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Abstract: In this study, programmed temperature vaporization in the solvent vent mode (PTV-SV) of
gas chromatography-mass spectrometry was optimized and validated for the analysis of particle-phase
and gas-phase polycyclic aromatic hydrocarbons from diesel engine combustion. Because of the large
number of experimental and response variables to be studied, central composite inscribed design
was used to optimize the PTV-SV injection factors, including initial inlet temperature, vaporization
flow and time. The optimized PTV-SV method was validated by linearity, accuracy and sensitivity.
For the 16 Polycyclic aromatic hydrocarbons (PAHs) studied, the correlation coefficients for the
calibration plots of peak areas versus concentrations (0.5–300 ng mL−1) ranged from 0.9812–0.9998.
Limits of detection ranged from 0.016–20,130.375 ng mL−1, and limits of quantification ranged from
0.055–1.25 ng mL−1. The optimized method was used for the analysis of real samples collected from
a diesel engine, which included particle-phase and gas-phase PAHs. The results showed that the
improved PTV-SV method was satisfying for simultaneously identifying and quantifying PAHs
produced during diesel combustion.

Keywords: programmed temperature vaporization; solvent vent mode; polycyclic aromatic
hydrocarbon; optimization; diesel combustion

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds which contain two or more
aromatic rings. Due to their known or potential mutagenic and carcinogenic properties, PAHs have
received more attention. Diesel engines are one of the contributors to the PAHs in atmospheric
environment. The diesel-generated PAHs mainly originate from the incomplete combustion of
fuel [1,2], and the variety and quantity of PAHs are affected by engine working conditions and fuel
properties [3,4]. In addition, they also play important roles in the formation of soot, another undesirable
combustion byproduct [3–8]. Therefore, the identification of PAHs is essential for studies on the
formation and evolution of diesel pollutants.

Combustion-generated PAHs are generally measured by gas chromatography-mass spectrometry
(GC-MS) [2,9,10]. Diesel engine combustion involves complicated physical and chemical processes
accompanied by high temperature and pressure. In such processes, the quantity of PAHs is usually a
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few micrograms [11]. Wide varieties of intermediate products are also formed during the combustion
process and interfere with the analysis of PAHs, complicating PAH identification and quantification.
Therefore, using GC-MS to identify most of the PAHs in diesel combustion samples, with low detection
and quantification limits, is challenging.

The programmed temperature vaporization (PTV) technique can be widely applied to improve
sensitivities for GC-MS identification of trace analytes. PTV not only increases the method sensitivity
through the larger volume injection of the final extract, it also simplifies and/or improves offline sample
pretreatment procedures, reducing sample loss [12,13]. There are several other advantages to using the
PTV technique, such as a decrease in analyte discrimination, improved transfer of thermodegradable
compounds and better adaptability to relatively dirty samples [14].

The PTV injector on the GC-MS can be used in several different modes, including splitless injection,
pulsed splitless, solvent vent, vapor overflow and solid-phase extraction-thermal desorption [15].
In the classical injection modes, such as split, splitless and pulsed splitless, the maximum injection
volume is only approximately 2 µL [16,17]. By contrast, the programmed temperature vaporization in
the solvent vent mode (PTV-SV) significantly increases the sample volume to several hundred µL and
simultaneously improves sensitivity by controlling the time when the split exit is open, as well as the
temperature of the inlet port [18]. Because of the numerous experimental variables in the PTV system,
an experimental optimization of parameters is needed for different analysis types.

To date, PTV-GC-MS has been successfully applied to the quantitative analysis of PAHs in gasoline
samples [19], ambient aerosol samples [20,21], foodstuffs [13] and marine sediments [22]. Literatures
on the PAH analysis using PTV-SV-GC-MS is limited in number. The PTV injection system involves
many parameters that have complex effects on analyte responses [16]. To improve sensitivity, it is
necessary to identify the optimum combination of parameters. The primary aim of this study was to
optimize and validate the PTV-SV injection method for the analysis of 16 PAHs produced from diesel
engine combustion. Based on literature reviews [21] and our previous experience, three parameters
were investigated, including initial inlet temperature (TA), vaporization flow (FB) and time (tC).
Optimizations of these three factors for PTV-SV injection were performed using the central composite
inscribed (CCI) design. Different performance parameters of the PTV-SV-GC-MS method, such as the
linearity, accuracy and sensitivity, were calculated. Analyses of samples from the diesel combustion
process were conducted using the optimized method.

