (57), it can be stated that V2 and ζ1 are bounded. Consequently, according to Equation (46),
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(
k2

e2
tan Λ2

)
/π, f̃, d̃ and θ̃ are bounded, which implies e2 belongs to set Ωe2 =

{
e2 : |e2| < ke2

}
and

accordingly is bounded. Then, one can obtain that:

1
2

e2
2 ≤ m1,1, (58)

where m1,1 = 0.5 max
τ∈[0,t]

e2
2(τ). Now, considering Equation (59), Equation (40) is rewritten as:

.
V1(t) < −σ1,1V1(t) + c1,2, (59)

where c1,2 = σ1,2 + m1,1. According to Lemma 2, V1 is bounded and considering Equation (31),(
k2

e1
tan Λ1

)
/π and χ2 are bounded, which implies e1 belongs to set Ωe1 =

{
e1 : |e1| < ke1

}
.

From the above-mentioned analysis, the objectives (i), (ii), and (iii) are achieved as follows:

(i). Consider the boundedness of V1, V2, e2, and e1. Thereforeωr and
.
ωr are bounded. Now, from

the boundedness of f̃, d̃, and θ̃, the boundedness of α1, ζ1, υ1, f̂, d̂, θ̂, and consequently βref
is proven.

(ii). As part of the closed-loop system analysis, it is shown that the tracking errors, e1 and e2, always

stay in the sets, Ωe1 =
{
e1 : |e1| < ke1

}
and Ωe2 =

{
e2 : |e2| < ke2

}
, respectively.

(iii). Multiplying both sides of Equation (59) by exp(σ1,1t) yields:

d(V1(t)eσ1,1t)/dt < c1,2eσ1,1t. (60)

Thus, the integration of Equation (60) over [0, t], becomes:

V1(t) < D, (61)

where D = (V1(0) − c1,2/σ1,1) exp(−σ1,1t) + c1,2/σ1,1. From the definition of V1, it can be shown that:

|e1|< O, (62)

where O = ke2

√
2 tan−1

(
πD/k2

e1

)
/π. If V1(0) = c1,2/σ1,1, then it holds that |e1| <

ke1

√
2 tan−1

(
πc1,2/k2

e1
σ1,1

)
/π. If V1(0) , c1,2/σ1,1, it can be concluded that given any O >

ke1

√
2 tan−1

(
πc1,2/k2

e1
σ1,1

)
/π, there exists T, such that for any t > T, it has |e1| < O. As t→∞ ,

|e1| < ke1

√
2 tan−1

(
πc1,2/k2

e1
σ1,1

)
/π, which implies that e1 can be made arbitrarily small by selecting

the design parameters appropriately.
Considering Definition 3, and the objectives (i), (ii), and (iii), it is guaranteed that the closed-loop

system is UUB. This completes the proof. �

Remark 2. In Theorem 1, the objective (i) implies that the wind turbine equipped with the proposed pitch
angle controller is stable. The objective (ii) states the constrained rotor speed and acceleration are guaranteed.
Accordingly, the generator speed and generated power are retained in the given bounds. Considering Section 3,
then the efficient power regulation requirements are met, satisfying the power grid demand. In this manner,
both rotor overspeeding and mechanical brake engagement are avoided. The objective (iii) represents the expert’s
knowledge in the implementation stage of the proposed controller to satisfactorily make the tracking error small.
These objectives are satisfied in the presence of pitch actuator faults, dynamic change, saturation, and blade
aerodynamic characteristic change.
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6. Fault Identification Scheme

In this section, a scheme is given to identify the pitch actuator fault, including the pitch bias, Φ,
effectiveness loss, ρ, dynamic change, ∆̃fPAD, and aerodynamic characteristic change, ∆Ta,∆Cp . To this
aim, the auxiliary signals are calculated and compared to the estimated fault, f̂, to identify the case of
the dynamic change. Considering Table 2 and the definition of ∆̃fPAD in Equation (17), the auxiliary
signals are computed as follows:

fauxiliary,fault free = 0∆(ω̃2
n)βs − 0∆(ω̃nξ̃)

