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Abstract: Nowadays, awareness concerning the need to use energy efficiently is increasing significantly
worldwide, thus, improving the energy efficiency levels in the building sector has acquired high
importance because of their energy saving potential. However, several intervention options are
available to achieve high energy efficiency levels in buildings, and the choice must be made
considering the efficiency of the solution and the costs involved. Considering this, the present
research aimed to develop a parametric study of several energy retrofit solutions for buildings
located in the hot-humid climate of Paraguay, in order to analyse their efficiency in terms of comfort
rates and cooling energy needs. Furthermore, the Analytic Hierarchy Process (AHP) is employed
as a decision-making method to choose the most suitable intervention considering the investment
costs required. Thus, threshold values of thermal transmittance for the building thermal envelope
components are established through a parametric study and sensitivity analysis of the simulations
results. Considering that Paraguay does not have national building energy codes, the outcomes
of this research will constitute a support and contribute for the thermal parameters regulation of
buildings aiding to improve the energy efficiency of Paraguayan buildings.

Keywords: energy retrofit solutions; buildings energy efficiency; energy requirement; AHP

1. Introduction

Currently, strategies to optimise buildings’ energy efficiency (EE) have become of outstanding
importance. The architectural characteristics of buildings and physical properties of materials, such as
thermal resistance, structural material, thermal mass, the orientation and shape, are some of the most
important parameters influencing buildings’ thermal performance [1]. The use of thermal insulation
materials for the building envelope components is one of the most often used methods to improve
their thermal performance. In fact, in order to accomplish the EE requirements set in the regulations
and energy codes of several countries, the use of these materials has increased significantly in the last
years [2].

The referred standards set specific parameters for the buildings’ envelope components in order
to attain thermal comfort inside the building with lower energy expenditure. Some of the most
used parameters are the thermal resistance or thermal transmittance of buildings’ components [3].
Considering one-dimensional steady-state thermal conduction of a constructive component of the
building (such as roofs or walls), these parameters represent the heat transfer taking place through
the referred constructive component [4]. Nonetheless, many parameters can be analysed, and several
options of intervention can be used to achieve better EE levels in buildings. Different multi-criteria
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decision-making processes are available to support such a choice, and an extensive review of them can
be found in [5,6].

One of the widely used is the Analytic Hierarchy Process (AHP) developed by Saaty [7]. It is
a subjective method for analysing qualitative criteria where all parameters or criteria are allocated
with a weight indicating the importance of each criterion. A hierarchical structure is used to model
the decision-making process. For each hierarchical level, the decision-maker must make a pairwise
comparison between the alternatives and the criteria, employing a scaling ratio for the weighing of
attributes. The method determines the priorities of the decision alternatives, making possible to create
a ranking, as well as allowing the verification of the internal consistency of the weighting assigned to
each criterion [8]. Thus, the AHP method provides, as a result, a plan of preference and alternatives
based on the level of importance given to the different criteria [9]. Several scientific investigations were
developed using the AHP method for the relevance evaluation of different refurbishment buildings
options [10–14], as well as to compare and choose the best energy efficiency policies at national level
according to each economic sector [15–18]. Further details regarding the AHP method can be found
in [19,20].

As previously referred, several options of intervention are available to increase buildings thermal
performance, and the choice must be made considering the efficiency of the solution and the possible
costs involved. Considering this, this paper aims to develop a parametric study of several energy
retrofit solutions for a building located in the hot-humid climate of Asunción, Paraguay, in order to
analyse their efficiency in terms of comfort rates and cooling energy needs. Furthermore, the AHP is
employed as the decision-making method to choose the most appropriate intervention considering
the investment costs required. The general objective of this research work is to establish threshold
values of thermal transmittance for building thermal envelope components, in order to contribute to
the regulation of thermal parameters to improve the EE of Paraguayan buildings.

2. Methodology

This research has mainly seven steps briefly described below and summarised in Figure 1:

(a) Taking as a base the original state of the building, and holding constant orientation, window size,
window shading and input parameters for the simulations, different window glazing types, and
different configurations for roofs and walls were evaluated;

(b) Considering the results in terms of comfort rates, cooling needs and the costs associated for each
configuration evaluated in (a), the Analytic Hierarchy Process was applied to choose the best
configuration for the roof, walls and glazing type;

(c) Once figured out the most recommended configuration for the building envelope components,
the sensitivity of the building under different insulation thicknesses for roofs and walls analysing
comfort rates and cooling needs was assessed;

(d) Considering the results in terms of comfort rates, cooling needs and the costs associated for each
insulation thickness evaluated in (c), the Analytic Hierarchy Process was applied to choose the
best insulation thickness for roof and walls;

(e) The building employing the best configurations of roofs, walls and glazing to evaluate the energy
efficiency version was simulated;

(f) Taking as a base the energy efficiency version of the building used in (e), the building was rotated
180◦ to evaluate its performance with a different orientation, holding constant the configurations
of walls and roof.

(g) With the energy efficiency version of the building in the original orientation and rotated 180◦,
holding constant the glazing type and the walls and roofs configurations, and according to
the orientation, using or not, window shading systems, different window-wall-ratio (WWR)
were evaluated.
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A parametric study is developed in this research, in which dynamic energy simulations of a
building performed using the EnergyPlus software and DesignBuilder interface. The weather data
employed is the default one available in DesignBuilder for Asunción (Paraguay). The weather station
corresponds to the Silvio Pettirossi airport, and the dataset cover a period of 18 years, from 1982 to 1999
for most stations. These hourly weather data are ‘typical’ data derived from hourly observations which
correspond to a record of multiple years, where each selected month is representative of that month
for the period of record [21]. The parameters used as evaluation indicators were operative temperature
(Top), which is employed to determine the discomfort rates, and the energy requirement of the thermal
zone under analysis. The internal and external surface temperatures (Tsi. and Tse, respectively), and
the heat transfer through the building’s envelope are also studied.

The discomfort rate is computed considering two methods: the former, according to the acceptable
indoor operative temperatures for buildings in the Category II of the standard EN 15251 for the design
of buildings without mechanical cooling systems [22], which employs the adaptive method [23];
and the latter, applying the statistic method, using fixed threshold values of comfort temperature.
This approach was already adopted for the thermal comfort assessment of buildings by several
scientific research [24–29].

