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Abstract: This work reports the synthesis of N-doped porous carbon (NPC) with a high surface area
from Sargassum spp. as a low-cost alternative for electrocatalyst production for the oxygen reduction
reaction (ORR). Sargassum spp. was activated with potassium hydroxide at different temperatures
(700, 750, and 800 ◦C) and then doped with pyridine (N700, N750, and N800). As a result of the
activation process, the 800 ◦C sample showed a high surface area (2765 m2 g−1) and good onset
potential (0.870 V) and current density (4.87 mA cm−2). The ORR performance of the electrocatalysts
in terms of their current density was N800 > N750 > N700 > 750 > 800 > 700, while the onset potential
decreased in the following order: N800 > 800 > 750 > 700 > N700 > N750. The fuel cell performance
of the membrane electrode assembly (MEA) prepared with electrocatalyst synthesized at 750 ◦C and
doped with pyridine was 12.72 mW cm−2, which was close to that from Pt/C MEA on both the anode
and cathode (14.42 mW cm−2). These results indicate that NPCs are an alternative to the problem of
Sargassum spp. accumulation in the Caribbean due to their high efficiency as electrocatalysts for ORR.

Keywords: N-doped porous carbon; Sargassum spp.; oxygen reduction reaction; alkaline fuel cell

1. Introduction

Fuel cells are considered an environment-benign technology providing solutions to a range
of environmental challenges, such as harmful levels of local pollutants, in addition to providing
economic benefits due to their high efficiency [1], the main challenges for fuel cells are to demonstrate
reliability and reduce capital cost [2]. Fuel cells (FCs) use a continuous stream of gaseous and/or
liquid fuels and oxidizers to electrochemically generate electrical output power [3]. Alkaline fuel
cells (AFCs) are excellent, efficient performers with excellent reliability and length of life [4]; their
overall reaction is 2H2 + O2 → 2H2O + electric energy + heat. In an AFC anode, the hydrogen is
catalytically oxidized, 2H2 + 4OH− → 4H2O + 4e−, while, at the cathode, the oxygen is reduced,
O2 + 2H2O + 4e− → 4OH− [5]. The oxygen reduction reaction (ORR) is the primary target for
overpotential reduction in AFCs [6,7]. No single polycrystalline metal catalyzes the ORR as effectively
as Pt [8], but its high cost presents a barrier for AFC commercialization. Due to their earth abundance
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and almost zero cost, the use of biomass-derived materials may be a promising alternative for the
development of high-performance and multifunctional electrocatalysts on a large scale to promote
AFC commercialization.

In previous years, vegetal and animal origin biomasses such as moss [9], lotus stem [10], oil
seed [11], luffa sponge fibers [12], amaranthus [13], pomelo peel [14], brewer’s yeast [15], okara [16],
fish [17], chicken feather [18], porcine blood [19,20], olive oil [21] and waste leather scraps [22,23]
have been reported as carbon and heteroatom precursors for the synthesis of electrocatalysts, as they
have been found to enhance ORR performance. Additionally, through chemical treatments, such as
activation and doping, physicochemical and electrochemical properties can be tuned. Specifically,
KOH activation agents that promote microporosity [24] have been used to synthesize electrocatalysts
towards ORR [12,22,23]. On the other hand, doping with heteroatoms is one of the most effective
methods to tailor the electronic properties of carbon nanomaterials [25], when doping the carbonaceous
framework with heteroatoms, electronegativities and atom sizes could lead to alteration of the electron
densities, resulting in the formation of active centers for ORR and contributing to an improvement in
the electrochemical stability [26]. Among heteroatoms, nitrogen has been the most studied (through
doping agents such as melamine [27], hidrazine [28], dopamine [10]) because its atomic radius is similar
to that of C with one more electron in its valence shell, so n-type electronic modification is created
within the carbon lattice, leading to enhanced electron–donor interactions or the basic properties of
N-doped carbon materials [29]. There are many nitrogen species associated with ORR performance
improvement. First, pyridinic species (N1), which refers to N atoms at the edges of graphene planes,
where each N is bonded to two carbon atoms and donates one p-electron to the aromatic π system,
then pyrrolic ones (N2) where N atoms are integrated into five membered heterocyclic rings, which
are bonded to two carbon atoms and contribute two p-electrons to the π system, finally quaternary
(N3) N atoms are those substituting carbon atoms within the graphene layer [8].