.
βs + 0∆(ω̃2

n)βref = 0,
fauxiliary,pump wear = −0.6316∆(ω̃2

n)βs − 0.59376∆(ω̃nξ̃)
.
βs + 0.6316∆(ω̃2

n)βref,
fauxiliary,hydraulic leak = −∆(ω̃2

n)βs − 1.75706∆(ω̃nξ̃)
.
βs + ∆(ω̃2

n)βref,
fauxiliary,high air = −0.81083∆(ω̃2

n)βs − 2∆(ω̃nξ̃)
.
βs + 0.81083∆(ω̃2

n)βref,

(63)

where in fauxiliary,X, the auxiliary signal is calculated for the fault case, X, which includes fault free,
pump wear, hydraulic leakage, or high air. In order to finalize the pitch actuator fault identification
scheme, first, the dynamic change case is considered, assuming no pitch actuator bias. Considering
f = ∆̃fPAD/ωn,N + Sβuωn,NΦ, in the absence of Φ, it can be obtained that f = ∆̃fPAD/ωn,N. So, using
the auxiliary signals, fauxiliary,X, reported in Equation (63), the most similar one to f̂ is identified as the
dynamic change case. Therefore, similarity indices are needed, which enhance the fault identification
task. The indices adopted in this paper are the root mean squared error (RMSE) and variance accounted
for (VAF), defined as follows:

RMSEX =

√
1
T

∫ Texe

0
(fauxiliary,X − f̂)

2
dt, VAFX =

1−
var(fauxiliary,X − f̂)

var(fauxiliary,X)

× 100%, (64)

where Texe is the given operation period of the wind turbine. In the ideal fault identification case,
the RMSE and VAF indices are zero and 100%, respectively. Accordingly, the dynamic change of X
with the RMSE and VAF indices close to zero and 100%, respectively, is selected as the corresponding
dynamic change case, which is indicated as X̂. The pitch bias, Φ, is considered as an added constant on
f. So, having pitch bias occur with the dynamic change, the RMSE index only deviates significantly
from zero. However, the VAF index still indicates the correct dynamic change properly. Now, after the
identification of X̂, the pitch actuator bias is estimated. Considering f = fauxiliary,X̂/ωn,N + Sβuωn,NΦ,
where fauxiliary,X̂ is the calculated auxiliary signal using Equation (63) for the identified dynamic change,

X̂, the estimation of pitch actuator bias, Φ̂, is computed as follows:

Φ̂ =
ωn,N f̂− fauxiliary,X̂

Sβuωn,N
2 . (65)

Finally, if neither the dynamic change case nor pitch actuator bias are identified, and meanwhile,
the fault-free case is not identified, then it can be concluded that the faulty case is either pitch actuator
effectiveness loss or aerodynamic characteristic change. Considering Equation (41), it is clear that the
aerodynamic characteristic change is considered as an additive disturbance, and attenuated by the
proposed controller. On the other hand, the effectiveness loss is contributing in the control gain, i.e.,
G. So, the estimated fault, f̂, is affected by the effectiveness loss and is insensitive to the aerodynamic
characteristic change. Accordingly, the given period is considered, in which no pitch actuator dynamic
change, bias, or fault-free cases are identified. Then, if f̂ considerably deviates from zero, this leads
to the identification of the effectiveness loss. Otherwise, the aerodynamic characteristic change is
identified. Therefore, the fault isolation task is accomplished. It should be mentioned that this fault
identification scheme is robust against the disturbance, d, in Equation (41), as its effect is guaranteed to
be attenuated using the proposed controller.
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7. Numerical Evaluation and Comparison

In this section, numerical simulations are conducted to evaluate the features of the controller
(Equation (42)). Moreover, the available industrial PID controller is briefly introduced, for comparison
with the proposed controller performance. Suitable numerical metrics are introduced to quantify and
compare the performance of the proposed and PID controllers.

7.1. Industrial Baseline PID Controller

The most commonly adopted industrial controller for power regulation of wind turbines in full
load operation is the PID controller, due to its simplified implementation and effectiveness [4]. The
PID controller is thus used to regulate the pitch angle based on the generator speed tracking error, eg,
defined as:

eg(t) = ωg,s(t) −ωg,N. (66)

Accordingly, the PID controller, used for tracking the blade pitch angle given the reference pitch
angle, has the form [4,7]:

βref(t) = KPeg(t) + KI

∫ t

0
eg(τ)dτ+ KD

.
eg(t), (67)

where KP, KI, and KD are the proportional, integral, and derivative gains of the controller, respectively,
to be set via traditional methods, in order to guarantee system stability as well as satisfying performance.
KP, KI, and KD are mostly chosen as constant gains for the whole operational region, although some
works proposed the use of different gains for each operating condition of the plant [7]. The values of
the PID gains here settled as KP = 1, KI = 4, and KD = 0 [4,26].