In order to set the fixed range for the city of Asunción, which does not have a national standard
energy code, a scientific literature analysis was performed. The static models usually set fixed
thresholds values of comfort temperatures, and they have been widely used in a significant number
of thermal regulations around the world. In Portugal, the thermal regulation sets as acceptable
temperatures the range between 18–25 ◦C [30]. In Chile, the Sustainable Construction Code considers
acceptable the temperatures between the range of 18–26 ◦C [31]. In Brazil, the NBR 16401-2 [32] sets, as
acceptable temperatures, the range between 23–26 ◦C in the summer season with a relative humidity of
35%. The Chartered Institution of Building Services Engineers (CIBSE) [33] recommends a benchmark
summer peak temperature of 28 ◦C for dwelling’s living areas.

In addition, several scientific research has been developed to set thresholds values of comfort
temperature considering the climate under analysis. Lu et al. [34] developed a field study of thermal
comfort in a building without cooling systems located the tropical island climate of China; the
results suggest an admissible comfort temperature range for the residents from 23.1 ◦C to 29.1 ◦C.
Djamila et al. [35] explored the thermal perceptions of people in the humid tropics of Malaysia
employing different thermal perception approach; the results suggest that the optimum temperature
was found to be about 30 ◦C.

The research developed by Lopez et al. [36] may be the sole work assessing thermal comfort
conditions taking as case study Paraguay. For the referred work, three naturally-ventilated buildings
in Asunción were evaluated, and the results were compared to three different methodologies.
The outcomes of the research proven that heat discomfort was overestimated by the standard ISO 7730
when air temperature values exceeded 30 ◦C since users reported neutral thermal conditions, while
the method indicated intense heat discomfort. Furthermore, it was stated that methods employing
equations as a function of the outdoor climate variables could successfully adjust to the hot-humid
climatic context. In this way, it is possible to assert that the occupants of naturally-ventilated buildings
have a higher tolerance of high temperatures and greater thermal comfort range. Considering the fixed
ranges employed by the reviewed standards and those obtained from scientific researches, the fixed
range used for this research was 18 ◦C to 27 ◦C.

Thus, annually, weekly and daily indoor air temperature profiles are modelled hourly for the
thermal zone presenting the worse thermal performance and, the percentage of the simulated time
in which the operative temperatures exceed 27 ◦C or the value recommended by the EN 15251 for
buildings in the Category II, corresponds to the overheating rate. Similarly, the percentage of the
simulated time in which the operative temperatures are lower than 18 ◦C or the value recommended
by the EN 15251 for buildings in the Category II, corresponds to the underheating rate. In addition,
other simulations were run to analyse the building profiles of cooling energy needs. These analyses
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aim to calculate the amount of sensible energy that must be removed during the summer season, in
order to ensure comfortable indoor conditions.

In this way, simulations during the whole year to determine the comfort rates and energy
requirement were performed. The hottest and coldest week of the year with hourly intervals were
also considered to analyse the results regarding heat transfer through building envelope components.
Furthermore, the hottest day of a year was simulated to analyse the results in terms of surface
temperatures and to calculate the time shift value of the configurations under analysis.

Regarding the methodology for the decision-making process [9], the first step involves building
the hierarchy model, which has mainly three hierarchical levels: the main objective on the top, the
criteria on the following level and the alternatives in the last level. For this work, the main objective is
to choose, firstly, the best configuration for glazing areas, roofs and walls, and subsequently, to choose
the most recommended insulation thickness for roofs and walls.

For the second level, three common criteria were set for assessing the priorities in glazing, roof and
walls interventions, and one additional criterion was added for the evaluation of the walls. The criteria
are the annual comfort rate, which represents the percentage of the time the thermal zone is within
the comfort range set for the static approach. Then, considering that a hot-humid climate is analysed
for this work, where the major discomfort rates are due to overheating conditions, the cooling needs
were also considered as a criterion for the decision-making process. The cooling needs are represented
by the overall sensible cooling effect on the zone of any air entered in the zone through the cooling
system, in other words, it is the total cooling contribution to the heat balance of the thermal zone
under analysis [21]. The costs involved with the intervention, which include the costs for labour
and materials taking as a base the original state of the building, and for the Paraguayan construction
market were also considered. Finally, for the walls was also considered the wall thicknesses, in order
to considerer the efficiency of walls with lower thickness allowing a greater indoor useful area of the
thermal zone under analysis. Regarding the alternatives, six options were considered for the glazing,
four for the roof, and nine for the walls.

The second step involves the establishment of priorities for the criteria, the weights. For this
purpose, the criteria are compared pairwise concerning the wanted goal to derive their weights.
The values depicted in Table 1 are used to set the weights. The third step involves the establishment
of local priorities (weights) for the alternatives, comparing the alternatives pairwise regarding every
criterion, for which the scale of values is in Table 1. For these two steps previously referred, a review
of the allocated weights values has to be done to check consistency regarding proportionality and
transitivity [9]. The consistency ratio (CR) shall be between 0 and 0.1 to proceed with the AHP
analysis. If it is higher than 0.10, a revision of the weight allocated is necessary to find the reason of the
inconsistency in order to put it right.

Table 1. The AHP pairwise comparison scale [7].

Intensity of Importance on an
Absolute Scale

Definition

1 The two criteria/alternatives are equally important and contribute equally
to the objective

3 Moderate importance of one criterion/alternative over another
5 Essential or strong importance of one criterion/alternative over another
7 Very strong importance of one criterion/alternative over another
9 Extreme importance of one criterion/alternative over another

2, 4, 6, 8 Intermediate values (when compromise is needed)

Finally, in the last step, the global priority vector is obtained. For this purpose, the alternatives
priorities must be combined through a weighted sum in order to establish the overall priorities of the
alternatives. Thus, the alternative with the highest overall priority is the most recommended choice [9].
The global priority vector is calculated through the elaboration of an overall matrix that includes the
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local priorities of each alternative concerning each criterion. Then, each column of vectors is multiplied
by the priority corresponding to each criterion and added to each row, which results in the desired
vector of best alternatives ordered in a ranking of importance or preference [7]. Further information
about the methodology, the formulas used in the method, the theorems and considerations can be
found in [7].
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Figure 1. Methodology of the work.