Sargassum spp. is a brown alga (class Cyclosporeae; order Fucales; family Fucaceae; genus
Sargassum) whose proximate composition includes 14.33% moisture, 6.55% protein, 1.90% lipid, 18.50%
ash, 58.72% carbohydrate, and 17.00% fiber [30]. The Sargasso Sea is one of the main distribution areas
of the so-called gulf-weed; here, it forms a holopelagic population and maintains itself by vegetative
growth only [31]. During June 2011, pelagic Sargassum began washing ashore along the Caribbean,
Gulf of Mexico, West African, and Brazilian coastlines in unprecedented quantities [32]. Studies
inferred that dissolved organic nutrients from this weed may have been taken up and contributed to
the development and persistence of blooms during the macroalgal bloom period in 2012 [33]. However,
green tides along the coasts of the Yellow Sea also reached their record by 2013, when a major event
reportedly occurred [34]. Later, the total biomass dry weight collected from Atalaia beach was 53.9 tons
for the 2014 events and 301.26 tons for 2015. This confirmed the intensity of the algal bloom along
the Northern Brazilian coast in 2015, where around 3243 tons of Sargassum spp. wet weight were
stranded [35]. Later, in 2016, after a severe algal bloom, Chilean aquaculture experienced extreme
mortalities of 40 million farmed salmon, which caused a financial loss of US $800 million [36]. This
year, Sargassum has already arrived at the Mexican Caribbean coasts; however, a new, unexplored
opportunity has arisen for this sustainable and Earth-abundant source to be used as an opportunity
for fuel cell commercialization, rather than simply being an economical threat.

In 2016, Liu et al. extracted sodium alginate from seaweeds, mixed it with graphene and FeCl3
solution and calcinated it at 700 ◦C in NH3 to prepare an aerogel with physicochemical properties of
ID/IG = 0.95 and 465 m2 g−1 surface area as well as an ORR performance by the four electron-transfer
pathways of −4.5 mA cm−2 [37]. Further, our metal-free electrocatalyst approach appeared in the
study performed by Song et al., where pyrolyzed seaweeds (Undaria pinnatifida) were exposed to a N2

flow for 5 h at 1000 ◦C, followed by 3 M HCl acid treatment for 24 h. When the nitrogen content was
1.8 wt % in the bulk, this process resulted in a surface area of 1218 m2 g−1; however, it is noteworthy
that quantities of 27.0%, 21.0% and 43.5% of N1, N2 and N3 were found, respectively. Additionally, the
ORR performance was 0.972 V vs. Ag/AgCl (onset potential) and 4.5 mA cm−2 (current density) at
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1600 rpm in KOH [38]. In this work, we proposed a feasible synthesis route using Sargassum spp. as a
sustainable and Earth-abundant carbon source for the synthesis of NPC as metal-free electrocatalysts
for alkaline fuel cell applications.

2. Experimental Method

2.1. Metal-Free Electrocatalyst Synthesis

Electrocatalysts were prepared according to the method reported previously by
Perez–Salcedo K. Y. et al. [39], but pyrolysis was performed in an argon atmosphere at three
different temperatures, meaning that the activated samples were denoted as 700, 750, and 800. After
activation, doping treatment was performed with pyridine (C5H5N, Sigma-Aldrich, 99.8%, Saint Louis,
MO, USA) as a nitrogen source. N-doped samples were labeled as N700, N750, and N800. The
synthesis process and nomenclature is summarized in Table 1.

Table 1. Nomenclature to identify the synthesized electrocatalysts.

Nomenclature Description

700 Grounded and washed raw sample (RS) impregnated at 1:2 RS/KOH ratio
for 1 h, pyrolyzed in Ar@700 ◦C and 2 M HCl acid washing at 95 ◦C

750 Grounded and washed raw sample (RS) impregnated at 1:2 RS/KOH ratio
for 1 h, pyrolyzed in Ar@750 ◦C and 2 M HCl acid washing at 95 ◦C

800 Grounded and washed raw sample (RS) impregnated at 1:2 RS/KOH ratio
for 1 h, pyrolyzed in Ar@800 ◦C and 2 M HCl acid washing at 95 ◦C