In the structure of the industrial controller (Equation (67)), the sensor noise,ωg,s, is not necessarily
attenuated and may be amplified, even if a filter is used to remove noise content [7]. Also, any possible
loss of effectiveness, ρ(t), and blade aerodynamic characteristic change, ∆Ta,∆Cp , are not analytically
attenuated with this solution. Moreover, this controller does not guarantee that any pitch actuator
bias, Φ(t), and dynamic change, ∆̃fPAD, is correctly managed. These remarks will help to highlight the
advantages of the proposed controller compared to the PID controller, which are analyzed by means of
a simulated example in the next section.

7.2. Performance Metrics

The comparative numerical performance metrics are defined in this section. The difference
between the generator speed and the nominal one is considered as the first metric, defined as:

C1 =

∫ Texe

0

(
ωg(τ) −ωg,N

)2
dτ, (68)

where Texe is the given operation period of the wind turbine. Similarly, the difference between the
generated power and the nominal one is considered as the second metric, defined as:

C2 =

∫ Texe

0

(
Pg(τ) − Pg,N

)2
dτ. (69)

Obviously, it is desirable to keep C1 and C2 as close to zero as possible. The maximum power
deviation from nominal is calculated as:

C3 = max
(∣∣∣Pg(t) − Pg,N

∣∣∣). (70)

C3 indicates the instantaneous power deviation from the nominal, which may cause a sudden
break down. In contrast, C2 accumulates all power deviation, which may lead to gradual failure.
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So, it is expected that C3 never violates the settled constraint. Also, the drive train torsion angle is
calculated as:

C4 =

∫ Texe

0

.
θ∆(τ)

2dτ, (71)

Which represents the applied drive train torsion stress due to variation in aerodynamic torque, as
a result of pitch angle variation. It is desirable that the proposed controller maintains the value of C4
near the one provided by the PID regulator, which is accepted in industrial practice. Finally, in order to
evaluate limited variations of β, C5 and C6 are defined as:

C5 = max
(∣∣∣β(t)∣∣∣), C6 = max(|

.
β(t)|). (72)

7.3. Simulation Results

In this section, the numerical simulations are reported to evaluate the performance of the proposed
controller (Equation (42)), both in fault-free and faulty situations. Also, a comparison is made to
the industrial PID controller (Equation (67)) to illustrate the effectiveness of the proposed controller,
considering suitable numerical metrics. It should be noted that different fault scenarios, including
single and simultaneous occurrences, and wind speed variations are introduced to investigate the
robustness of the proposed controller.

The parameter values of the proposed controller are summarized here. The constraints on the
rotor speed and its time derivative are selected as: ke1 = 0.02 rad/s, ke2 = 0.04 rad/s2. With these
values, the inequalities,

∣∣∣ωr −ωr,N
∣∣∣ ≤ 0.02 rad/s and

∣∣∣ .
ωr

∣∣∣ ≤ 0.04 rad/s2, are satisfied. Consequently,
considering the operational mode, the constraints on the generator shaft speed and generated power
are

∣∣∣ωg −ωg,N
∣∣∣ ≤ 1.9 rad/s and

∣∣∣Pg − Pg,N
∣∣∣ ≤ 0.056 MW. As it is clearly highlighted in Equation (42),

a Nussbaum-type function is needed. In this paper, the Nussbaum-type function, N(ζ1) = ζ2
1 cos(ζ1),

is used, which fulfils Definition 1. The RBF neural network structure has s = 10. Also, the centres and
width of the RBF neural network are selected as:

ϑ =


30, 907 31, 207 31, 507 31, 807 32107 32, 407 32, 707 33, 007 33, 307 33, 607

90 110 120 140 162.5 180 190 210 220 230
−2 1.5 5.11 8.66 12.22 15.77 19.33 22.88 26.44 30

,
and ϕc = 10ones(10, 1), respectively. The other control parameters values are selected as: τ2 = 0.1,
γ1 = 10, γ2 = 5, η1 = 1, η2 = 1, η3 = 1, η4 = 1, σf = 1, σc = 1, σd = 5, L = 700000, and Γ = I10×10.