3. Case Study Characterisation

The building taken as case study consists of a single two-storey family dwelling. The ground floor
is composed of four thermal zones (lounge, circulations, bathroom, dining room and a kitchen) and the
first floor has three thermal zones (two bedrooms and one lounge) (see Figure 2). The main thermal
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zone under analysis and for which the results are depicted corresponds to the Bedroom 2, a thermal
zone on the first floor and with an east orientation, which in the original state has two walls surfaces
interacting with the outdoor conditions, the main facade with northwest (NW) orientation and the
lateral southwest (SW) facade. The zone has been chosen because, considering its exposition and
orientation, it records the worst comfort conditions and the highest energy demand. In the following
subsection are described the thermal properties of the building’s envelope components evaluated in
this research (Tables 3 and 4). The metabolic factor used for all thermal zones was equal to 1, while the
values for clothing insulation were 0.5 clo and 1 clo for the summer and winter season, respectively.
Table 2 depicts the input parameters used for the dynamic simulations according to every thermal
zone of the building.
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For the thermal comfort evaluation, any heating or cooling system is considered. Nevertheless,
natural ventilation is taken into account, where the natural ventilation rate was established in 5 air
changes per hour. Natural ventilation is allowed according to the windows operation schedule.
Hence, in the warmer seasons windows are open allowing natural ventilation only when the outdoor
temperature is lower than indoor temperature. However, natural ventilation is restricted when the
outside temperature is lower than 20 ◦C. For the winter season, windows are open only when the
operative temperature is higher than the comfort temperature calculated from the CEN 15251 adaptive
comfort model [22], considering that some days in winter season can reach high values of temperature.

Regarding the window shading (exterior Venetian blinds), the schedule of aperture operation
for winter season is: 100% open from 8 am to 6 pm and fully closed the rest of the day. For the
summer season, the shading is active when the solar radiation on the window reaches the medium
solar setpoint of 189 W/m2 [37], with the objective of reducing thermal discomfort because of direct
solar radiation but taking advantage of natural daylight.
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Table 2. Input parameters set for the simulations. The occupation density (m2/person), the minimum
fresh air (l/s-person), the target illuminance (Lux), the internal gains (W/m2) and the occupation
schedules are shown.

Thermal
Zone Occupation Fresh Air Illuminance Internal

Gains Schedule

Lounge 53.32 4 200 3.90
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Energy Retrofit Solutions Configuration

At this stage of defining the energy rehabilitation strategies, several possibilities of intervention
have been analysed, considering the most commonly used configurations in the country. The constructive
solutions and their thermal parameters are described in Table 3 for the glazing and Table 4 for roofs
and walls.

For calculating the thermal parameters of the roofs R3 and R4, an equivalent constant thickness
was used for the air gap. In addition, for some constructive components was considered their thermal
resistance (Rt) instead of their thermal conductivity. Six different options were evaluated for the
glazing, four for the roofs and nine for the walls.
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Table 3. Description of glazing type considered. For each layer, the values of s (thickness), λ (thermal
conductivity), U (thermal transmittance), e (emissivity), and ST (solar transmittance) are shown.

Building
Component Material (Outer to Inner) s (m) λ (W/m K) e (-) ST (-) U (W/m2K)

G—Glazing
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Table 4. Building’s envelope components description. The values of s (thickness), λ (thermal conductivity),
U (thermal transmittance) and Ms (thermal mass) are shown for each layer.

Building Component Material
(Outer to Inner)

s
(m)

λ

(W/m K)
U

(W/m2K)
Ms

(Kg/m2)

ROOF

R1 - Without insulation
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(a) Ceramic clay tile
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(c) Glass wool felt
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0.84
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R4 - Pitched Roof Tile
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(a) Ceramic clay tile
(b) High density wood
(c) Air gap
(d) Glass wool felt
(e) Plasterboard

0.010
0.025
1.000
0.050
0.030

0.84
0.29
0.04
0.25

0.57 1276

WALLS

W1: Without insulation (original state)

W1a - SW orientation
20 cm Wall
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(a) Sand lime plaster
(b) Solid Brick Burned
(c) Sand-lime plaster

0.015
0.170
0.015

1.15
0.85
1.15

2.53 309

W1b - NW orientation
30 cm Wall
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Table 4. Cont. 

WALLS 
W1: Without insulation (original state) 

W1a - SW orientation  
20 cm Wall 

 

outer  inner 
 (a)(b)(c) 

(a) Sand lime plaster 
(b) Solid Brick Burned 
(c) Sand-lime plaster 

0.015 
0.170 
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1.15 
0.85 
1.15 

2.53 309 

W1b - NW orientation 
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0.015 
0.270 
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1.15 
0.85 
1.15 
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External (W2) and internal (W3) cladding with insulation 
W2a - SW orientation  

26 cm Wall 
 

outer  inner 
 (a) (b) (c) (d) (e) 

(a) Sand cement plaster 
(b) Glass wool felt 
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(b) Solid brick burned 
(e) Sand-lime plaster 

0.010 
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0.015 
0.170 
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0.42 
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1.15 
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(b) Solid brick burned 
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0.010 
0.050 
0.015 
0.270 
0.015 

0.42 𝟎. 𝟎𝟒 
1.15 
0.85 
1.15 

0.56 498 

Inner (W4) and exterior (W6) cladding with hollow brick leaving an air gap 
W4a - SW orientation  

31.5 cm Wall 
 

outer  inner 
 (a)(b)(c)(d)(e)(f) 

(a) Sand lime plaster 
(b) Solid brick burned 
(c) Sand lime plaster 
(d) Air gap 
(e) Hollow brick 
(f) Sand cement plaster 

0.015 
0.170 
0.015 
0.025 
0.050 
0.010 

1.15 
0.85 
1.15 𝑹𝒕= 0.19 𝑹𝒕= 0.35 
0.42 

1.04 505 

W4b- NW orientation 
41.5 cm Wall 

 

outer  inner 
 (a)(b)(c)(d)(e)(f) 

(a) Sand lime plaster 
(b) Solid brick burned 
(c) Sand lime plaster 
(d) Air gap 
(e) Hollow brick 
(f) Sand cement plaster 

0.015 
0.270 
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0.025 
0.050 
0.010 

1.15 
0.85 
1.15 𝑹𝒕= 0.19 𝑹𝒕= 0.35 
0.42 

0.93 655 
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(a) Sand lime plaster
(b) Solid Brick Burned
(c) Sand lime plaster

0.015
0.270
0.015

1.15
0.85
1.15

1.95 459
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Table 4. Cont.