N700 700 sample doped with C5H5N in autoclave at 180 ◦C for 24 h
N750 750 sample doped with C5H5N in autoclave at 180 ◦C for 24 h
N800 800 sample doped with C5H5N in autoclave at 180 ◦C for 24 h

2.2. Physical Characterization

Morphological characterization was carried out by scanning electron microscopy (SEM) in a
JSM-6360LV, JEOL, Mundelein, IL, USA, equipment. Samples were dried and coated with a gold film
in a sputter coater instrument. Additionally, electrocatalysts were analyzed by energy dispersive
spectroscopy (EDS). The Brunauer–Emmett–Teller (BET) surface area was characterized in BET
equipment (Bel MicrotracBel, Belsorp-max, Osaka, Japan) by degassing the samples at 200 ◦C for 6 h.
The elemental analysis was carried out using an Organic Elemental Analyzer (Thermo Scientific, 2000,
Milan, Italy); the measurements were repeated in duplicate with the mean value reported. Structural
properties were characterized by Raman spectroscopy in an equipment (DXR xi, Thermo Scientific,
Madison, WI, USA) with a He-Ne gas laser (λ = 633 nm). X-ray diffraction (XRD) patterns were
obtained with a Bruker D2 Phaser apparatus (D2 Phaser, Bruker, Karlsruhe, Germany) with a step
size of 0.0101 2θ degrees and 4.75 step per s, in a range from 9.99 to 99.99 2θ degrees. Finally, surface
elemental analysis was conducted by X-ray photoelectron spectroscopy (XPS) using a spectrophometer
(K-Alpha, Thermo Scientific, East Grinstead, UK) equipped with an Al-Kα X-ray source at 12 kV;
spectra calibration was done using C1s at 284.5 eV as a reference.

2.3. Electrochemical Measurements

Electrochemical experiments were carried out in a conventional three-electrode test cell at room
temperature using a PAR Bistat Potentiostat (Princeton Applied Research, Oak Ridge, TN, USA)
connected to a rotating disk electrode set-up. A mixture of 15 µL Nafion (5 wt %) solution, 500 µL
2-propanol, and 10 mg electrocatalysts was sonicated in an ultrasonic bath for 40 min, and commercial
10% platinum was also prepared for comparison purposes. Thirty microliters of catalytic ink dispersion
was dropped onto the polished glassy carbon substrate (5 mm diameter). Cyclic voltammetry (CV)
was performed from 1.2 V to 0.0 V vs. the reversible hydrogen electrode (RHE) potential window
at a 20 mV s−1 scan rate for 3 cycles in N2-saturated 0.5 M KOH electrolyte; an activation treatment
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was performed at a 50 mV s−1 scan rate for 40 cycles before all measurements. ORR performance
was studied using the rotary disk electrode (RDE) technique in O2 saturated 0.5 M KOH, and all
background current was corrected by subtracting the data obtained in N2-saturated electrolyte under
the same measurement conditions. Linear sweep voltammetry (LSV) experiments at 200, 400, 800,
1200, 1600, and 2000 rpm rotation rates were conducted from 1.2 V to 0.0 V vs. the RHE potential
window at a 5 mV s−1 scan rate using a coiled platinum wire as the counter electrode and Ag/AgCl
(KCl saturated) as the reference electrode.

2.4. Fuel Cell Studies

Membrane electrode assembly (MEA) performance was evaluated using a Greenlight Test Station
(G40 Fuel cell system, Hydrogenics, Vancouver, BC, USA). The MEA, gas diffusion layer (GDL), and
gasket were assembled in the single cell, with each bolt under uniform torque (4.5 N m). Single cells
were tested at 30 ◦C with humidified hydrogen and oxygen at the anode and cathode, respectively, at a
0.5 L min−1 flow rate, under atmospheric pressure, and in 100% relative humidity. The GDL and MEA
were fabricated as described below.

For GDL, a 15 × 15 cm carbon paper substrate (0.40 mm thickness non-woven, GD07508G,
Hollingsworth & Vose Company, Walpole, MA, USA) was coated in equipment (Easycoater equipment,
EC26) with a homogeneous suspension made of 843.75 mg pure carbon black (nano-chain Pureblack
carbon, grade 205-110, Superior Graphite Co.), 281.25 mg vapor-grown carbon fiber (VGCF, Showa
Denka, Toyama, Japan) and 270 mg sodium dodecyl sulfate (SDS, Fisher Scientific, Pittsburgh, PA,
USA) dispersed in 13.5 mL of water and mixed by sonicating for 30 min and stirring for 1 h at 60 rpm.
Then, 30 wt % of polytetrafluoroethylene (PTFE, TE-3859 from DuPont Fluoroproducts, Wilmington,
DE, USA) was added to the mixture. Bubbles were avoided during the coating process. The coated
substrate was dried at room temperature overnight and sintered at 350 ◦C for 30 min. Then, it was
washed with distilled water for 30 min.