7.4. Fault-Free Situation

Firstly, the performance of the proposed controller is analyzed for a simulation time of 1500 (s).
Fault-free conditions are also considered, with wind speed with mean of 19.84 (m/s) and standard
deviation of 1.94 (m/s), as shown in Figure 5. The design should lead to the following properties:
(i) The considered constraints are not violated, (ii) the pitch angle saturation is smoothly avoided,
and (iii) the performance is improved compared to the conventional PID controller.
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The corresponding rotor speed, rotor acceleration, generator speed, and generated power, using
the proposed controller, are shown in Figures 6–9, respectively. It can be verified that the considered
constraints are not violated. On the other hand, with the same wind sequence, the PID controller results
are given in Figures 6–9. The PID controller is not able to keep the corresponding outputs within the
considered constraints, in the presence of the wind speed variation. Moreover, the obtained reference
pitch angle using both controllers are compared in Figure 10, in which it is shown that the PID controller
leads to pitch actuator saturation. In contrast, the proposed controller has smoothly avoided saturation.
It should be noted that as the proposed controller maintains the rotor speed within the constraints,
despite the high wind speed variation, faster pitch angle variations are generated. As mentioned in
Section 3, the proposed controller is designed on the desired trajectory of the wind turbine, for which
the drive train torsion angle is reduced. In order to analyze this issue, the induced drive train torsion
angle using the proposed and PID controllers is depicted in Figure 11. It is shown that the induced
drive train torsion angle using the proposed controller has values close to the ones achieved via
the PID controller. This implies that the proposed controller has not considerably increased drive
train torsion and, consequently, stress, despite the wind speed variation and more accurate nominal
power tracking. The uncertain aerodynamic torque estimation is shown in Figure 12, in which the
actual aerodynamic torque is reported to evaluate the estimation efficiency. It is highlighted that the
aerodynamic torque is estimated quite accurately, and has been kept around the nominal one, the same
as the actual aerodynamic torque. Finally, to accurately compare the results, the performance metrics
using both controllers are summarized in Table 3. It can be noted that the performance metrics, C1, C2,
and C3, have been considerably reduced by using the proposed controller. These results correspond
to Figures 6, 8 and 9. Also, the metric C4 shows the same induced drive train torsion angle rate, as
illustrated in Figure 11. The metric C5 shows the advantage of using the smooth pitch angle saturation,
as depicted in Figure 10. As remarked above, the accurate nominal power tracking needs higher pitch
angle change, in the presence of high wind speed variation. This aspect can be verified considering the
index C6. So, it can be concluded that the proposed controller improves the wind turbine performance
in the fault-free case compared to the industrial PID controller.
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Table 3. Performance metrics in the fault-free situation.

Performance Metrics Proposed Controller PID Controller Unit

C1 138.9 2266 rad2/s
C2 400.7 2256 GW2s
C3 0.056 0.2937 MW
C4 0.001331 0.001416 rad2/s
C5 29.37 30 ◦

C6 10 9.79 ◦/s

7.5. Faulty Situation

The section evaluates the fault tolerance capabilities of the proposed controller in the presence
of faults. It is expected that the mentioned constraints are not violated, whilst the fault effects are
attenuated. Also, the estimated faults are analyzed with respect to the indices described in Equation
(64). The results using the PID controller are also reported to study the effect of each fault as well
as to highlight the benefit of the proposed controller. The considered fault scenario is defined in
Table 4. The occurrence of single faults is considered, in order to accurately study their individual
effects, as highlighted in Table 4. The same wind speed sequence shown in Figure 5 is considered here.
Figures 13–16 illustrate the rotor speed, rotor acceleration, generator speed, and generated power with
respect to the corresponding constraints, respectively, using both the proposed and PID controllers.
Compared to Figures 6–9, it is obvious that the PID controller performances are degraded, while the
proposed controller is able the attenuate the fault effects and maintain the considered outputs within
the corresponding constraints. The designed reference pitch angle values using both controllers are
compared in Figure 17. It highlights that the simple PID controller has led to pitch actuator saturation
while saturation is smoothly avoided using the proposed controller. Moreover, it is worth noting that
as the proposed controller is trying to counteract the pitch actuator dynamic change, the dynamic
change has reduced the speed of the pitch actuator. Accordingly, it has led to slightly higher pitch angle
variations compared to the fault-free case, during the dynamic change periods. Consequently, the
drive train torsion angle induced by the proposed controller was increased, as illustrated in Figure 18.
In order to analyze the changes of all variables, X, due to the fault effect with respect to the fault-free
case, the following relation is defined:

δX = Xff −Xfa, (73)

where δX is the change in the considered variable X, Xff is its fault-free value, and Xfa represents
the corresponding value in the faulty situation. In Figures 19–21, δPg, δωg, and δωr, are illustrated,
respectively, for the proposed and PID controllers. It is shown that the pitch actuator bias and the
effectiveness loss have led to considerable limitations of the achievable PID controller performance.
However, these performance degradations are significantly attenuated using the proposed controller.
Also, the effect of the considered blade aerodynamic change, i.e., ∆Ta,∆Cp = 5%, has led to smaller
variations. It should be noted that the hydraulic leak has notable effects in the performance degradation.
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To accurately study the effect of faults on the pitch actuator response, δβ is depicted in Figure 22.
Evidently, changes in the pitch actuator dynamic have been considerably attenuated using the proposed
controller while the slower pitch actuator leads to worse performance with the PID controller. Also,
the effect of pitch actuator bias is completely removed, since its effect is compensated by using the
estimation of the bias itself. The situation is even worse when the PID controller is exploited. The
same result is obtained considering the effectiveness loss fault. In the case of blade aerodynamic
change, both controllers have led to the same trend in δβ while the variation using the PID controller
is significantly higher. However, the fault is removed after 1300 (s), whilst its effect reduces the PID
controller performance. Finally, to quantitatively compare the performance of the controllers, the
values of the performance indices are summarized in Table 5. It is worth noting that the achieved
performance of the proposed controller in the presence of faults are similar to the fault-free conditions.
This represents the main point of the fault-tolerant control design.

Table 4. First fault scenario.

Fault Type Fault Effect Fault Period

Pitch actuator pump wear αf1 = 0.6316, αf2 = 0.29688 200(s) ≤ t ≤ 300(s)
Pitch actuator hydraulic leak αf1 = 1,αf2 = 0.87853 400(s) ≤ t ≤ 500(s)

Pitch angle bias Φ = 5◦ 600(s) ≤ t ≤ 700(s)
Pitch actuator high air αf1 = 0.81083, αf2 = 1 800(s) ≤ t ≤ 900(s)

Pitch actuator effectiveness loss ρ = 0.7 1000(s) ≤ t ≤ 1100(s)
Aerodynamic characteristic change ∆Ta,∆Cp = 5% 1200(s) ≤ t ≤ 1300(s)Energies 2019, 12, x FOR PEER REVIEW 22 of 31 
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Table 5. Performance metrics with the first fault scenario.

Performance Metrics Proposed Controller PID Controller Unit

C1 155 2552 rad2/s
C2 414.8 2506 GW2s
C3 0.056 0.2941 MW
C4 0.001349 0.001438 rad2/s
C5 29.26 30 ◦

C6 10 10 ◦/s

7.6. Fault Identification Analysis

In this section, with the aid of the estimated fault, f̂, and the calculated auxiliary signals of
Equation (63), the fault identification performance is analyzed using the indices in Equation (64).
The identification task includes fault detection, isolation, and its reconstruction (i.e., its shape).
Consequently, the estimated pitch actuator bias, Φ̂, is obtained using Equation (65), in which Sβu