Building Component Material
(Outer to Inner)

s
(m)

λ

(W/m K)
U

(W/m2K)
Ms

(Kg/m2)

External (W2) and internal (W3) cladding with insulation

W2a - SW orientation
26 cm Wall
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(a) Sand cement plaster
(b) Glass wool felt
(c) Sand-lime plaster
(d) Solid brick burned
(e) Sand-lime plaster

0.010
0.050
0.015
0.170
0.015

0.42
0.04
1.15
0.85
1.15

0.60 348

W2b- NW orientation
36 cm Wall
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(a) Sand cement plaster
(b) Glass wool felt
(c) Sand lime plaster
(d) Solid brick burned
(e) Sand lime plaster

0.010
0.050
0.015
0.270
0.015

0.42
0.04
1.15
0.85
1.15

0.56 498

Inner (W4) and exterior (W6) cladding with hollow brick leaving an air gap

W4a - SW orientation
31.5 cm Wall
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(a) Sand lime plaster
(b) Solid brick burned
(c) Sand lime plaster
(d) Air gap
(e) Hollow brick
(f) Sand cement plaster

0.015
0.170
0.015
0.025
0.050
0.010

1.15
0.85
1.15

Rt = 0.19
Rt = 0.35

0.42

1.04 505

W4b - NW orientation
41.5 cm Wall
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(a) Sand lime plaster
(b) Solid brick burned
(c) Sand lime plaster
(d) Air gap
(e) Hollow brick
(f) Sand cement plaster

0.015
0.270
0.015
0.025
0.050
0.010

1.15
0.85
1.15

Rt = 0.19
Rt = 0.35

0.42

0.93 655

Inner (W5) and exterior (W7) cladding with insulation and hollow brick

W5a - SW orientation
34 cm Wall
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4. Results and Discussion 

Once the building component configurations were defined, coupled with the constants and 
variants to consider, the dynamic energy simulations were carried out, and the results are 
summarised in this section. 

4.1. Configurations for Glazing Type 

The first action involved the change of the glazing type, for which six options were considered. 
For analysing the influence of the shading system, one simulation was run without considering it. 
The results regarding comfort rates are in Figure 3, where no significant differences can be observed 
among the results according to the glazing types employed for both, the static approach and the 
adaptive method. This can be attributed to the fact that the glazing areas in the thermal zone under 
analysis are not too large, being the WWR equal to 8.7%, a value lower than 10% as recommended by 
Alwetaishi [38] for buildings in hot-humid climates.  
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(a) Sand lime plaster
(b) Solid brick burned
(c) Sand lime plaster
(d) Glass wool felt
(e) Hollow brick
(f) Sand cement plaster

0.015
0.170
0.015
0.050
0.080
0.010

1.15
0.85
1.15
0.04

Rt = 0.35
0.42

0.49 484

W5b - NW orientation
44 cm Wall
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4. Results and Discussion 

Once the building component configurations were defined, coupled with the constants and 
variants to consider, the dynamic energy simulations were carried out, and the results are 
summarised in this section. 

4.1. Configurations for Glazing Type 

The first action involved the change of the glazing type, for which six options were considered. 
For analysing the influence of the shading system, one simulation was run without considering it. 
The results regarding comfort rates are in Figure 3, where no significant differences can be observed 
among the results according to the glazing types employed for both, the static approach and the 
adaptive method. This can be attributed to the fact that the glazing areas in the thermal zone under 
analysis are not too large, being the WWR equal to 8.7%, a value lower than 10% as recommended by 
Alwetaishi [38] for buildings in hot-humid climates.  
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(a) Sand lime plaster
(b) Solid brick burned
(c) Sand lime plaster
(d) Glass wool felt
(e) Hollow brick
(f) Sand cement plaster

0.015
0.270
0.015
0.050
0.080
0.010

1.15
0.85
1.15
0.04

Rt = 0.35
0.42

0.47 634

Inner (W8) and exterior (W9) cladding with insulation and solid brick

W8a - SW orientation
31 cm Wall
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4. Results and Discussion

Once the building component configurations were defined, coupled with the constants and
variants to consider, the dynamic energy simulations were carried out, and the results are summarised
in this section.
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4.1. Configurations for Glazing Type

The first action involved the change of the glazing type, for which six options were considered.
For analysing the influence of the shading system, one simulation was run without considering it.
The results regarding comfort rates are in Figure 3, where no significant differences can be observed
among the results according to the glazing types employed for both, the static approach and the
adaptive method. This can be attributed to the fact that the glazing areas in the thermal zone under
analysis are not too large, being the WWR equal to 8.7%, a value lower than 10% as recommended by
Alwetaishi [38] for buildings in hot-humid climates.
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Figure 3. Comfort rates according to the fixed range (a) and the EN15251 for Category II (b) considering
different glazing types.

As depicted in Figure 4a, the same trend is detected analysing the annual energy requirements,
that does not change significantly according to the glazing type employed, for both cooling and heating
needs. Figure 4b shows the solar gains to the zone through the glazing areas during the hottest and
coldest week of a year, where can be seen how the use of shading systems collaborate to minimise the
solar gains during the summer period. Furthermore, considering that the major discomfort rates in the
zone correspond to the overheating one, the blue reflective glazing type delivered the best results since
the lowest solar gains during the hottest week were delivered with the simulations employing this
glazing type.

4.2. Configurations for the Roof

Subsequently, the simulations for the four configurations of the roof were performed, and the
results regarding comfort rates and energy requirement are depicted in Figures 5 and 6a, respectively.
Analysing the results of comfort rates, it is observed that the option 3 and option 4 delivered the highest
percentage within the comfort range, presenting the option 4 the lowest overheating rates, for both
the static and adaptive approach. Also, it can be observed that only improving the roof insulation,
the annual discomfort rates can decrease by 7.4% for the static approach and 13.3% considering the
adaptive method. The same trend is performed for the annual energy requirement analysis since the
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lowest cooling and heating needs are delivered by R3 and R4, for which the annual energy requirement
can decrease around 37% regarding the original state of the building.
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Figure 4. Annual Energy requirement (a) and solar gains (b) considering different glazing types.
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Figure 5. Comfort rates according to the fixed range (a) and the EN15251 for Category II (b) for different
roof configurations.
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Figure 6. Annual Energy requirement (a) and heat gains (b) for different roof configurations.