MEA was obtained by coating both sides of the anion exchange membrane (FAA-3-50, Fumatech
BWT, Bietigheim-Bissingen, Germany), and this was kept in 1 M KOH solution overnight to replace
Br− with OH−. To prepare the anode catalyst layer, a catalyst ink of 50 mg 46 wt % Pt/C (TKK, Tanaka
Kikinzoku Group, Tokyo, Japan), 0.2 mL water, 1.2 MeOH, 0.8 mL tetrahydrofuran (THF), and 0.1 mL
FAA-3 was made. The mixture was sonicated in an ultrasonic water bath for 10 min and stirred for
10 s (repeated three times). The ink was spray-coated onto the 5 cm2 active area membrane and dried
at room temperature. For the cathode catalyst layer, ink was prepared by mixing 50 mg electrocatalyst
powder in 1.2 MeOH, 0.8 mL THF, and 0.1 mL FAA-3. The mixture was treated ultrasonically for
10 min and stirred for 10 s (repeated three times), and then the membrane was coated. Commercial
Pt/C was also spray-coated to allow a fuel cell performance comparison.

3. Results and Discussion

3.1. Physicochemical Characterization

Elemental analyses of C, H, N, and S weight percentages were performed to obtain a better
understanding of the electrocatalysts’ compositions. The results including the standard deviations
from the triple measurements for each electrocatalyst are summarized in Table 2. It can be observed that
after activation treatment at 700, 750, and 800 ◦C, nitrogen disappeared. This was because macroalgae
have a low nitrogen ratio, which can result in nitrogen loss during pyrolysis treatment as NH3, N2O,
or even HCN, as reported by composting algae studies [40]. After C5H5N doping, a low amount
of nitrogen was incorporated to the material, which, according to previous studies, can be tuned by
manipulating the solvothermal treatment temperature. On the other hand, seaweeds contain sodium
alginate [41] and high amounts of calcium carbonate (CaCO3) [39], therefore, the samples pyrolyzed at
the highest temperature (800 and N800) showed the highest post-pyrolysis carbon amount (68.86 and
80.95 wt %, respectively) among all samples. Finally, the sulfur content was low for the 700 and
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750 samples, lower than the detection limit for 800, and dropped to zero after doping treatment for all
three sample types. It is noteworthy that these carbon and sulfur contents are in agreement with the
amounts found from the EDS results discussed below.

Table 2. Analysis of elemental CHNS composition (wt %) of the electrocatalyst bulk.

Sample Nitrogen (wt %) Carbon (wt %) Hydrogen (wt %) Sulphur (wt %)

700 0.00 ± 0.00 58.95 ± 0.01 3.49 ± 0.31 0.36 ± 0.28
750 0.00 ± 0.00 67.37 ± 0.69 2.48 ± 0.18 0.53 ± 0.07
800 0.00 ± 0.00 68.86 ± 0.36 3.62 ± 0.38 0.00 ± 0.00

N700 0.87 ± 0.07 74.58 ± 0.08 2.77 ± 0.22 0.0 ± 0.0
N750 0.71 ± 0.01 74.8 ± 0.69 1.99 ± 0.28 0.0 ± 0.0
N800 0.79 ± 0.02 80.95 ± 1.78 1.37 ± 0.09 0.0 ± 0.0