2. Materials and Methods

2.1. Preparation of the Real Sample

A real sample was used for validating the optimized programmed temperature vaporization
in the solvent vent mode-gas chromatography-mass spectrometry-selected ion monitoring mode
(PTV-SV-GC-MS-SIM) method. This real sample was obtained from a total cylinder sampling system
of a diesel engine. The diesel engine was operated at an engine speed of 1000 rpm and a fuel-air
equivalence ratio of 0.41. A detailed description of the total cylinder sampling system has been
reported in the literature [23]. During sampling procedure, an aluminum alloy diaphragm was
used to seal the engine cylinder head, making it a sampling valve. At a pre-set crank angle during
the sampling cycle, the aluminum alloy diaphragm was instantly cut using an electromagnetic
actuated tube-cutter. The cylinder contents rapidly exited from the cylinder into a sampling bag.
Simultaneously, the samples were quenched and diluted by mixing with high-pressure nitrogen to
achieve a temperature below 52 ◦C. The cylinder contents collected in the sampling bag were forced
to flow through a Teflon®(Polytetrafluoroethylene (PTFE))-coated glass fiber filter (Pall, Ann Arbor
MI, USA) inserted into the gas pipe. Particulates deposited on the filter were used for the analysis
of particle-phase PAHs. A polyurethane foam (PUF)/XAD/PUF “sandwich” cartridge (SUPELCO,
Bellefonte, PA, USA) was placed behind the Teflon®-coated glass fiber filter for sampling gas-phase
PAHs. After sampling, the filter and PUF/XAD/PUF cartridge used were immediately Soxhlet extracted
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using 60 and 120 mL dichloromethane (DCM), respectively, for 24 h. The DCM used was HPLC-MS
grade from Dikma (Beijing, China). By rotary film and vortex evaporation, the resulting extract from
the particle-phase sample was concentrated to 10 mL, and the one from the gas-phase was concentrated
to 100 mL. The concentration process was performed under nitrogen. The concentrated extracts were
stored in sealed bottles at −20 ◦C in the dark.

2.2. GC-MS Conditions

PAH analyses were performed on an Agilent 7890A gas chromatograph (Agilent Technologies,
Santa Clara, California, USA) interfaced to a 5975C mass spectrometer detector (Agilent Technologies,
Santa Clara, California, USA) operated in the electron ionization mode. This system was equipped
with a PTV injector (Option 130, Agilent Technologies, Santa Clara, California, USA), and the injections
were automatically carried out using an ALS 7683B autosampler (Agilent Technologies, Beijing, China).
In this study, the maximum volume for the inlet liner is 50 µL. In addition, too much injection will
result in a contamination of the chromatographic column. Therefore, the injection volume was chosen
as 25 µL. The 25 µL total injection volumes were achieved by five separate injections of 5 µL at a
maximum injection speed of 100 µL s−1. The GC oven temperature program used for the PTV injection
was: The initial temperature of 30 ◦C was held for 7.5 min, the temperature was increased at a rate
of 30 ◦C min−1 to 280 ◦C, where it was held for 8 min, and then the temperature was increased at a
rate of 60 ◦C min−1 to 300 ◦C, where it was held for 6 min. Identification of the target compounds
was based on the detection of the corresponding molecular ion and comparisons of retention times
with those of relevant PAH standards. Quantification of the PAHs was performed using the SIM
mode. The ionization voltage, transfer line temperature and ion source temperature were 70 eV, 280
◦C and 280 ◦C, respectively. All analyses were performed using a capillary column (Agilent HP-5ms,
5% phenyl methyl siloxane, 30 m × 250 µm × 0.25 µm film thickness) and helium (99.9995 %) was
employed as the carrier gas.