is calculated using Sβu = 2η(ρ+ ρ)/(P + P−1)
2
∣∣∣∣
βs

. It should be noted that the indices in Equation

(64) and the estimated fault, f̂, should be computed and compared in every time step of simulation
in order to accurately identify the fault. However, since the overall performance of the proposed
fault identification technique is analyzed, the comparisons are performed in each fault period of
Table 4. Also, as the calculated auxiliary signal for the fault-free case, i.e., fauxiliary,fault free, is always
zero, then the VAFfault free in Equation (64) is calculated as var(f̂) × 100%. Now, to investigate the fault
identification capability of the proposed controller, the estimated signal is shown in Figure 23. Also,
the auxiliary signals computed from Equation (63) are depicted in Figure 24. Moreover, by means of
the fault identification indices in Equation (64), summarized in Table 6, the estimated pitch actuator
bias is shown in Figure 25. As remarked above, to fulfil the fault identification task, the values of the
RMSE and the VAF indices closer to zero and 100%, respectively, determine the fault case. Considering
Table 6, it is clear that in each fault-free period, the indices are indicating the fault-free case. Also, the
estimated pitch actuator bias is zero. It is worth noting that in the fault-free periods, the VAF indices
calculated for the dynamic change cases, are negative. Indeed, this result is justified considering the
form of Equation (64). Comparing Figures 23 and 24, it can be pointed out that in the fault-free periods,
var

(
fauxiliary,X − f̂

)
is greater than var

(
fauxiliary,X

)
, which leads to negative VAF. Obviously, this is not

the case considering the calculated VAF, using the fault-free auxiliary signal.
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Table 6. Fault identification indices.

Time (s) Fault Type High Air Content Hydraulic Leak Pump Wear Fault-Free
Mean(Φ̂)

RMSE VAF RMSE VAF RMSE VAF RMSE VAF

0–200 Fault-Free 0.37 −788 0.36 −842 0.39 −5916 0.43 99.98 0
200–300 Pump Wear 3.25 50.94 1.94 66.65 0.15 98.91 1.46 215.1 0
300–400 Fault-Free 0.31 −890 0.31 −932 0.33 −6291 0.37 97.65 0

400–500 Hydraulic
Leak 2.40 75.01 0.19 99.26 67.99 2.4 2.54 575.7 0

500–600 Fault-Free 0.35 −921 0.34 −963 0.37 −6420 0.41 99.86 0
600–700 Pitch Bias 27.82 −41.85 21.99 −32.33 18.67 −24.33 87.62 4.05 5
700–800 Fault-Free 6.24 −93370 6.20 −68300 6.24 −182000 6.35 97.85 0

800–900 High Air
Content 0.42 97.50 1.81 76.41 1.64 79.01 1.95 383.5 0

900–1000 Fault-Free 0.53 −866 0.41 −923 0.44 −6309 0.05 99.89 0

1000–1100 Effectiveness
loss 19.14 −903 18.7 −5800 19.56 −16700 21.05 1100 0

1100–1200 Fault-Free 1.71 −8870 1.67 −5990 1.75 −17300 1.88 99.17 0

1200–1300 Aerodynamic
change 0.29 −751.6 0.28 −807.9 0.31 −5770 0.34 11.89 0

1300–1500 Fault-Free 0.46 −755 0.46 −811 0.49 −5790 0.54 98.38 0

For the case of the pitch actuator dynamic changes, it can be verified that the selected indices lead
to accurate identification of the corresponding actual dynamic change case. In all dynamic change
cases, the estimated pitch actuator bias is zero. So, the dynamic change cases are clearly distinguishable
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from the pitch actuator bias. Evidently, during the pitch actuator bias period, none of the indices
satisfying the considered conditions can be selected. On the other hand, the pitch actuator bias is
precisely estimated. The situation is different for the cases of the pitch actuator effectiveness loss
and the aerodynamic characteristic change. Obviously, neither the dynamic change case nor the
fault-free case is selected, as the corresponding indices do not satisfy the given conditions. On the
other hand, the pitch actuator bias is estimated as zero. Therefore, it can be concluded that these
two periods correspond to the pitch actuator effectiveness loss and/or aerodynamic characteristic
change. However, in order to correctly identify these two cases, the estimated fault is first considered,
i.e., Figure 23. From Equation (41), it can be noted that the aerodynamic characteristic change is
described as an additive disturbance while the effectiveness loss affects the control gain, i.e., G in
Equation (41). The proposed controller has shown robustness features with respect to the considered
disturbances. Accordingly, the estimated fault is affected by the effectiveness loss and it is insensitive
to the aerodynamic characteristic change. Therefore, between 1000 and 1100 (s), as the estimated fault
is different from zero, the effectiveness loss case is identified. Also, between 1200 and 1300 (s), as the
estimated fault is zero, the aerodynamic characteristic change case is identified.