The electrocatalysts’ N2 adsorption–desorption isotherms are presented in Figure 1a. They exhibit
a type I shape associated with microporous solids. In particular, N750 shows type H3 hysteresis, which
is typical in solids consisting of aggregates or particle agglomerates forming slit-shaped pores with
a nonuniform size and/or shape [42]. The MP plot shown in Figure 1b confirms the electrocatalysts’
microporosity with the majority of micropores being between 0.5 and 1.0 nm. The isotherms’ textural
properties are summarized in Table 3. The synthesized electrocatalysts had high BET surface areas,
which suggests a greater availability of active sites for the ORR to occur. As expected, the BET surface
area increased with each heat treatment; N800 showed the highest surface area (2765 m2 g−1) because
the acid treatment removed any alkaline or inorganic residue when cleaning its structure. To the best
of our knowledge, this is the highest surface area reported for electrocatalysts from biomass wastes
used for ORR performance studies.
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The electrocatalysts mesoporous structures are given in Figure 2a–f. In accordance with the
surface area results, the micrographs show similar highly porous structures. It can be seen that after
doping treatment, such pore structures remained, but Figure 2e,f clearly display some agglomerates
and fragments that could have been formed due to the doping treatment. EDS spectra confirmed the
presence of inorganic compounds (2.29 wt % calcium, 1.29 wt % chloride, 0.96 wt % sodium, 0.86 wt %
potassium and 0.66 wt % magnesium) in the raw Sargassum spp. which were completely removed after
activation and doping treatment. Moreover, the carbon content increased after chemical treatments
from 53.67 wt % in raw seaweed to 83.85, 85.42, 85.89, 83.20, 87.29, and 88.12 wt % for 700, 750, 800,



Energies 2019, 12, 346 6 of 15

N700, N750, and N800, respectively. The sulfur content decreased after doping treatment, confirming
the CHNS elemental analysis results. On the other hand, 0.06, 0.03, 0.04, 0.13, 0.17, 0.16 wt % chloride
was found in 700, 750, 800, N700, N750, and N800, respectively.

Table 3. Textural properties of the synthetized samples from Sargassum spp.

Electro-Catalysts Surface Area Correlation
Coefficient

Mean Pore
Diameter

Pore Volume
(P/P0 = 0.990)

(m2 g−1) r (nm) (cm3 g−1)

700 1790 0.9999 1.80 0.8057
750 1975 0.9998 1.85 0.9116
800 2263 0.9999 1.92 1.0886

N700 2513 0.9999 1.21 0.7576
N750 2594 0.9999 2.54 1.2437
N800 2675 0.9998 1.76 1.1765
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Furthermore, the Raman spectra were studied to understand the structure and quality of the
carbon materials. D- and G-band existence was confirmed for the 700, 750, 800, N700, N750, and N800
samples. As presented in Figure 3a, the D-band (1354 cm−1) corresponds to a defective sp3-phase and
the G-band (1588 cm−1) to an ordered sp2-phase [26]. The D-band was present more often than the
G-band for all electrocatalysts and structural properties, and defective sites were determined through
the D-band and G-band relationship (ID/IG), providing information regarding the surface defects.
In particular, sample 700 presented a lower index (ID/IG = 1.35 ± 0.03), indicating that it had fewer sp3

carbon defects and more sp2 carbon. Sample 750 showed a slightly superior index (ID/IG = 1.44± 0.03),
suggesting that the number of defects increased as the chemical treatments were applied. Finally,
sample 800 was the most disordered sample (ID/IG = 1.47± 0.03), providing evidence that the disorder
degree was affected by the temperature. Likewise, N-doped electrocatalysts showed an enhancement
in D-band intensity, leading to higher ID/IG indices of 1.40± 0.01, 1.45± 0.01, and 1.44± 0.02 for N700,
N750, and N800, respectively. Finally, the amorphous nature of the electrocatalysts was confirmed in
Figure 3b by the amorphous carbon diffraction patterns.
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Figure 3. (a) Raman spectra and (b) XRD patterns of electrocatalysts synthesized from Sargassum spp.
at different temperatures.

XPS studies were carried out to investigate the surface composition and chemical bonding of the
electrocatalysts. The atomic concentrations of carbon, oxygen, nitrogen and sulphur were obtained
from the survey and are summarized in Table 4. High-resolution spectra were obtained for C1s, N1s,
and O1s and are shown in Figures 4 and 5. The fitting was done at 284.5 eV using C1s as a reference.
Carbon was the most abundant element with 90.16, 89.63, 87.32, 89.08, 90.94, and 93.06 wt % for 700,
750, 800, N700, N750, and N800, respectively. C1s peaks located at 284.5 ± 0.2 eV corresponded to
C=C/C–C [43], while peaks at 285.9 ± 0.1 and 287.2 ± 0.1 eV were assigned to amorphous carbon
and sp2 carbon atoms bonded to oxygen, respectively [44]. The peaks located at 288.6 and 290.0 eV
were assigned to C–O bonds (O–C–O/C=O and O–C=O, respectively), and the peak at 291.5 ± 0.1
was related to the π–π* shake-up satellite, which is common in high-temperature treated carbons [44].
High-resolution spectra for N1s showed peaks which were assigned as follows: N1 from 398.1 to
399.3 eV; N2 from 399.8 to 401.2 eV, and N3 from 401.1 to 402.7 eV [23]. Pyridine treatment eliminated
the sulphur from doped samples and changed the nitrogen-bond type. Originally, all samples presented
N1, but, after C5H5N treatment, the nitrogen shifted to N2 and N3, while the N1 type disappeared.