2.3. Calibration

A United States Environmental Protection Agency (USEPA) 16-PAH mixed standard
solution (AccuStandard, New Haven, Connecticut, USA), including naphthalene (Nap),
acenaphthylene (AcPY), acenaphthene (AcP), fluorene (Flu), phenanthrene (Phe), anthracene (Ant),
fluoranthene (FL), pyrene (Pyr), benzo(a)anthracene (BaA), chrysene (Chr), benzo(b)fluoranthene
(BbFL), benzo(k)fluoranthene (BkFL), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InP),
dibenzo(a,h)anthracene (DBA) and benzo (g,h,i)perylene (BghiP), was used for calibration. Standard
working solutions for calibration plots were freshly prepared by diluting the stock standard solution
in DCM. The 16-PAH mixed standard solution, with an initial concentration of 200 × 103 ng mL−1,
was diluted to 300, 200, 50, 10, 5 and 0.5 ng mL−1. All solutions were stored in capped amber vials
at −20 ◦C. The gas chromatography analysis was carried out for these diluted standard solutions
using the optimized PTV-SV-GC-MS-SIM method. Calibration curves were prepared using the PAH
concentrations and corresponding peak areas. PAH quantification for the real samples could then be
performed using the calibration curves.

2.4. Method Validation

The PTV-SV-GC-MS method was validated using linearity, accuracy and sensitivity. The linearity
of the method was determined using calibration plots obtained from three replicate analyses of standard
solutions with concentrations of 0.5, 5, 10, 50, 200 and 300 ng mL−1. The accuracy of the method was
expressed as the ratio of the theoretical value to the average measured value for three concentrations
of authentic standards added to the samples. The average recovery of the PAHs was calculated using
calibration plots. The limits of detection (LODs) and quantification (LOQs) were calculated based on
signal-to-noise ratios of 3:1 and 10:1, respectively, for both the PTV-GC-MS and conventional splitless
GC-MS methods. To evaluate the precision of the method, mixed standard solutions (100 ng mL−1)
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were added to blank samples and extracted using the sample preparation procedure described in
Section 2.1.

3. Results and Discussion

3.1. Optimization of the PTV-SV Injection

To determine the maximum values for the PTV-SV factors, CCI design was performed to estimate
the response surfaces. This design used factor settings as the starting points and created factorial or
fractional factorial design within the limits. Based upon the previous study [21] and our experience,
TA, FB and tC were evaluated for their effects on PTV-SV injection. In this study, each CCI design model
selected was composed of a two-cubed full factorial design that included eight cubed points, where six
axial and six central points were added, for a total of 20 runs. The 16 PAH peak areas were set to be
dependent variables and the three factors were used as input variables. The three factors and their
levels are listed in Table 1. A 16-PAH mixed standard solution at a concentration of 100 ng mL−1 was
used for these experiments. The experimental conditions designed and responses (chromatographic
peak areas) obtained are presented in Table 2. As an example, Figure 1 shows the influence of TA, FB
and tC on response surfaces for Phe (25 µL PTV-SV injection). It is obvious that the Phe response areas
increase with an increase of TA, and decrease with decreases of FB and tC. Close inspections of Figure 1
and Table 2, however, show that the quantity of experimental data to be analyzed is considerably large
when three parameters are optimized simultaneously. Thus, a statistical analysis method is used in the
data process to improve the reliability of these results.
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Figure 1. Influence of initial inlet temperature (TA), vaporization flow (FB) and vaporization time (tC)
on response surfaces for 25 µL Phe injection: (a) Influence of TA and FB on response surfaces at tC =

1.32 min; (b) Influence of TA and tC on response surfaces at FB = 80 mL min−1; (c) Influence of FB and
tC on response surfaces at TA = 36 ◦C.

Table 1. Factors and corresponding levels for the programmed temperature vaporization (PTV)
injection systems.

Factor
Levels 1

−1 −1/α 0 +1/α +1

Inlet Temperature (◦C) 32 34 36 38 40
Vaporization Flow (mL min−1) 10 38 80 122 150

Vaporization Time (min) 0.6 0.89 1.32 1.75 2.04
1 The α value is 1.68.
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Table 2. Experimental conditions designed and responses (chromatographic peak areas × 106) obtained using the CCI design.

TA (◦C) 34 38 34 38 34 38 34 38 32 40 36 36 36 36 36 36 36 36 36 36
FB (mL min−1) 38 38 122 122 38 38 122 122 80 80 10 150 80 80 80 80 80 80 80 80

tC (min) 0.89 0.89 0.89 0.89 1.75 1.75 1.75 1.75 1.32 1.32 1.32 1.32 0.6 2.04 1.32 1.32 1.32 1.32 1.32 1.32

Analytes m/z Responses (chromatographic peak areas × 106)
Nap 128 0.44 0.40 0.42 0.33 0.41 0.34 0.42 0.36 0.39 0.45 0.57 0.45 1.07 0.36 0.42 0.36 0.51 0.31 0.53 0.36