Figure 6b depicts the heat transfer through the roof according to the configuration employed,
where it can be seen how the roof of the original state of the building (R1) has the highest heat gains but
also the highest heat losses. Furthermore, the heat transfer through the roof has significantly decreased
considering the other three configurations used. The hottest day of a year was also simulated in
order to analyse the surface temperatures of buildings envelope components, as depicted in Figure 7a,
the maximum external and internal surface temperatures are recorded simultaneously, giving thus
a time shift value equal to zero for the roof R1. Figure 7b depicts that with the roof R4, this value
increased to 5 h, besides that the internal surface temperatures have significantly decreased, which
has impacted the operative temperature, achieving lower indoor temperatures during the highest
outdoor temperature conditions. Nonetheless, it is important to note that during the night, the
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outdoor temperatures are cooler than the interior ones, indicating the need to improve natural night
ventilation rates.
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Figure 7. Surface temperatures for the roof in the original state R1 (a) and for the solution R4 (b).

4.3. Configurations for the Walls

The third step was to evaluate the nine configurations chosen for the walls taking as a base
the original state of the building. Regarding comfort rates (Figure 8), the lowest underheating and
overheating rates were recorded by the configurations employing exterior claddings (W2, W6, W7,
W9); in fact, with an exterior reinforcement of exterior walls with 5 cm insulation (W2), it can be
achieved an increase in the annual comfort rate of almost 7%. Among the configurations using inner
claddings (W3, W4, W5, W8), the W8 (inner reinforcement with insulation and solid brick) delivered
the best results; nonetheless, no higher differences than 1.4% are recorded among them.
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Figure 8. Comfort rates according to the static (a) and the adaptive (b) approach for different
wall configurations.

Regarding cooling and heating needs, Figure 9a depicts the results according to the different
walls configurations. It was detected that the changes in the total heat transfer of the walls (Figure 9b)
influenced the annual energy requirements, also impacting in the heat transfer of the other envelope
components of the building that were maintained in its original configuration. Thus, the walls which
have lower heat transfer (W3 and W5), lead to the lowest cooling needs. For the heating needs,
W2 delivered the lowest results.
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Figure 9. Annual Energy requirement (a) and heat gains (b) for different wall configurations.

Figures 10 and 11 depict the results regarding surface temperatures of the wall in the original
state (a) and for the W2 configuration (b). For a southwest orientation (Figure 10), the external surface
temperature is higher with the W2 than with the W1. Nonetheless, the internal one has significantly
decreased with the wall W2, which also collaborated to slightly decrease the operative temperatures
of the thermal zone. For a northwest orientation (Figure 11), the same performance is recorded, but
the solar incident is higher, causing higher external surface temperatures. However, as W1 with
NW orientation is 30 cm-thick, the internal surface temperatures are lower, and with the addition of
5 cm-thick insulation for the W2 configuration, the internal surface temperature becomes even lower
also collaborating for the slightly lower operative temperatures of the zone. It is important to highlight
that the time shift values referred in the graphs were calculated according to the results obtained from
the simulations during the hottest day of a year, being thus the time difference between the maximum
external surface temperature and the maximum internal one.
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Figure 10. Surface temperatures for the wall with SW orientation in the original state W1 (a) and the
solution W2 (b).
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Figure 11. Surface temperatures for the wall with NW orientation in the original state W1 (a) and the
solution W2 (b).

4.4. Application of the AHP Method to Choose the Most Recommended Configuration

Once all the configurations were evaluated, the AHP method was applied. For this purpose, the
first step involves the establishment of the hierarchy structure. Regarding the criteria, the weights were
allocated considering the results obtained from the simulations for comfort rates and cooling needs.

For the cost estimation, a market study of the Paraguayan construction industry was developed.
The cost analysis considered to evaluate the proposed retrofit solutions was carried out through an
analysis of reference costs. For the costs estimation, a market study of the Paraguayan construction
industry was developed. The cost analysis considered to evaluate the proposed retrofit solutions was
carried out through an analysis of reference costs. Thus, the monetary value of the retrofit solutions
is not indicated, being used the percentage of cost increase associated with each solution referenced
to the cost of the constructive component in its original state. Therefore, the costs of the G1, R1, W1,
(glazing, roof and walls in the original state) have a value equal to 1 (reference cost), while the cost of
each retrofit solution is indicated as a multiplier factor (value) in relation with the reference cost of
each component.

For the glazing G1, for example, all the solutions involve an increase greater than 1 since a
replacement of the original component is required implying a cost increase of 98%, 20%, 100%, 242%
and 167% for the retrofit solutions G2, G3, G4, G5 and G6, respectively. As G1 is a window with simple
clear glazing of 6 mm, and its reference cost is indicated as 1, G4 has a double price in the Paraguayan
market, so, its cost related to the reference cost (G1) is 2.

In the case of the roof and walls, all the alternatives are associated with reference costs lower than
1 because the substitution of the original components is not necessary since the solution consists on the
addition of insulating materials aiming to improve the thermal performance of the building envelope.
Thus, the costs involved for each intervention are depicted in Table 5.

Table 5. Costs involved for each alternative under consideration.

Glazing Roofs Walls

Alternative Costs Alternative Costs Alternative Costs

G1 1.00 R1 1.00 W1 1.00
G2 1.98 R2 0.32 W2 0.31
G3 1.20 R3 0.38 W3 0.31
G4 2.00 R4 0.38 W4 0.54
G5 3.42 W5 0.64
G6 2.67 W6 0.54

W7 0.64
W8 0.61
W9 0.61
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Subsequently, the second step involves the set of priorities for the criteria, where the weights
are assigned. For walls and roof, Tables 6 and 7 present the pairwise comparison matrix employed.
For both, the highest priority is given to the comfort rates, considering that it considers the efficiency
of the solutions for the warm and cold seasons. Then, as a mainly warm climate is under analysis, the
cooling needs were considered as criteria and, it was considered as important as the comfort rates.
In this way, the cost criteria were the least influential in the analysis when compared to the other
referred criteria. Furthermore, for the walls, one additional criterion was taken into account, the walls
thicknesses of the solution under analysis, which had the least influence when compared with the
other criteria but, it was considered in order to give priority to the solutions allowing to preserve
more indoor useful area. For glazing, considering that in terms of comfort rates and cooling needs the
results did not vary significantly for the different configurations considered, it was decided to give a
higher weight to the associated costs for each glazing type employed, considering that these costs are
quite different between each other. For the same reason, the G1 was included as an alternative for the
AHP analysis for the glazing, to analyse whether the intervention in glazing areas is justified. Thus,
the pairwise comparison matrix for glazing is depicted in Table 8.

Table 6. Pairwise comparison matrix of criteria for roofs.