Table 4. X-ray photoelectron spectroscopy (XPS) data of the chemical surface composition of
electrocatalysts before (700, 750, and 800) and after C5H5N doping (N700, N750, and N800).

Elemental Composition from XPS (at.%) Nitrogen Chemical States. Relative Concentration
(%) and Binding Energy (eV)

Sample C1s O1s S2p N1s N1 Pyridinic N2 Pyrrolic N3 Graphitic

700 90.16 6.83 2.24 0.77 15.8 (399.3) 57.4 (399.9) 26.7 (402.7)
750 89.63 6.88 2.22 1.27 25.5 (398.1) 41.5 (400.06) 33.0 (402.7)
800 87.32 8.11 3.12 1.45 19.1 (399.3) 56.2 (400.02) 24.7 (402.7)

N700 89.08 8.27 0.00 2.65 – (–) 77.3 (399.98) 22.7 (402.7)
N750 90.94 7.22 0.00 1.84 – (–) 77.6 (400) 22.4 (402.7)
N800 93.06 6.19 0.00 0.75 – (–) 73.7 (399.93) 26.3 (402.7)
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3.2. Electrochemical Characterization

The electrocatalytic activity of the as-prepared NPC was studied using the rotating disk electrode
(RDE) technique with linear sweep voltammetry (LSV) in a three-electrode system. Figure 6a shows the
ORR polarization curves catalyzed by 700, 750, 800, N700, N750, N800, and 10% commercial Pt/C in
O2-saturated alkaline electrolyte (0.5 M KOH) at a 5 mV s−1 scan rate and 2000 rpm. All measurements
were performed at room temperature under the same conditions and catalyst load, and the background
currents were subtracted. Current density values were determined at 0.0 V and the onset potential,
as reported in literature [45]; these are summarized in Table 5. In the LSV data, it is noteworthy that
the current density increased in parallel with the rotation rate, but none of the samples reached the
plateau of the diffusion limiting current
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Figure 6. (a) Linear sweep voltammetry (LSV) assessment of metal-free electrocatalysts at 2000 rpm
and a 5 mV s−1 scan rate in O2-saturated 0.5 M KOH solution and (b) cyclic voltammetry (CV) in
N2-saturated alkaline electrolyte (0.5 M KOH) at a 20 mV s−1 scan rate.

Table 5. Electrocatalytical parameters of the oxygen reduction reaction (ORR) performance.

Electrocatalysts Current Density (mA cm−2 at 0.0 V) Onset Potential (V vs. RHE)

700 2.93 0.827
750 3.89 0.828
800 3.34 0.843

N700 4.15 0.812
N750 4.32 0.811
N800 4.87 0.870

10% Pt 4.03 1.010

The ORR polarization plots show that the pyrolysis temperature played an important role in
the ORR activity. Both undoped and N-doped electrocatalysts exhibited good performance for the
ORR. As expected, slower ORR kinetics were shown at the lowest temperature for the 700 sample,
whose cathode reduction peak appeared at 0.827 V leading to a maximum current of 2.93 mA cm−2.
In addition, the doping of sample 700 improved its performance, as revealed by the N700 current
density value (4.15 mA cm−2); however, it exhibited a more negative potential (0.812 V), which could
be associated with physicochemical properties, such as its low nitrogen content.

In addition, when the catalysts were synthesized at 750 ◦C, the current density improved as
compared with samples at 700 ◦C. Specifically, it increased by 33% (3.89 mA cm−2), probably due to its
larger surface area and nitrogen content, and increase in disorder, as studied by Raman spectroscopy,
while its onset potential remained constant (0.828 V). In the same way, doping of the 750 sample
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improved its current density to 4.32 mA cm−2, but its N750 onset potential shifted to a more negative
value (0.811 V).