AcPY 152 0.81 0.54 0.46 0.40 0.57 0.32 0.35 0.35 0.5 0.40 1.06 0.39 1.51 0.37 0.51 0.43 0.49 0.25 0.51 0.41
AcP 153 0.72 0.48 0.38 0.32 0.48 0.26 0.28 0.27 0.41 0.30 0.94 0.30 1.39 0.29 0.42 0.35 0.39 0.21 0.39 0.33
Flu 166 1.08 0.98 0.89 0.63 0.86 0.65 0.61 0.49 0.77 0.65 1.20 0.65 1.82 0.55 0.79 0.65 0.81 0.51 0.83 0.64
Phe 178 1.94 2.02 1.97 1.42 1.78 1.59 1.54 1.23 1.57 1.66 1.82 1.59 3.29 1.33 1.72 1.37 1.85 1.29 1.91 1.42
Ant 178 2.38 2.38 2.42 1.95 2.27 1.99 2.05 1.77 2.05 2.15 2.21 2.04 3.71 1.87 2.24 1.84 2.31 1.67 2.38 1.95
FL 202 2.50 2.69 2.74 2.24 2.46 2.30 2.55 2.14 2.21 2.65 2.16 2.50 4.11 2.14 2.52 1.97 2.71 1.97 2.83 2.18
Pyr 202 2.71 2.92 2.92 2.40 2.66 2.48 2.71 2.25 2.39 2.84 2.35 2.69 4.42 2.29 2.69 2.13 2.92 2.11 3.03 2.35
BaA 228 1.11 1.33 1.45 1.19 1.17 1.15 1.52 1.29 1.05 1.55 0.88 1.39 2.34 1.17 1.32 0.89 1.44 0.97 1.58 1.08
Chr 228 2.33 2.89 3.07 2.63 2.63 2.60 3.21 2.61 2.36 3.25 2.09 3.01 4.28 2.61 2.64 1.92 3.09 2.06 3.22 2.25

BbFL 252 0.94 1.21 1.30 0.98 0.97 1.07 1.39 1.09 0.86 1.39 0.71 1.25 2.07 0.98 1.11 0.74 1.30 0.93 1.42 0.91
BkFL 252 2.08 2.40 2.57 2.17 2.13 2.10 2.72 2.33 1.91 2.71 1.62 2.48 3.95 2.21 2.35 1.66 2.57 1.81 2.77 1.95
BaP 252 0.89 1.15 1.23 1.07 1.00 1.09 1.31 1.03 0.94 1.3 0.75 1.29 2.05 1.04 1.02 0.76 1.21 0.85 1.49 0.96
InP 276 0.54 0.78 0.84 0.56 0.57 0.68 0.91 0.66 0.48 0.88 0.39 0.79 1.40 0.55 0.65 0.40 0.81 0.57 0.89 0.5

DBA 278 1.27 1.48 1.59 1.25 1.31 1.27 1.65 1.53 1.09 1.68 0.86 1.62 2.47 1.17 1.37 0.86 1.53 1.05 1.65 1.09
BghiP 276 1.21 1.54 1.59 1.27 1.25 1.34 1.78 1.31 1.08 1.51 0.90 1.54 2.54 1.25 1.46 0.88 1.57 1.06 1.74 1.14
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The data from the 25 µL injection volume are fitted to Equation (1) using a second-degree
polynomial equation based on the least squares statistical method.

Y = b0 + bATA + bBFB + bCtC + bABTAFB + bACTAtC + bBCFBtC + bAAT2
A + bBBF2

B + bCCt2
C (1)

where TA, FB and tC are the initial inlet temperature, the vaporization flow and the vaporization time,
respectively, and bi, bij and bii are the fitting parameters.

The statistical significances of the regression coefficients were determined using the t-test (only
significant coefficients with p-value< 0.05 were included). Statistical analysis of the fitted model
equation above was checked using analysis of variance (ANOVA) at the 5% significance level.
The ANOVA, regression coefficients and their significances in the fitted model are listed in Table 3.