Roofs – Consistency Rate: 0.025

Criteria Costs Comfort Rate Cooling Needs Priority

Costs 1 1/5 1/3 0.11
Comfort rate 5 1 1 0.48
Cooling
needs

3 1 1 0.41

Table 7. Pairwise comparison matrix of criteria for walls.

Walls – Consistency Rate: 0.027

Criteria Costs Comfort Rate Cooling Needs Wall Thickness Priority

Costs 1 1/5 1/2 2 0.14
Comfort rate 5 1 2 4 0.51
Cooling needs 2 1/2 1 3 0.26
Wall thickness 1/2 1/4 1/3 1 0.09

Table 8. Pairwise comparison matrix of criteria for glazing.

Glazing – Consistency Rate: 0.016

Criteria Costs Comfort Rate Cooling Needs Priority

Costs 1 3 2 0.55
Comfort rate 1/3 1 1 0.21
Cooling needs 1/2 1 1 0.24

The same procedure was employed to develop the pairwise comparison matrix among alternatives
considering each criterion. Thus, the calculation of weight for each alternative and criterion was made,
and the results from the combined synthesis model are illustrated in Table 9. Regarding the glazing,
the results suggest that is not recommended to change the glazing type of the building since as was
previously stated, no major differences are delivered by the simulations regarding comfort rates and
cooling needs, however, the differences among the costs are meaningful. For the roofs, the analysis
suggests that the best option is the configuration R4, followed by the R3 and finally the R2, even
though the costs differences among the alternatives were not significant, the differences in terms of
comfort rates and cooling needs influence the results. Regarding the walls, W2 and W3, employing
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exterior and inner insulation, respectively, delivered similar results, being the most recommended
options for the walls, where the wall thickness made the difference to give priority to these options.

Table 9. Global priority vector for different configurations.

Glazing Roofs Walls

Alternative Weight Rank Alternative Weight Rank Alternative Weight Rank

G1 0.246 1 R2 0.141 3 W2 0.200 1
G2 0.135 4 R3 0.258 2 W3 0.185 2
G3 0.210 2 R4 0.601 1 W4 0.068 6
G4 0.121 5 W5 0.124 5
G5 0.186 3 W6 0.067 7
G6 0.101 6 W7 0.162 3

W8 0.055 8
W9 0.139 4

4.5. Evaluation of Different Insulation Thicknesses for the Roof

Once the most recommended configurations were set, the following step involves the use of each
configuration for walls and roofs, but varying the insulation thickness, using as a base the original
state of the building. Eight different insulation thicknesses were evaluated for the roof, employing
the configuration R4. The thermal transmittance value of the roof with the different insulation
thicknesses are shown in Table 10, and the results of the dynamic energy simulations are depicted
in Figure 12. The first bar depicts the results of the original state of the building, which employs
the configuration R1, the following bars depict the results employing the configuration R4 with the
different insulation thicknesses. It can be seen that only with the division of the thermal zone with a
horizontal plasterboard ceiling, creating an attic making the thermal zone not being in direct contact
with the outdoor conditions through the roof, the results regarding comfort rates have significantly
improved, even without the use of insulation materials.

Table 10. Thermal transmittance of roof R4 according to the insulation thickness used.

Description U (W/m2K)

R1 - Original state 4.20

R4 - Without insulation 1.97

R4 - Insulation 1 cm- thick 1.32

R4 - Insulation 3 cm- thick 0.79

R4 - Insulation 5 cm- thick 0.57

R4 - Insulation 8 cm- thick 0.34

R4 - Insulation 10 cm- thick 0.33

R4 - Insulation 12 cm- thick 0.28

R4 - Insulation 15 cm- thick 0.23

Comparing the results using 15 cm-thick insulation with the original state of the building,
an increase of around 8.5% was achieved for the comfort rate considering the static approach. For the
adaptive method, the improvement is higher, with an increase of around 14.5% of the comfort rate,
also achieving a significant decrease in the overheating rate (−11%). Nonetheless, it is important to
note that with the use of insulation of 1 cm and 3 cm thick the comfort rate increase around 1.4% in
both cases, but for the following insulation thicknesses the improvements become lower, being the
difference in the comfort rate of around 1% between the results employing 5 cm-thick and 15 cm-thick
insulation. Figure 12c depicts the results regarding cooling and heating needs, where the same trend
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that for the comfort rates are recorded. Also, it is indicated that for an insulation thickness of 8 cm to
15 cm the differences between the results are not too meaningful.
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Figure 12. Comfort rates according to the static (a) and the adaptive (b) approach and annual energy
requirement (c) for the roof R4 according to different insulation thicknesses.

4.6. Evaluation of Different Insulation Thicknesses for Walls

For the walls, five insulation thicknesses were considered. Furthermore, considering that the most
widely used wall thickness in the country is currently 15 cm thick, three different wall thicknesses
were evaluated without insulation materials, including the 15 cm wall. Thus, several simulations were
performed taking as a base the original state of the building and intervening one exterior wall at a time,
considering each orientation. For the SW orientation, Table 11 shows the thermal transmittance of the
walls simulated, and Figure 13 depicts the results in terms of comfort rates and energy requirement.
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Table 11. Thermal transmittance of wall W2 with SW orientation according to the insulation thickness used.

Description U (W/m2K)

W1a – 15 cm-thick 2.97

W1a - Original state 2.53

W1a - 30 cm-thick 1.95

W2a - Insulation 1 cm-thick 1.49

W2a - Insulation 3 cm-thick 0.86

W2a - Insulation 5 cm-thick 0.60

W2a - Insulation 8 cm-thick 0.41

W2a - Insulation 10 cm-thick 0.34
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Figure 13. Comfort rates according to the static (a) and the adaptive (b) approach and annual energy
requirement (c) for the wall W2 with SW orientation according to different insulation thicknesses.

As expected, the lowest comfort rate was delivered for the most widely used wall thickness in
the country (15 cm), nonetheless, with the addition of 3 cm-thick insulation material only on the wall
with SW orientation the comfort rate can increase around 4% considering the static approach and
5.63% considering the adaptive method. Also, it is recorded that for an insulation thickness of 5 cm to
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10 cm the differences between the results are not very significant. Regarding the energy requirement
(Figure 13c), the results for the heating needs follow the same trend of the comfort rates.