Finally, at the highest temperature, more positive onset potentials were shown by the 800 and
N800 samples. In particular, the N800 sample showed a well-defined curve and the best ORR activity,
possibly as a result of having the highest surface area among all samples.

In brief, the electrocatalyst activity order in terms of the current density was N800 > N750 > N700
> 750 > 800 > 700, while the onset potential decreased in the following order: N800 > 800 > 750 > 700 >
N700 > N750.

In general, the ORR performance of the electrocatalysts was attributed to their structures, namely,
the increase in active sites, which facilitate oxygen diffusion and electron transport.

The results of the electrocatalyst cyclic voltammetry (CV) assessment in N2-saturated alkaline
electrolyte (0.5 M KOH) at a 20 mV s−1 scan rate under room temperature conditions are presented in
Figure 6b. All samples exhibited a pseudo-rectangular shape, which is associated with good charge
propagation throughout the porous carbon framework, as well as good electronic conductivity and an
accessible porous structure [46].

The K-L plots shown in Figure 7 were obtained from RDE polarization curve data recorded at
various rotation rates (200, 400, 800, 1200, 1600, 2000 rpm) applying j−1 = j−1

k + B−1ω−1/2, where j is
the absolute measured current density (mA cm−2), jk is the kinetic current, ω is the electrode rotation
rate (rpm), and B is determined from the K-L graph slopes.
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Figure 7. K-L plots of J−1 vs. ω−1/2 obtained from electrocatalysts (through Linear
sweep voltammetry).

Based on the K-L plot slopes and the intercepts obtained from 0.2 to 0.6 V vs. RHE (V vs. RHE),
Figure 8 shows the electron-transfer numbers (n) calculated from the B = 0.2nFD2/3

0 v−1/6C0 equation,
where n is the total number of transferred electrons per O2 molecule, F is the Faraday constant
(96,485 C mol−1), D0 is the O2 diffusion coefficient (1.9 × 10−5 cm2 s−1), C0 is the O2 global
concentration (1.0 × 10−6 mol cm−3) [47], and υ is the electrolyte kinetic viscosity (0.01 cm2 s−1) [10].
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Figure 8. Electron-transfer numbers obtained from K-L plots for each synthesized electrocatalyst.

According to the slopes of the K-L plots, the averaged ORR electron transfer numbers were 3.4,
3.1, 3.5, 1.2, 2.2, and 3.7 for 700, 750, 800, N700, N750, and N800, respectively. There was a first-order
dependence between 700, 750, 800, and N800 ORR kinetics and potentials from 0.2 to 0.5 V vs. RHE
that proceeded mainly through a four-electron reduction pathway (2H2O + O2 + 4e− → 4OH−). For
these electrocatalysts, as the potential increased, the number of transferred electrons decreased to
around 3.5; hence, both electron pathways coexisted for these materials. In contrast, the N700 and
N750 kinetics reactions followed a mechanism closer to a two-electron transfer at potentials lower than
0.55 V.

A brief comparison of the yield vs. other doped biomasses is provided in Table 6 for more insights.

Table 6. Comparison among doped biomass used for electrocatalysts synthesis for ORR in
alkaline media.

Carbon
Source

Sample CHNS XPS N1s ORR Test Conditions Onset
Potential

(V vs. RHE)

Current Density
at 0.2 V vs. RHE

(mA cm−2)

Reference
Sample N (%) N1 N2 N3 KOH RPM mV s−1

soybeans Fe/C-SOYB-A 4.6 31 47 22 0.1 1600 — 0.790 2.5 [48]

zpig blood N-CNT(800) 2.8 52 33 14 0.1 1600 5 0.910 3.4 [20]

moss TMC900 4.4 37 32 26 0.1 1100 10 0.935 4.8 [9]