The response optimizer in Minitab 15 (Minitab Inc., USA) was applied to maximize the composite
desirability for the 16 PAHs. The optimization of composite desirability was performed using the
Derringer’s desirability function in the Minitab optimizer [21]. The desirability was set to 0.0 and 1.0
for the lowest and highest responses, respectively, from the CCI designs. Because all the responses
had the same importance, a composite desirability was obtained by calculating the geometric average
desirability values for the 16 PAHs. The final optimized factors, results from individual desirability for
the PAHs and the composite desirability, are provided in Table 4. The samples are introduced into the
liner at an initial temperature of 38 ◦C for the 25 µL injection. The solvent is then vaporized for 0.6 min
with the PTV injector temperature raised to 300 ◦C at a rate of 600 ◦C min−1 and vented through the
split valve at a flow rate of 10 mL min−1. During the cleaning phase, the split valve keeps open for
5 min (50 mL min−1) at a temperature of 300 ◦C for all the experiments. As an example, Figure 2 shows
a PAH standard chromatogram at a concentration of 100 ng mL−1, where the separation of the 16
PAHs is achieved in a total analysis time of 30 min under the optimized PTV-SV injection conditions.
The selected conditions for GC-MS in SIM mode are presented in Table 5. Validation of the optimum
method from response surface design experiments was determined from six replicate measurements
of the 100 ng mL−1 standard solution under the final optimized conditions. The values of relative
standard deviation (RSD) for the 16 PAHs range from 1.12%−6.07%, as listed in Table 6.
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Figure 2. Gas chromatograph mass spectrometry (GC-MS) chromatogram of a 100 ng mL−1 polycyclic
aromatic hydrocarbon (PAH) standard sample after optimization. 1. Nap; 2. AcPY; 3. AcP; 4. Flu; 5.
Phe; 6. Ant; 7. FL; 8. Pyr; 9. BaA; 10. Chr; 11. BbFL; 12. BkFL; 13. BaP; 14. InP; 15. DBA; 16. BghiP.
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Table 3. Analysis of Variance (ANOVA), regression coefficients and their significances in the fitted model of the 16 PAH peak areas.

Terms
Nap AcPY AcP Flu Phe Ant FL Pyr

Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P

Intercept 429023 <0.01 500533 <0.01 358092 <0.01 699564 <0.01 1597255 <0.01 2114094 <0.01 2428690 <0.01 2622292 <0.01
TA −11370 0.792 −70979 0.046 −52280 0.022 −65125 0.029 −60225 0.05 −62307 0.441 −10133 0.916 −13937 0.893
FB −20222 0.64 −132899 0.013 −129867 <0.001 −139076 <0.001 −113585 0.016 −81749 0.318 22198 0.817 6284 0.951
tC −91661 0.053 −185495 0.006 −180795 <0.001 −227695 <0.001 −330210 0.001 −304792 0.003 −295329 0.01 −324928 0.009

FB×FB −3421 0.935 49839 0.444 49961 0.05 39763 0.034 -5003 0.199 −21732 0.820 −72658 0.444 −79267 0.437
tC×tC 68448 0.124 127019 0.142 126211 0.022 132453 0.026 16836 0.614 213158 0.026 228880 0.045 216756 0.051
TA×FB −4572 0.914 43070 0.277 48427 0.164 −7668 0.886 −98224 0.047 −58493 0.577 −118389 0.356 −124337 0.367

ANOVA of
Model

F P F P F P F P F P F P F P F P
5.94 0.025 9.78 0.001 4.84 0.025 6.07 0.013 6.00 0.027 11.20 0.004 3.89 0.065 6.25 0.023

Terms
BaA Chr BbFL BkFL BaP InP DBA BghiP

Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P Estimate P

Intercept 1313721 <0.01 2811816 <0.01 1123014 <0.01 2316300 <0.01 1119073 <0.01 684561 <0.01 1385816 <0.01 1295837 <0.01
TA 40445 0.556 71199 0.505 45982 0.487 63193 0.542 37583 0.534 36277 0.477 50330 0.529 25631 0.723
FB 114236 0.116 191730 0.092 109445 0.116 185456 0.094 104720 0.103 78600 0.141 144740 0.09 123600 0.109
tC −140096 0.061 −195245 0.087 −128297 0.072 −210611 0.062 −118243 0.07 −97184 0.076 −147187 0.085 −154754 0.052

FB×FB −87526 0.205 −131722 0.218 −69140 0.291 −129254 0.214 −61606 0.303 −44688 0.372 −66594 0.396 -41246 0.56
tC×tC 131432 0.069 184427 0.095 122186 0.077 233996 0.037 123215 0.055 90884 0.086 140501 0.091 197852 0.016
TA×FB −85210 0.349 −196820 0.174 −124487 0.166 −133386 0.332 −99542 0.221 −108560 0.122 −77806 0.458 −150545 0.132

ANOVA of
Model

F P F P F P F P F P F P F P F P
5.07 0.038 2.83 0.112 4.42 0.051 5.13 0.038 4.13 0.058 4.09 0.059 5.17 0.037 9.01 0.008
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Table 4. Optimized factor, individual and composite desirability for the 16 PAHs.