7.7. Robustness Evaluation

In this section, the proposed controller is further evaluated in terms of robustness to different
wind speed sequences and fault scenarios. The wind speed is shown in Figure 26, with a mean of
20.41 (m/s) and standard deviation of 3.01 (m/s) for 1100 (s). Compared to the former wind speed
reported in Figure 5, the signal considered in Figure 26 presents more fluctuations. So, it is more
challenging for the controller to satisfy the objectives. Also, for the different fault scenario reported
in Table 7, the faults occur simultaneously for a longer period. Also, the pitch actuator bias and
the aerodynamic characteristic change values are increased. On the other hand, the pitch actuator
effectiveness is decreased. For the sake of brevity, only the generated power in the fault-free and fault
cases are considered for both the controllers. Considering these conditions, the performance metrics
are compared. The generated power is illustrated in Figures 27 and 28, in both the fault-free and
faulty situations, respectively. It is obvious that in both situations, the generated power is maintained
within the prescribed constraints. The performance metrics are summarized in Tables 8 and 9, which
further confirm that the proposed controller can successfully maintain reliable performance under
faulty conditions. Its performances are clearly better than the ones achievable with the PID controller.
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Table 7. Second fault scenario.

Fault Type Fault Effect Fault Period

Pitch actuator pump wear αf1 = 0.6316, αf2 = 0.29688 100(s) ≤ t ≤ 300(s)
Pitch actuator effectiveness loss ρ = 0.5 100(s) ≤ t ≤ 300(s)

Pitch actuator hydraulic leak αf1 = 1,αf2 = 0.87853 400(s) ≤ t ≤ 600(s)
Pitch angle bias Φ = 10◦ 400(s) ≤ t ≤ 600(s)

Pitch actuator high air αf1 = 0.81083, αf2 = 1 800(s) ≤ t ≤ 1000(s)
Aerodynamic characteristic change ∆Ta,∆Cp = 10% 800(s) ≤ t ≤ 1000(s)
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Table 8. Performance metrics in the fault-free situation, with the second wind speed sequence.

Performance Metrics Proposed Controller PID Controller Unit

C1 212.5 1762 rad2/s
C2 465 1817 GW2s
C3 0.056 0.2094 MW
C4 0.001299 0.001371 rad2/s
C5 29.12 30 ◦

C6 10 7.46 ◦/s

Table 9. Performance metrics under the second fault scenario, with the second wind speed sequence.

Performance Metrics Proposed Controller PID Controller Unit

C1 304.2 3747 rad2/s
C2 544.9 3549 GW2s
C3 0.056 0.2214 MW
C4 0.001421 0.001376 rad2/s
C5 29.40 30 ◦

C6 10 10 ◦/s

Considering the simulation results in the fault-free and first fault scenario of Table 4 using the wind
profile of Figure 5, it can be pointed out that the proposed controller is able to reduce the degradation
of the wind turbine performances. Firstly, it is shown that the generated power never violates the given
bound. It should be noted that this bound is appropriately selected by the wind turbine manufacturer.
Indeed, this bound represents the safe-to-operate bound in full load operation without mechanical
brake engagement. On the other hand, mechanical braking increases the induced fatigue load on the
drive train. Also, the rotor acceleration is constrained, thus leading to reduce the torque stress on the