RS 700 0.0 16 57 27 0.5 2000 5 0.827 2.7 This work

RS 750 0.0 26 42 33 0.5 2000 5 0.828 3.3 This work

RS 800 0.0 19 56 25 0.5 2000 5 0.843 2.9 This work

RS N700 0.9 0 77 23 0.5 2000 5 0.812 2.9 This work

RS N750 0.7 0 78 22 0.5 2000 5 0.811 3.8 This work

RS N800 0.8 0 74 26 0.5 2000 5 0.870 4.0 This work

3.3. Fuel Cell Studies

Figure 9 presents the fuel cell polarization and power density curves from MEA with NPC at
30 ◦C and 100% relative humidity using H2 and O2 gases prepared as described above. A correlation
parameter brief for each cathode is provided in Table 7. The anode loadings were 0.4 mg Pt cm−2

(34 wt % Pt, 40 wt % C, and 25% ionomer), while, at the cathode, they were 4, 1, 4, 2, 2, and 2 mg cm−2

(75 wt % electrocatalysts and 25% ionomer) for 700, 750, 800, N700, N750, and N800, respectively.
All samples outperformed the 700 sample’s onset potential, indicating higher activity because of the
N-doping effect and the pyrolysis temperature increase. The doping of the 700 sample influenced
its polarization curve shape, as N700 demonstrated a higher activity (peak power 9.427 m2 g−1 and
0.793 V) than the 700 sample. Both 750 and N750 showed similar OCVs, but different peak power
densities. At 0.8 V, N750 performed slightly better than 750, but in the mass transport area, 750 had the
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best performance. Although 800 and N800 had the highest temperatures, and N800 had the highest
BET surface area (2675.4 mA cm−2), they exhibited a mass transfer limitation at a low potential (starting
at 0.55 V), whereas samples at 700 and 750 ◦C did not. It is noteworthy that low loading cathodes
(750 = 1.14 mg cm−2 and N750 = 1.59 mg cm−2) exhibited the best performance, so further electrode
optimization must be performed, as both anode and cathode catalyst loading must be constant in order
to get comparable results.Energies 2019, 12, x FOR PEER REVIEW 25 of 16 
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Table 7. Fuel cell parameters for electrocatalysts tested at 30 ◦C and 100% relative humidity using H2

and O2 gases.

Sample Imax (mA cm−2) OCV (V vs. RHE) Pmax (mW cm−2)

700 21 0.627 6.189
750 39 0.793 9.427
800 21 0.784 5.856

N700 21 0.754 8.570
N750 33 0.784 12.723
N800 18 0.774 6.189

Pt 10% 42 0.925 14.422

To summarize, the performance improved as the temperature increased from 700 to 750 ◦C, but
further temperature increase reduced the power density. Additionally, the doping treatment favored
the power density for each temperature, so that the maximum power density of the MEA prepared
from NPC was 12.72 mW cm−2 from N700, which was close to that from Pt/C MEA on both the
anode and cathode (14.42 mW cm−2). The performance of N750 is attributed to its graphitic nitrogen
(22.4 wt %) content, high surface area (2594.3 m2 g−1), and high disorder structure, as studied by
Raman spectroscopy. Compared to the Pt/C current density (42 mA cm−2), 750 and N750 were shown
to be competitive, and their low production costs make them an efficient catalyst for AFC.

4. Conclusions

Electrocatalysts were synthesized by KOH activation and C5H5N doping of Sargassum spp. The
surface area and pore volume decreased in the following order: 800 > N800 > 750 > N750 > 700 > N700.
Chemical treatments performed with N700 allowed the surface area to increase from 60 m2 g−1 to
2513, 2594, and 2675 m2 g−1 for N700, N750, and N800, respectively.

The ORR performance of the electrocatalysts in terms of their current density was N800 > N750
> N700 > 750 > 800 > 700, while the onset potential decreased in the following order: N800 > 800 >



Energies 2019, 12, 346 13 of 15

750 > 700 > N700 > N750. N800 presented the best ORR performance with the highest onset potential
(0.870 V) and current density at 0.0 V vs. RHE (4.87 mA cm−2); this current density value is higher
than commercial 10% Pt/C (4.0 mA cm−2). The fuel cell performance of the MEA prepared with an
electrocatalyst synthesized at 750 ◦C and doped with C5H5N was 12.72 mW cm−2, which was close
to that from Pt/C MEA on both the anode and cathode (14.42 mW cm−2). The performance was
attributed to the high surface area, nitrogen content, defective structure, and graphitic nitrogen species
found in Sargassum spp., which indicates that NPCs are an alternative to the problem of Sargassum spp.
accumulation in the Caribbean due to their high efficiency as electrocatalysts for ORR.
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