FactorInlet Temperature (◦C)
Optimum

38

Vaporization Flow (mL min−1) 10
Vaporization Time (min) 0.6

Analytes Nap AcPY AcP Flu Phe Ant FL Pyr
Desirability (%) 0.60 0.77 0.89 0.97 1 0.91 0.99 0.85

Analytes BaA Chr BbFL BkFL BaP InP DBA BghiP
Desirability 0.69 0.88 0.83 0.87 0.77 0.89 0.74 0.97

Composite Desirability 0.85

Table 5. GC-MS-SIM mode conditions for the studied PAHs.

Analytes Quantification
ion (m/z)

Retention
Time (min) Analytes Quantification

ion (m/z)
Retention

Time (min)

Nap 128 12.75 BaA 228 17.87
AcPY 152 13.98 Chr 228 17.92
AcP 153 14.16 BbFL 252 19.96
Flu 166 14.51 BkFL 252 20.05
Phe 178 15.24 BaP 252 20.68
Ant 178 15.29 InP 276 24.66
FL 202 16.23 DBA 278 24.75
Pyr 202 16.41 BghiP 276 25.40

Table 6. Repeatabilities for the PTV method.

NO. Analytes RSD (%) NO. Analytes RSD (%)

1 Nap 6.07 9 BaA 1.8
2 AcPY 2.85 10 Chr 1.22
3 AcP 2.99 11 BbFL 1.35
4 Flu 2.08 12 BkFL 1.64
5 Phe 1.34 13 BaP 2.11
6 Ant 1.22 14 InP 1.93
7 FL 1.19 15 DBA 3.77
8 Pyr 1.12 16 BghiP 3.89

3.2. Method Validation

Using the SIM mode, the linearity of the injection method was determined from calibration plots
obtained for three replicate analyses with standard solutions of 0.5, 5, 10, 50, 200 and 300 ng mL−1.
The coefficient of determination (R2) for the 16 PAHs were obtained using linear least-squares
regression. The correlation coefficients of the calibration plots for the 16 PAHs range from 0.9812–0.9998.
The ANOVA of the calibration plots shows that there are no significant differences between the slopes
of standard plots (p-value > 0.05). The results in Table 6 indicate that there are good linear relationships
between peak areas and concentrations in the 0.5–300 ng mL−1 concentration range.

To evaluate the LOD and LOQ, the 0.5 ng mL−1 standard solution was injected and measured.
The results in Table 7 show that for the 25 µL PTV injection, the LODs and LOQs range from
0.016–0.375 ng mL−1 and 0.055−1.25 ng mL−1, respectively. Under the same GC and MS conditions,
2 µL standard solution (0.5 ng mL−1) was analyzed using the conventional splitless-GC-MS-SIM
method. From Table 7, it can be seen that the LODs and LOQs of the splitless-SIM method range
from 0.256–11.811 ng mL−1 and 0.853–39.370 ng mL−1, respectively, much higher than those of the
PTV-SIM method.
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Table 7. Calibration plot regression equations, LODs and LOQs for the PTV and splitless methods.

PTV-SV-GC-MS-SIM Method Splitless-GC-MS-SIM Method

Analytes Regression Equation
y = ax + b

Coefficient of
Determination (R2)

Linear Range
(ng mL−1)

LOD
(ng mL−1)

LOQ
(ng mL−1)

LOD
(ng mL−1)

LOQ
(ng mL−1 )