Energies 2019, 12, 4712 30 of 33

rotor shaft. So, it can be concluded that the proposed controller leads to induce lower fatigue load
and stress to the drive train. One obvious benefit of the proposed controller is that harsh long-lasting
pitch actuator saturation is avoided. In fact, using the smooth pitch actuator saturation function, the
speed of the pitch actuator response increases before the saturation, as highlighted in Figure 1. This
characteristic leads to improved power regulation. It illustrates that the induced drive train torsion
angle rate was kept at the same level as the baseline controller one. So, if the behavior of the baseline
PID regulator is universally accepted in industrial control, the proposed controller can be used by
industries to reduce the applied torsional stress. It is evident that the estimated aerodynamic torque
fluctuates around the nominal one due to the inherent features of the RBF neural network and the
Gaussian basis functions. However, as mentioned in the controller design procedure, the estimation
error is bounded. This is obvious when comparing the actual aerodynamic torque and the estimated
one. As remarked earlier, the pitch actuator dynamic change leads to a slower response of the pitch
actuator and consequently poor power regulation. This phenomenon is highlighted in Figures 19
and 22. Nevertheless, the proposed controller was able to attenuate this effect, which is the same as
the pitch actuator bias, using the properly designed fault estimator. On the other hand, the effects
of the pitch actuator effectiveness loss and debris build-up are mitigated appropriately, satisfying
the performance objectives. Also, using the fault estimator information alongside the proposed fault
identification scheme, different faults are identified. Similar results can be obtained for even more
severe instantaneous faults and higher wind speed variation, as illustrated in Figures 27 and 28.

8. Conclusions and Open Problems

This paper proposed a novel adaptive constrained control methodology for wind turbine power
regulation subject to actuation failures as well as unknown system dynamics. In contrast to previous
works where an unknown wind speed observer/estimator was needed, using the Nussbaum-type
function, the proposed method was able to handle the unpredictable wind speed variation effects in the
control design without requiring accurate wind speed measurement. The constrained rotor speed and
generated power were guaranteed while the pitch actuator remained within the desired bounds. Using
the barrier Lyapunov function in conjunction with the concept of dynamic surface control, a constrained
stable control structure with cheap computational cost was developed. In addition, utilizing a radial
basis functions neural network together with a proper fault-tolerant scheme, a robust and adaptive
scheme was developed without the need for precise information about either the wind turbine model
or the pitch actuator faults. Numerical simulations were finally performed to validate the effectiveness
of the reported theoretical developments, and comparisons with the available industrial controller
performance were shown.

Finally, by considering the proposed controller in this paper and the investigated results, the
future research direction of this paper can be outlined as the validation of the proposed controller by
means of data acquired from real or experimental-scale wind turbines for the whole operational region,
achieving the Industry 4.0 requirements.
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Nomenclature

Bdt Drive train torsion damping
Bg Generator viscous friction
Br Rotor viscous friction
Bt Tower damping ratio
Cp Power coefficient
Cq Torque coefficient
Ct Thrust coefficient
C1, . . . , C6 Performance metrics
∆Cp Power coefficient change
D, D1 Unknown positive constants
Ft Aerodynamic thrust
fauxiliary,X Auxiliary signal for fault case X
f Unknown positive constant
H Pitch actuator saturation
hi Gaussian function
Jg Generator inertia
Jr Rotor inertia
Kdt Drive train torsion stiffness
KD Derivative gain
KI Integral gain
KP Proportional gain
Kt Tower elasticity coefficient
kei Constraint on ei

k1 Unknown positive constant
Mt Nacelle mass
N Nussbaum-type function
Pg Generated electrical power
R Blade length
S Saturation smooth estimation
s Number of nodes
Ta Aerodynamic torque
Ta,NN Approximation of Ta

Tg Generator torque
Vr Effective wind speed
Vw Free wind speed
V1, V2 Lyapunov functions
XN Nominal value of X
Xs Measurement of X
X̃ Estimation error of X
X̂ Estimation of X
xt Nacelle displacement
αf1 , αf2 Fault indicators
α1 Virtual control
β Pitch angle
βref Reference pitch angle
βu Pitch actuator effort
Γ Design matrix
γ1, γ2 Positive design parameters
ε Approximation error
ε Unknown positive constant
η Positive design parameter
ηg Generator efficiency
η1, η2, η3,η4 Positive design parameters
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θg Generator rotation angle
θr Rotor rotation angle
θ∆ Drive train twist angle
θ∗ Optimal weight vector
ϑi ith centre vector of the inputs
λ Tip speed ratio
νX Noise content of variable X
ξ Pitch actuator damping ratio
ξX Damping ratio in the situation X
ρ Unknown actuator effectiveness
ρa Air density
ρ .

f
, ρ̃f Unknown positive constants

σf, σc, σd Positive design parameters
τ2 Time constant
Φ Unknown pitch actuator bias
ϕc Gaussian functions width vector
ωg Generator speed
ωn Pitch actuator natural frequency
ωn,X Natural frequency in situation X
ωr Rotor speed
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