For the cooling needs, the highest value was recorded for the 30 cm thick wall, followed by the
20 cm and 15 cm thick, respectively. As the cooling needs are being considered in this research in
terms of the zone sensible cooling, which is, as previously referred, the overall cooling contribution
to the heat balance of the thermal zone under analysis from the cooling system. So, the values for
the cooling needs are influenced by the heat transfer involved in all building components. With the
15 cm-thick wall is recorded the higher discomfort rates, which indicates a lower gradient temperature
since the thermal zone presents conditions more similar to the outdoor conditions. So, this lower
gradient temperature translates to lower heat transfer values decreasing the values of the cooling
thermal loads. Furthermore, with a thinner wall, the component is able to gain and lose heat on an
equal basis. Nonetheless, with the use of insulation, the energy requirement decreased significantly,
achieving a reduction of around 11.4% of the cooling needs and 22.5% of the heating needs with the
use of 3 cm thick insulation only in the wall with SW orientation, and regarding the original state of
the building (20 cm thick).

For the NW orientation, Table 12 shows the thermal transmittance of the walls simulated, and
Figure 14 depicts the results regarding comfort rates and energy requirement. Comparing the results
between the two orientations, the results suggest that the wall with SW orientation has a higher
incident on the comfort rates since higher values within the comfort zone were obtained with the
intervention in the SW wall. Thus, it is more effective to intervene walls on the SW orientation.
Regarding the comfort rates and energy requirement, the same trend of the wall on the SW orientation
are recorded, but with lower values for the improvements since with the use of 3 cm thick insulation
the comfort rate increased 1.27% for the static method and the heating and cooling needs decreased
around 11% and 6%, respectively.

Table 12. Thermal transmittance of wall W2 with NW orientation according to the insulation thickness used.

Description U (W/m2K)

W1b - 15 cm-thick 2.97

W1b - 20 cm-thick 2.53

W1b - Original state 1.95

W2b - Insulation 1 cm-thick 1.27

W2b - Insulation 3 cm-thick 0.77

W2b - Insulation 5 cm-thick 0.56

W2b - Insulation 8 cm-thick 0.39

W2b - Insulation 10 cm-thick 0.33
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Figure 14. Comfort rates according to the static (a) and the adaptive (b) approach and annual energy
requirement (c) for the wall W2 with NW orientation according to different insulation thicknesses.

4.7. Application of the AHP method to choose the most recommended insulation thickness

Once all the simulations were evaluated, the AHP method was applied to find the most recommended
insulation thickness. The same considerations previously described for the method were employed,
and the pairwise comparison matrix of criteria used are depicted in Tables 6 and 7. For the criteria,
the weights were allocated considering the results obtained from the simulations for comfort rates
and cooling needs, and the costs involved for each intervention are depicted in Table 13. Thus,
the calculation of weight for each alternative and criterion was made, and the results from the
combined synthesis model are illustrated in Table 14. In general, the most recommended insulation
thicknesses are 3 cm, 5 cm and 8 cm, for both roofs and walls, followed by the options employing
higher insulation thicknesses. In none case, the walls without the use of insulation materials recorded
a good overall weight, which had the last places in the ranking for all the alternatives.

Table 13. Costs involved for each alternative under consideration.

Roof Wall SW Orientation Wall NW Orientation

Alternative Costs Alternative Costs Alternative Costs

R1 - Original 1.00 W1a-15 cm 0.72 W1b-15 cm 0.58
R4-0 cm 1.34 W1a-20 cm 1.00 W1b-20 cm 0.80
R4-1 cm 1.36 W1a-30 cm 1.25 W1b-30 cm 1.00
R4-3 cm 1.37 W2a-1 cm 1.07 W2b-1 cm 1.05
R4-5 cm 1.38 W2a-3 cm 1.09 W2b-3 cm 1.07
R4-8 cm 1.40 W2a-5 cm 1.13 W2b-5 cm 1.10
R4-10 cm 1.41 W2a-8 cm 1.18 W2b-8 cm 1.15
R4-12 cm 1.44 W2a-10 cm 1.21 W2b-10 cm 1.17
R4-15 cm 1.46
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Table 14. Global priority vector for different insulation thicknesses.

Roof Wall SW Orientation Wall NW Orientation

Alternative Weight Rank Alternative Weight Rank Alternative Weight Rank

R1 - Original 0.076 9 W1a-15 cm 0.110 6 W1b-15 cm 0.143 5
R4-0 cm 0.080 8 W1a-20 cm 0.079 7 W1b-20 cm 0.091 7
R4-1 cm 0.114 7 W1a-30 cm 0.075 8 W1b-30 cm 0.066 8
R4-3 cm 0.122 3 W2a-1 cm 0.124 5 W2b-1 cm 0.092 6
R4-5 cm 0.125 2 W2a-3 cm 0.154 2 W2b-3 cm 0.157 2
R4-8 cm 0.133 1 W2a-5 cm 0.162 1 W2b-5 cm 0.159 1

R4-10 cm 0.118 4 W2a-8 cm 0.149 3 W2b-8 cm 0.147 3
R4-12 cm 0.117 5 W2a-10 cm 0.148 4 W2b-10 cm 0.145 4
R4-15 cm 0.116 6

4.8. Thermal Performance Evaluation of the Energy Efficiency Version of the Building

The next step is to simulate the whole building considering the improvements for the roofs
and walls together. Thus, for this section an insulation thickness of 5 cm for the roof and 3 cm for
the walls is evaluated. The results regarding comfort rates and energy requirement are depicted in
Figure 15. It can be seen that the overheating and underheating rates have significantly decreased,
in fact, considering the adaptive method the building is overheated only 2.71% of the year. In general,
the adaptive method tends to be permissive with higher temperatures but not with lower temperatures,
delivering an underheating rate of 20.95%. However, with the static approach, it demonstrates that the
building is under 18 ◦C only 3.76% of the year. Regarding the energy requirement, the heating needs
per square meter decreased 85% regarding the original state of the building and the cooling needs
decreased around 45%, having now a value of 104 KWh/m2.
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Figure 15. Results of the energy efficiency version of the building.

Once obtained the energy efficiency version of the building in its original orientation, the building
was rotated 180◦ to run others annual simulations and to evaluate the changes in the comfort rates.
Different insulation thicknesses were considered, for both roofs and walls, and the results are depicted
in Figure 16. It can be seen that with this orientation (southeast) the thermal zone has a slightly
better response regarding overheating rates, the underheating rates instead had a little increase, which
was expected considering that there is not a direct solar incident during winter season with this
orientation, and for the summertime only impinges the morning sun radiation. Thus, to achieve a
thermal performance similar to which the building had in its original orientation for the colder season
is necessary to increase the insulation thickness. Nonetheless, the annual comfort rate is higher with
this orientation due to the improvements for the summer season.
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Figure 16. Simulations results of the building rotated 180◦.