Nap y = 27455340x − 288480 0.9949 0.5–300 0.082 0.272 0.592 1.974
AcPY y = 47113309x − 617805 0.9923 0.5–300 0.038 0.126 0.344 1.148
AcP y = 39117183x − 355452 0.9957 0.5–300 0.049 0.162 1.322 4.405
Flu y = 37767418x − 335743 0.9975 0.5–300 0.072 0.242 1.948 6.494
Phe y = 60532000x − 696491 0.9964 0.5–300 0.023 0.076 0.596 1.988
Ant y = 61253701x − 357054 0.9987 0.5–300 0.038 0.126 1.020 3.401
FL y = 64609682x − 547300 0.9976 0.5–300 0.016 0.055 0.256 0.853
Pyr y = 68056260x − 518969 0.998 0.5–300 0.032 0.106 0.587 1.957
BaA y = 47673273x − 822250 0.9925 0.5–300 0.067 0.223 1.035 3.448
Chr y = 57229694x − 250860 0.9998 0.5–300 0.066 0.221 0.959 3.195

BbFL y = 40717605x − 783554 0.9895 0.5–300 0.375 1.25 1.676 5.587
BkFL y = 59435860x + 444687 0.9993 0.5–300 0.326 1.087 1.255 4.184
BaP y = 45868925x − 778709 0.9929 0.5–300 0.288 0.962 5.882 19.608
InP y = 31717730x − 741731 0.9812 0.5–300 0.263 0.877 7.160 23.866

DBA y = 63091354x − 1133627 0.9926 0.5–300 0.313 1.042 11.811 39.370
BghiP y = 50702721x − 742759 0.9964 0.5–300 0.183 0.61 10.830 36.101
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In this study, the recoveries associated with the pre-treatment procedure of the samples were
evaluated. A known amount of the analyses at each of three concentrations (100, 50 and 4 ng mL−1)
were added to the Teflon®-coated glass fiber filters and the PUF/XAD/PUF cartridges, respectively.
The sample preparation procedure was described in Section 2.1, and three samples were prepared
at each concentration. Figure 3 shows that the average recoveries range from 86.28%–108.35% for
particle-phase PAHs and 71.83%–108.60% for gas-phase PAHs.
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3.3. Analysis of the Real Sample

The optimized method with a PTV injection volume of 25 µL was used for the analysis of the
real sample obtained by the total cylinder sampling system of the diesel engine. Figures 4 and 5
show the total ion chromatograms in the SIM mode for the real particle-phase and gas-phase extracts,
respectively. The 16 PAH peaks in the particle-phase extract are detected simultaneously and are
well-separated, as shown in Figure 4. In the gas-phase extract, 10 PAHs are detected and separated.
These phenomena indicate that the PTV-SV method can be used for the simultaneous identification
and quantification of PAHs present in diesel combustion. Results obtained from the particle-phase
and gas-phase extracts are listed in Table 8. The concentrations of the 16 PAHs in the particle-phase
extracts range from 2.46−28.53 ng mL−1. The concentrations of the 10 PAHs in the gas-phase extracts
range from 0.23−156.71 ng mL−1, while the concentrations of BbFL, BkFL, BaP, InP, DBA and BghiP are
below their LOQs in the gas-phase sample.
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Table 8. Concentrations of PAHs in the real sample.

Analytes
Sample (ng mL−1)

Particle-phase RSD (%) Gas-phase RSD (%)

Nap 19.77 4.33 156.71 3.55
AcPY 5.11 5.77 23.42 4.84
AcP 5.36 3.57 21.55 5.54
Flu 11.18 11.47 15.31 1.48
Phe 18.29 12.29 5.79 2.79
Ant 2.46 13.44 0.58 12.76
FL 16.66 3.27 0.97 9.77
Pyr 21.38 4.13 0.74 8.98
BaA 23.58 12.06 0.23 13.41
Chr 21.42 11.73 0.41 10.97

BbFL 22.14 8.03 - -
BkFL 18.98 11.53 - -
BaP 16.57 10.12 - -
InP 27.13 5.39 - -

DBA 3.15 12.74 - -
BghiP 28.53 3.72 - -
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4. Conclusions

The PTV-SV-GC-MS-SIM injection method has been optimized for the analysis of 16 PAHs using
CCI design. The initial inlet temperature, vaporization flow and vaporization time are found to
be statistically significant for the 25 µL PTV injection volume. After the optimization of the PTV
injection factors, the initial temperature, vaporization flow and vaporization time are determined to
be 38 ◦C, 10 mL min−1 and 0.6 min, respectively. Validation parameters for the optimized method,
such as linearity, accuracy, LODs and LOQs, are satisfactory for the identification of the 16 PAHs.
The PTV-SV method in the SIM mode is reliable for the simultaneous identification and quantification
of particle-phase and gas-phase samples from diesel combustion.
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