4.9. Evaluation of Different Window-to-Wall Ratios According to Orientation

Finally, the last target of this study is to evaluate different WWR for the thermal zone under
analysis according to each orientation and taking as a base the energy efficiency version of the building.
Four different WWR were evaluated on each orientation, with and without the use of shading systems,
and the results regarding comfort rates employing the static approach are depicted in Figure 17. It was
recorded that the use of shading systems can increase by around 2.6% on average the comfort rates
considering all the WWR used, being this rate higher as the WWR increases.

As expected, as the WWR increase the discomfort rates also increase. The lowest comfort rates
were delivered on the SW orientation, being thus not recommended to use large glazing areas on this
orientation. Increasing the WWR to 15% on the SE or NE orientation, the thermal zone presents a
slightly better thermal performance regarding the energy efficiency version of the building employing
the original WWR (8.7%). Even though the underheating rates increased slightly, the addition of extra
glazing areas allowed to enhance the natural ventilation rates during night-time improving the indoor
temperatures. Nonetheless, for higher WWR ratios this feature is not repeated.
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Figure 17. Comfort rates varying according to different WWR by orientation with and without the use
of shading systems.

5. Conclusions

In this paper, a parametric study of several energy retrofit solutions for buildings is developed
in order to analyse their efficiency in terms of comfort rates and cooling needs. For this purpose,
more than 130 annual dynamic energy simulations of the building were performed. Furthermore,
the Analytic Hierarchy Process is employed as a decision-making method to choose the most
convenient intervention considering the investment costs required.

Regarding the AHP method, it can be said that it has a clear structure that facilitates its application
to any decision problem. Also, it allows controlling the weights assignment of criteria through the
consistency ratio, which gives some robustness to the analysis providing an acceptable approximation
to the expected results. However, its main weakness would be the high subjectivity with which the
analysis is established since the allocation of weights for each criterion/alternative could be decisive
when setting the best alternative. Furthermore, this subjectivity can lead to some inconsistencies in
the final comparison matrices. Nonetheless, consistency ratios lower than 0.10, as the used in this
research, allows validating the AHP analysis. Thus, after the sensitivity analysis of the results and the
performance evaluation, the following conclusions can be stated:

• If the glazing areas are not significant (WWR lower than 10%), the intervention may not be
justified since the incidence of glazing areas on thermal comfort and energy requirement is not
meaningful, but not so, the costs involved in the interventions.

• With the intervention on the roof, the annual discomfort rates can decrease by 7.4% for the static
approach, and the annual energy requirement can decrease by around 37% regarding the original
state of the building. The AHP analysis suggests that the best option is the configuration R4,
followed by the R3 and finally the R2, even though the costs differences among the alternatives
were not significant, the differences in terms of comfort rates and cooling needs influence
the results.
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• With the intervention on the walls, the higher comfort rates were recorded by the configurations
employing exterior claddings. In fact, an increase of almost 7% in the annual comfort rate can
be achieved with an exterior reinforcement of exterior walls with 5cm insulation. The AHP
analysis suggests that the configurations employing exterior and inner insulation plus a layer
of plaster represents the best options since they delivered a good thermal performance at lower
costs, besides allowing a greater indoor useful area of the thermal zone under analysis.

• Regarding the insulation thicknesses, in general, the most recommended insulation thicknesses
are 3 cm, 5 cm and 8 cm, for both roofs and walls, employing an insulation material with
0.04 W/m.K of thermal conductivity. This means that for roofs, a thermal transmittance value
between 0.79–0.34 W/m2K is recommended. For walls with an SW and NE orientation, those
values between 0.86–0.41 W/m2K and for walls with an NW and SE orientation the values
between 0.77–0.39 W/m2K (Table 15).

• Concerning window to wall ratios, a WWR up to 15% on the SE or NE orientation, with the
use of shading systems, can help to increase natural ventilation rates improving comfort rates.
Nonetheless, higher values of WWR can increase the overheating rates significantly, and this
increase is accentuated without the use of shading systems, and mainly for glazing areas located
on SW orientations.

Table 15. Threshold values of thermal transmittance recommended.

Building Component Recommended Values of Thermal Transmittance U (W/m2K)

Roofs 0.79–0.34
Walls SW and NE 0.86–0.41
Walls NW and SE 0.77–0.39

The general objective of this research was to establish threshold values of thermal transmittance
for the building thermal envelope components, in order to contribute to the regulation of thermal
parameters to improve the energy efficiency of Paraguayan buildings. Even though some researchers
highlight the importance of combining software tools with sensors for the evaluation of building
thermal performance [39,40], real in situ measurements were not possible to develop for the present
research work. This is because the building taken as a case study is a private family dwelling and
the blueprints were obtained through the local municipality, ensuring privacy and confidentiality.
In addition, this work was developed in Europe very far from the building location.

Nonetheless, considering that currently Paraguay has no thermal and energy regulations for
buildings, concerted efforts were made to use as a case study a building and the climate of Paraguay,
with the objective of contributing to the future energy regulations of the country, demonstrating
the importance and effectiveness of energy retrofit solutions to improve thermal performance of
buildings, having thus an important impact on country’s sustainability. Considering this, one of the
main objectives for further research in this area for the country is the validation and calibration of the
presented model through monitorisation and in situ measurements at the building location.

It is important to highlight that the simulations tools employed in this research are highly
recommended by several international and renowned standards, which have been greatly used in
several scientific investigations [41–46]. Accordingly, the simulation tools accuracy supports the results
reliability of the energy efficiency of the building in its original state, without thermal insulation
materials, and the results of the energy efficient version, demonstrating thus the effectiveness of the
strategies implemented for the climate under analysis.

The results of this paper have demonstrated that passive energy retrofit strategies are effective for
the climate under analysis and can significantly reduce the energy requirement of the building sector
through the improvement of annual comfort rates. This is a sustainable approach being the building
performance and the user’s comfort independent from the energy costs fluctuation. Furthermore,
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the results herein presented can serve as support and contribute to the regulation of thermal parameters
aiding to improve the energy efficiency of Paraguayan buildings.
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